POWER MANAGEMENT

Features

- $\mathrm{V}_{\text {IN }}$ Range -2.9 V to 22 V
- $\mathrm{V}_{\text {out }}$ Range - Up to 25 V
- $\mathrm{I}_{\text {out }}$ Range:
- Up to 100 mA (Boost)
- Up to 200 mA (Buck)
- Drives Up to 7 Series WLEDs (Boost)
- Drives Up to 5 Series WLEDs (Buck)
- Integrated Schottky Rectifier
- Single-Wire LED Connect
- Current Mode Control

■ Frequency - 2.0 MHz

- No External Compensation
- Direct PWM Dimming
- 100:1 Range at 500 Hz
- Open-LED Protection - 27V
- Low Shutdown Current $<1 \mu \mathrm{~A}$
- Package Options:
- Low Profile MLPD-UT, 6 -pin $2 \times 2 \times 0.6(\mathrm{~mm})$
- SOT23, 6 -pin $2.9 \times 2.8 \times 1.45(\mathrm{~mm})$
- Lead-free, Halogen-Free and WeEE/RoHS Compliant

Applications

- Keypad Illumination
- DSC and DSLR Display Backlight
- Cellular Handsets
- Automotive Lighting

Description

The SC4541 is a fully integrated, high voltage boost (stepup) and buck (step-down) LED driver. The input voltage range is 2.9 V to 22 V with output voltage up to 25 V . The device is capable of driving up to 7 white LEDs. The high side sense enables a single-wire LED connection by taking advantage of the available system ground. This reduces connector cost and complexity.

The device includes a current mode PWM controller, 260 mA power switch, and high performance Schottky rectifier. The LED driver eliminates external compensation components for minimum solution size.

The wide input voltage range and low standby current are ideal for portable devices. The high input voltage allows direct connection to multi-cell battery packs which increases operating efficiency and extends battery life.

Output current is programmed with an external sense resistor up to 100 mA (Boost) or 200 mA (Buck). The device provides $\pm 5 \%$ constant current accuracy across the entire operating temperature range.

A logic level PWM dimming signal may be applied directly to the enable (EN) pin - for direct PWM dimming with a wide dimming range. Output OVP (over voltage protection) protects the SC4541 from open circuit faults in the LED string or connector. External OVP programming resistors are not required.

The SC4541 is available in low profile MLPD-UT and SOT23,6-pin packages. The device is rated across the temperature range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Typical Application Circuit

Boost Topology lout up to 100 mA

Pin Configuration, MLPD-UT6

Marking Information, MLPD-UT6

\square

Pin Configuration, SOT23-6

Marking Information, SOT23-6

Bottom Mark

LK5A = Code for SC4541
Eyww = Datecode

Ordering Information

Device	Package
SC4541SKTRT $^{(1,2)}$	SOT23-6
SC4541ULTRT $^{(1,2)}$	$2 \times 2 \times 0.6(\mathrm{~mm})$ MLPD-UT6
SC4541EVB-1	Evaluation Board, SOT23-6
SC4541EVB-2	Evaluation Board, MLPD-UT6

Notes:
(1) Available in tape and reel only. A reel contains 3,000 devices.
(2) Available in lead-free package only. Device is WEEE/RoHS compliant and halogen-free.
SEMTECH
Absolute Maximum Ratings
Supply IN Voltage(V) -0.3 to 26
SW Voltage, OUT Voltage(V)

\qquad
FB, Enable Voltage(V)

\qquadESD Protection Level ${ }^{[1)}(\mathrm{kV})$
\qquad4

Recommended Operating Conditions

Supply IN Voltage (V) 2.9 to 22
Maximum Output Voltage (V) 25
Ambient Temperature Range (${ }^{\circ} \mathrm{C}$) -40 to +85
Thermal Information
Thermal Resistance, Junction to Ambient ${ }^{(2)}$
MLPD-UT6 $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ 75
SOT23-6(${ }^{\circ} \mathrm{C} / \mathrm{W}$) 150
Maximum Junction Temperature (${ }^{\circ} \mathrm{C}$) $+125$
Storage Temperature Range (${ }^{\circ} \mathrm{C}$) -65 to +150
Peak IR Reflow Temperature (10 s to 30 s) (${ }^{\circ} \mathrm{C}$) $+300$
Exceeding the above specifications may result in permanent damage to the device or device malfunction. Operation outside of the parameters specified in the Electrical Characteristics section is not recommended.

