SIEMENS

TV-Stereo Processor

Features

- All functions are $\mathrm{I}^{2} \mathrm{C}$ Bus controlled
- Suitable for multistandard including NICAM SCARTinterface
- Independent headphones output high signal noise ratio
- Extremely low total harmonic distortion
- High security of detection of the stereo decoder part because of the digital interference suppression and the very narrow bandwidth

Type	Ordering Code	Package
TDA 6610-5	Q67000-A5126	P-DIP-28-3

General

The TDA 6610-5 represents a complete TV-stereo sound system controlled via the $\mathrm{I}^{2} \mathrm{C}$ Bus. The IC is divided into three functional blocks:

1. Stereo Sound Processing with High Quality (exceeds DIN 45500; suitable for NICAM and CD)
a) Matrix for G-standard
b) Additional single-channel AF-input (for e.g. AF-signal according to L-standard)
c) Stereo SCART-interface is in accordance with FTZ-official specification
d) Stereo loudspeaker signal section with Ch1/Ch2 switch, treble/bass control, quasi-stereo/ stereo base width control and separate left/right loudspeaker volume control
e) Signal section with Ch1/Ch2 switch and volume control for stereo headphones

STEPGENS

2. TV-Sound Identification Signal Decoder Consisting of:

a) Active pilot signal filter
b) Phase-independent rectifier with very narrow bandwidth for evaluation of the identification signal
c) Digital integrator to reduce interference
d) Multiplexer for cyclical switch over between "stereo" or "dual" recognition
e) PLL for the generation of the reference signal. External synchronization with either the flyback pulse or external reference clock signals of 62.5 kHz

3. Control Section for:

a) $\mathrm{I}^{2} \mathrm{C}$ Bus interface with listen/talk function
b) Control of the complete AF-sound processing
c) Control of the identification signal decoder
d) Reading of the identification signal decoder status
e) Test modes

STEPMENS

Pin Functions

Pin No.	Function
1	AF-input mono, left, sound 1
2	Bias for AF-unit
3	AF-input right, sound 2
4	$54-$-kHz input
6	$54-$-kHz filter
7	AF-input (L-standard)
8	AF-input SCART left (sound 1)
9	AF-input SCART right (sound 2)
10	AF-output SCART (mono, sound 1, left)
11	Phase-shifter quasi-stereo
12	Phase-shifter quasi-stereo
13	Cut-off frequency base (base-width) left
14	Cut-off frequency base (base-width) right
15	AF-output, loudspeaker left
16	AF-output, loudspeaker right
17	Cut-off frequency treble left
18	Cut-off frequency treble right
19	AF-output, headphones left
20	AF-output, headphones right
21	$+V_{\text {S }}$ (supply voltage)
22	I 2 C Bus SCL
23	I²C Bus SDA
24	Input H-pulse (4 x H-pulse)
25	Filter ID-signal decoder
26	Filter ID-signal decoder
27	PLL-filter ID-signal decoder
	Ground

Block Diagram

STEPGENS

Circuit Description

Signal Section

The audio signal processing in the matrix and the switch-over for multichannel TV-sound signals according to the two-carrier system used in Germany takes place in the matrix and switching sections. In addition to the two inputs for the demodulated sound carrier a two-channel SCARTinput and an additional mono input (e.g. for demodulated L-standard sound) are provided. The two AF-inputs can be by-passed internally in such a way that decoded stereo sound signals of other audio systems (NICAM) can be processed. The switching section is terminated with the SCARToutput and an independently switchable Ch1/Ch2 switch for the loudspeaker and headphone outputs.

In the loudspeaker signal path a switchable quasi-stereo section follows the Ch1/Ch2 switch. This section gives a special audio effect with mono signals due to a 180° phase shift at medium frequencies (about 1 kHz) in one channel. The following bass control exhibits a step of 3 dB with an adjustment range of $+15 /-12 \mathrm{~dB}$. The cutoff frequency is set for each channel with an external capacitor.

A circuit for stereo base-width expansion, switchable if stereo signals are recognized, provides a more spatial audio effect due to 50% of frequency dependent crosstalk in opposing phases. The circuit operates with the same cut-off frequency as the bass control, but the function is largely independent. Likewise the treble control, whose cut-off frequency is also controlled by a capacitor in each channel, has a step of 3 dB with an adjustment range of $\pm 12 \mathrm{~dB}$. The volume control can be adjusted independently for the right and left loudspeaker signal path. Using 57 steps of 1.25 dB each, a 70 dB adjustment range is available, where the 57th step activates the "MUTE" function. Functions such as "balance" or "loudness" are realized by software adjustment of the appropriate tone and volume controls.

In the signal path for the headphones after the Ch1/Ch2 switch a volume control circuit is used for the simultaneous left/right adjustment. Thirty-two steps of 2 dB each allow an adjustment range of $62 \mathrm{~dB}(31 \times 2 \mathrm{~dB}=62 \mathrm{~dB}$, while the 32nd step activates the "MUTE" function).

