LED760-40K42 stem type LED with high beam

LED760-40K42 is AlGaAs LED mounted on TO-46 stem with unspherical glass lens, being designed for high beam uses.

On forward bias, it emits a spectral band of radiation, which peaks at 760nm.

♦ Features

- 1) High radiated intensity
- 2) High Reliability
- Specifications

Infrared LED Lamp
LED760-40K42
AlGaAs
760nm
TO-46 stem
Unspherical glass lens
Gold plated

Absolute Maximum Ratings

Item	Symbol	Maximum Rated Value	Unit	Ambient Temperature	
Power Dissipation	PD	200	mW	Ta=25°C	
Forward Current	lF	100	mA	Ta=25°C	
Pulse Forward Current	lfp	500	mA	Ta=25°C	
Reverse Voltage	Vr	5	V	Ta=25°C	
Operating Temperature	Topr	-30 ~ +80	°C		
Storage Temperature	Тѕтс	-30 ~ +100	°C		
Soldering Temperature	Tso∟	260	°C		

[‡]Pulse Forward Current condition: Duty=1% and Pulse Width=10us. ‡Soldering condition : Soldering condition must be completed within 3 seconds at 260°C

◆ Electro-Optical Characteristics

Item	Symbol	Condition	Minimum	Typical	Maximum	Unit
Forward Voltage	Vf	IF=50mA		1.85	2.00	V
Reverse Current	lr	Vr=5V]		10	uA
Total Radiated Power	Po	IF=50mA	6	10		mW
Radiant Intensity	lε	IF=50mA)	60.0		mW/sr
Peak Wavelength	λΡ	IF=50mA	740	760	780	nm
Half Width	Δλ	IF=50mA]	30		nm
Viewing Half Angle	θ 1/2	IF=50mA		±6		deg.
Rise Time	tr	IF=50mA		80		ns
Fall Time	tf	IF=50mA		80		ns
Viewing Half Angle Rise Time Fall Time	<u>Δλ</u> θ 1/2 tr tf	IF=50mA IF=50mA IF=50mA IF=50mA		50 ±6 80 80		nm deg. ns ns

‡Total Radiated Power is measured by Photodyne #500

‡Radiant Intensity is measured by Tektronix J-6512.