NOTES:

(1) Tested according to JEDEC standard JESD22-A114-B.
(2) Calculated from package in still air, mounted to 3×4.5 (in), 4 layer FR4 PCB with thermal vias under the exposed pad per JESD51 standards.

Electrical Characteristics

$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{C}_{\text {IN }}=1 \mathrm{uF}, \mathrm{C}_{\mathrm{OUT}}=1 \mathrm{uF}, \mathrm{L}=10 \mathrm{uH}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, unless specified otherwise.

Parameter	Symbol	Conditions	Min	Typ	Max	Units
Input Voltage	V_{IN}		2.9		22	V
Supply Current	$\mathrm{I}_{\mathrm{IN}(\mathrm{Q})}$	$\mathrm{V}_{\mathrm{IN}}=22 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=18 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=17 \mathrm{~V}, \mathrm{EN}=3 \mathrm{~V}$		1.5	3	mA
Shutdown Supply Current	$\mathrm{I}_{\mathrm{IN(SHN)}}$	$\mathrm{EN}=0 \mathrm{~V}$			1	$\mu \mathrm{~A}$
EN Logic High Voltage	$\mathrm{V}_{\mathrm{EN(H)}}$		2			V
EN Logic Low Voltage	$\mathrm{V}_{\mathrm{EN(L)}}$				0.4	V
EN Logic Bias Current	$\mathrm{I}_{\mathrm{EN(L)},} \mathrm{I}_{\mathrm{EN}(H)}$				1	$\mu \mathrm{~A}$

Boost Converter Characteristics

Switching Frequency	$\mathrm{f}_{\text {sw }}$		1.6	2.0	2.4	MHz
Maximum Duty Cycle	$\mathrm{D}_{\text {max }}$		84			\%
Switch Current limit	$\mathrm{I}_{\text {LIMIT }}$		260	350	450	mA
Switch Leakage Current	$\mathrm{I}_{\text {sw }}$	$\mathrm{V}_{\text {sw }}=18 \mathrm{~V}$		0.1	5	$\mu \mathrm{A}$
Switch Saturation Voltage	$V_{\text {SAT }}$	$\mathrm{I}_{\text {SW }}=0.2 \mathrm{~A}$		200		mV
OUT Over-Voltage Protection	$V_{\text {OUTIOVP) }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	25.5		28.0	V
Schottky Forward Drop	$\mathrm{V}_{\text {F(D) }}$	$\mathrm{I}_{\text {OUT }}=100 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.7		V

Parameter	Symbol	Conditions	Min	Typ	Max	Units
Boost Converter Characteristics (continued)						
Schottky Leakage Current	$\mathrm{I}_{\text {LEAK(D) }}$	$\mathrm{V}_{\text {OUT }}=20 \mathrm{~V}$			4	$\mu \mathrm{A}$
Current Sink Characteristics						
LED Current Sense Voltage ($\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\mathrm{FB}}$)	$V_{\text {SENSE }}$	$\mathrm{V}_{\text {OUT }}=18 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	192	200	208	mV
		$\mathrm{V}_{\text {OUT }}=18 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	188		212	mV
OUT Pin Bias Current	$\mathrm{I}_{\text {outb(BIAS) }}$	$\mathrm{V}_{\text {OUT }}=18 \mathrm{~V}$		55		$\mu \mathrm{A}$
FB Pin Bias Current	$\mathrm{I}_{\text {fbB(BAS }}$	$\mathrm{V}_{\mathrm{FB}}=18 \mathrm{~V}$		12		$\mu \mathrm{A}$
$\mathrm{V}_{\text {Out }} \mathrm{V}_{\text {FB }}$ Common Mode Voltage	$\mathrm{V}_{\text {cm }}$		2.9			V

Typical Characteristics

Typical Characteristics (continued)

Conditions: $5 \mathrm{~V}_{\mathrm{IN}^{\prime}} 20 \mathrm{~mA}, 6$ LEDs in series, $\mathrm{C}_{\mathbf{I N}} / \mathrm{C}_{\text {out }}=1 \mu \mathrm{~F}, \mathrm{~L}=10 \mu \mathrm{H}$

$$
\text { Start-up - by } \mathrm{V}_{\mathrm{IN}}
$$

Start-up - by PWM

VIN Fluctuation - Rising
5 VIN to 12 VIN

Shut Down

Main Power Switching

VIN Fluctuation - Falling

Typical Characteristics (continued)

Conditions: $5 \mathrm{~V}_{\mathbb{I N}^{\prime}} 20 \mathrm{~mA}, 6 \mathrm{LEDs}$ in series, $\mathrm{C}_{\mathrm{IN}} / \mathrm{C}_{\text {out }}=1 \mu \mathrm{~F}, \mathrm{~L}=10 \mu \mathrm{H}$
Over Voltage Protection

PWM Dimming (50\% duty cycle)
300Hz PWM Dimming, 50\% Duty Cycle

PWM Dimming (0.1% duty cycle)
300Hz PWM Dimming, 0.1\% Duty Cycle

Time (0.5ms/div)

Pin Descriptions

Pin \# MLPD-WL6	Pin \# SOT23-6	Pin Name	Pin Function
1	3	IN	Input supply pin - add a ceramic capacitor between this pin and ground.
2	2	GND	Ground pin - connect to external ground plane.
3	1	SW	Collector of the internal power transistor - connect this pin to the boost inductor.
4	6	OUT	Output voltage pin - this pin is the output of the internal Schottky diode. Connect this pin to a ceramic output (1 μ F typical) capacitor and current sense resistor.
5	5	FB	LED current feedback pin - connect this pin to anode of the topmost LED in the string and the current sense resistor to set the total current in the LED string(s). LED current is set by : 200/R SENSE
6	mA), where $R_{\text {SENSE }}$ is in Ohms.		

Block Diagram

Applications Information

Operation

The SC4541 is a fixed frequency step-up current-mode switching regulator with an integrated Schottky diode and power transistor (see the Block Diagram for more information).

When EN is low, the device is in shutdown mode and draws less than $1 \mu \mathrm{~A}$ of current. The internal circuitry is enabled and turns on when EN is logic high. The voltage drop across OUT and FB is reflected to ground and fed to the negative input of the error amplifier and a 200 mV reference signal is fed to the positive input of the error amplifier. The output of the error amplifier is one input to the PWM comparator. The device is designed to be stable without additional external compensation components.

Switch current is sensed with an integrated sense resistor and is summed with the slope-compensating ramp which is then fed as the modulating ramp input to the PWM comparator. The latch is reset and Q1 is turned off when the modulating ramp intersects the error amplifier output. The latch will also be reset if the current in Q1 exceeds the current limit threshold, typically 350 mA . The latch is set and Q1 turns on at the beginning of every oscillator clock cycle.

The SC4541 has a built-in Schottky diode. When input voltage is applied an inrush current flows through the inductor and the Schottky diode and charges up the output capacitor connected to OUT. The Schottky diode inside the SC4541 can sustain a maximum current of 1A.

Programming the LED Current

The circuit will maintain the necessary output voltage to ensure 200 mV across OUT and FB pins. Refer to the Typical Application Circuit on page 1. The LED current is programmed by connecting a resistor ($\mathrm{R}_{\text {SENSE }}$) between the OUT pin and FB pin. The LED current, in mA , is set by using the following relationship.

$$
I_{\text {LED }}=200 / R_{\text {SENSE }}
$$

where $R_{\text {SENSE }}$ value is in Ohms.
$I_{\text {Led }}$ value is in mA.
The feedback voltage has a direct effect on the converter efficiency. Because the voltage drop across the feedback resistor does not contribute to the output power (LED brightness), the lower the feedback voltage, the higher
the efficiency. The internal oscillator sets a high switching frequency of 2.0 MHz which further reduces the total solution size by minimizing external L/C filter size.

Over-Voltage Protection (OVP)

An integrated over-voltage protection circuit prevents the OUT voltage from exceeding the maximum switch voltage rating (28V). When EN is high, a resistor divider from OUT to GND is switched in to monitor OUT for over-voltage protection. If OUT rises higher than the OVP threshold, typically 27 V , the OVP comparator will trip and reset the latch to turn Q1 off. When OUT drops back below the OVP threshold, Q1 will turn back on in the next oscillator cycle. This sequence will repeat for as long as the over-voltage condition persists.

Enable and PWM Dimming

The EN pin could be toggled for direct PWM dimming. In a typical application, a microcontroller sets a register which varies the pulse width on a GPIO which is tied to EN pin. Direct PWM dimming can be used to control LED brightness when a PWM signal (up to 1 kHz) with wide duty ratio is applied.

Inductor Selection

The inductance value affects the converter's steady state operation, transient response, and its loop stability. Attention must be given to inductor parameters; including inductance, DC resistance, and saturation current. The inductance and operating conditions determine the inductor ripple current. The converter can operate in continuous conduction mode (CCM) or discontinuous conduction mode (DCM). The inductor DC current or input current can be calculated using the following equation.

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{N}}=\frac{\mathrm{V}_{\text {OUT }} \times \mathrm{I}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}} \times \eta} \\
& \mathrm{I}_{\mathrm{IN}}-\text { Input current; } \\
& \mathrm{I}_{\text {OUT }}-\text { Output current; } \\
& \mathrm{V}_{\text {OUT }}-\text { Boost output voltage; } \\
& \mathrm{V}_{\mathrm{IN}} \text { - Input voltage; } \\
& \eta \text { - Efficiency of the boost converter. }
\end{aligned}
$$

Applications Information (continued)

The converter has higher efficiency under CCM and the inductor peak current is calculated by the following equation.

Assuming CCM, the duty ratio is calculated using the following equation.

$$
D=\frac{V_{\text {OUT }}-V_{\text {IN }}+V_{D}}{V_{\text {OUT }}+V_{D}}
$$

V_{D} is the forward voltage drop of the internal Schottky rectifier.

The inductor ripple current is further shown by the following equation.

$$
\mathrm{I}_{\mathrm{L}_{-} \text {RIPPLE }}=\frac{\mathrm{V}_{\mathbb{I N}} \times \mathrm{D}}{\mathrm{~F}_{\mathrm{S}} \times \mathrm{L}}
$$

The recommended inductance shown in Table 1 is based on operation with regulated 5 V input, dual Li-ion or three Li-ion battery packs. Increased inductance is required for higher input and output voltage configurations.

Table 1 - Inductance Requirements, Driving 6 bWLED

Input Type	Input Voltage Range	L1 Induc- tance
Regulated 5V	4.5 to 5.5 V	$10 \mu \mathrm{H}$
Dual Lithium Ion Battery Pack	5.4 to 8.4 V	$22 \mu \mathrm{H}$
Three Lithium Ion Battery Pack	8.1 to 12.6 V	$33 \mu \mathrm{H}$

Output Capacitor Selection

Ceramic capacitors are placed near IN and OUT pins to ground in order to minimize ripple voltage. The minimum capacitance needed for a given ripple can be estimated using the following equation.
$C_{\text {OUT }}=\frac{\left(V_{\text {OUT }}-V_{\text {IN }}\right) \times \mathrm{I}_{\text {OUT }}}{V_{\text {OUT }} \times F_{S} \times V_{\text {RIPPLE }}}$
$\mathrm{V}_{\text {RIPPLE }}=$ Peak to peak output voltage ripple
$\mathrm{I}_{\text {out }}=$ Output current
$\mathrm{V}_{\text {OUT }}=$ Boost output voltage
$\mathrm{V}_{\text {IN }}=$ Input voltage
$F_{S}=$ Switching frequency

A $1 \mu \mathrm{~F}$ ceramic input and output capacitor should be adequate for most applications. Larger capacitance reduces voltage ripple, overshoot and undershoot during load transient as well as improving loop stability margin. Recommended ceramic capacitor manufacturers are listed in Table 1.

Table 2 - Recommended Ceramic Capacitor Manufacturers

Vendor	Phone	Website
Kemet	$408-986-0424$	www.kemet.com
Murata	$814-237-1431$	www.murata.com
Taiyo Yuden	$408-573-4150$	www.t-yuden.com

Applications Information (continued)

PCB Layout Considerations

Poor layout can degrade the performance of the DC-DC converter and can be a contributory factor in EMI problems, ground bounce, thermal issues, and resistive voltage losses. Poor regulation and instability can result. A typical application schematic is shown in Figure 1. A typical PCB layout is shown in Figure 4.

The following design rules are recommended:

- Place the inductor and filter capacitors as close to the device as possible and use short, wide traces between the power components.
- Use a ground plane to further reduce noise interference on sensitive circuit nodes.

Figure 1 - Typical Application Schematic, Boost Topology

Applications Information (continued)

Figure 2 - Typical Application Schematic, Buck Topology

Figure 3 - Typical Application Schematic, High Efficiency of Buck Topology

Figure 4 - Typical Application Schematic, Floating Buck-Boost Topology

Figure 5 - Typical Application Schematic, Floating Buck-Boost Topology

Applications Information (continued)

Figure 4 - Typical PCB Layout

Outline Drawing - 2x2 MLPD-UT6

Land Pattern - 2x2 MLPD-UT6

DIMENSIONS		
DIM	INCHES	MILLIMETERS
C	$(.077)$	(1.95)
G	.047	1.20
H	.067	1.70
K	.031	0.80
P	.020	0.50
R	.006	0.15
X	.012	0.30
Y	.030	0.75
Z	.106	2.70

NOTES:

1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
2. THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY. CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR COMPANY'S MANUFACTURING GUIDELINES ARE MET.
3. THERMAL VIAS IN THE LAND PATTERN OF THE EXPOSED PAD

SHALL BE CONNECTED TO A SYSTEM GROUND PLANE
FAILURE TO DO SO MAY COMPROMISE THE THERMAL AND/OR FUNCTIONAL PERFORMANCE OF THE DEVICE.

Outline Drawing - SOT23-6

NOTES:

1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
2. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-
3. DIMENSIONS "E1" AND "D" DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS

Land Pattern - SOT23-6

DIMENSIONS	
DIM	MILLIMETERS
C	(2.50)
G	1.40
P	0.95
X	0.60
Y	1.10
Z	3.60

NOTES:

1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
2. THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY. CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR COMPANY'S MANUFACTURING GUIDELINES ARE MET.

SEMTECH

© 2011 Semtech Corporation

All rights reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights. Semtech assumes no responsibility or liability whatsoever for any failure or unexpected operation resulting from misuse, neglect improper installation, repair or improper handling or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified range.

SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF SEMTECH PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER'S OWN RISK. Should a customer purchase or use Semtech products for any such unauthorized application, the customer shall indemnify and hold Semtech and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs damages and attorney fees which could arise.

Contact Information

Semtech Corporation
Power Management Products Division 200 Flynn Road, Camarillo, CA 93012
Phone: (805) 498-2111 Fax: (805) 498-3804