Identification Sound Decoder

The input of the identification sound decoder consists of an op-amp for the pilot signal with its sidebands. An external LC-circuit is used to select the pilot carrier and his sidebands. The signal is then passed to a phase-independent active band-pass filter wih a very narrow bandwidth (adjustable externally). This filter detects whether the lower side-band of the pilot carrier, modulated with the identification signal, is present. The center frequency of the filter is switched between "dual" and "stereo" by a multiplexer. The multiplexing frequency is adjustable by software. If a side-band is detected, the multiplexer stops. The first "detected" criterion is processed by a digital integrator and a following comparator in order to suppress interferences due to noise. The decoder status caw can be read out via $I^{2} C$ Bus (talk mode) as the "stereo" or "dual" mode. The control of the corresponding signal path can take place either directly internally or through the $\mu \mathrm{C}$. All required clock signals are derived from a fast lowding PLL synchronized by a external reference frequency. This reference frequency has to be sufficiently close to the horizontal frequency, but a rigid phase coupling is not required. Therefore, alternatively to the line frequency the use of a crystalcontrolled 62.5 kHz frequency commonly available in PLL-tuning systems is possible.

SYEPMENS

Control Section

All functions are controlled via $\mathrm{I}^{2} \mathrm{C}$ Bus interface with listen/talk functions. The actual valid data are stored in a latch block.

The telegram structure is:
start condition - chip address - any number of data bytes - stop condition
The following conditions apply to the data bytes:
Before a data byte (with the adjustment information) is transmitted, a subaddress byte has always to be transmitted.
Example: The headphone volume (HP vol) has to be increased in several (i.e. 3) steps.

Right	Wrong		
Start condition		Start condition	
Chip address	$84(\mathrm{Hex})$	Chip address	$84(\mathrm{Hex})$
Subaddr. vol	$03(\mathrm{Hex})$	Subaddr. vol	$03(\mathrm{Hex})$
Volume step 8	$08(\mathrm{Hex})$	Volume step 8	08 (Hex)
Subaddr. vol	$03(\mathrm{Hex})$	Volume step 9	$09(\mathrm{Hex})$
Volume step 9	$09(\mathrm{Hex})$	Volume step 10	$0 \mathrm{~A}(\mathrm{Hex})$
Subaddr. vol	$03(\mathrm{Hex})$	Stop condition	
Volume step 10	$0 \mathrm{~A}(\mathrm{Hex})$		
Stop condition			

Within a telegram (i.e. without a new start condition) any different subaddresses can be accessed. The changeover between "listen" and "talk" however has always to be initialized via the sequence "stop condition - start condition - chip address". Before each readout always a start condition and chip address (talk) has to be transmitted. The data to be read out are loaded into the $\mathrm{I}^{2} \mathrm{C}$ Bus interface after this sequence and are available for the transfer to the $\mu \mathrm{C}$.

Chip Address

MSB	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	LSB
1	0	0	0	0	1	0	R/W

R/W $=0 \rightarrow$ Read (Listen)
R/W $=1 \rightarrow$ Write (Talk)

SYEPMENS

Subaddress Bytes

	MSB	•	•	•	•	•	•	LSB
Loudspeaker volume left	X	X	X	X	X	0	0	1
Loudspeaker volume right	X	X	X	X	X	0	1	0
Headphone volume	X	X	X	X	X	0	1	1
Treble/bass	X	X	X	X	X	1	0	1
Switch byte I	X	X	X	X	X	1	1	1
Switch byte II	X	X	X	X	X	0	0	0

Setting Bytes

a) Loudspeaker Volume Left / Right

	MSB	•	•	•	•	•	•	LSB
Maximum volume	X	X	1	1	1	1	1	1
Max-1 step	X	X	1	1	1	1	1	0
Max-15 steps	X	X	1	1	0	0	0	0
Max-55 steps	X	X	0	0	1	0	0	0
MUTE	X	X	0	0	0	1	1	1
MUTE	X	X	0	0	0	0	0	0
MUTE	X	X	0	0	0	X	X	X
Power ON	0	0	0	0	0	0	0	1

b) Headphone Volume

	MSB	•	•	•	\bullet	\bullet	\bullet	LSB
Max. volume	T2	T1	T0	1	1	1	1	1
Max-1 step	T2	T1	T0	1	1	1	1	0
Max-15 steps	T2	T1	T0	1	0	0	0	0
Max-31 steps	T2	T1	T0	0	0	0	0	1
MUTE	T2	T1	T0	0	0	0	0	0
Power ON	0	0	0	0	0	0	0	1

T0 - T2 are test bits; these have to be set to 0 for normal operation.

STEOMENS

c) Treble / Bass

	MSB	-	-	-	-	-	-	LSB
Linear	1	0	0	0	1	0	0	0
Max. treble, lin. bass	1	1	0	0	1	0	0	0
Max. treble, lin. bass	1	1	X	X	1	0	0	0
Min. treble, lin. bass	0	1	0	0	1	0	0	0
Min. treble, lin. bass	0	0	X	X	1	0	0	0
Lin. treble, max. bass	1	0	0	0	1	1	0	1
Lin. treble, max. bass	1	0	0	0	1	1	X	1
Lin. treble, max. bass	1	0	0	0	1	1	1	X
Lin. treble, min. bass	1	0	0	0	0	1	0	0
Lin. treble, min. bass	1	0	0	0	0	0	X	X
Max. treble, max. bass	1	1	X	X	1	1	X	1
Min. treble, min. bass	0	0	X	X	0	0	X	X
Power ON	0	0	0	0	0	0	0	1
	MSB treble			LSB treble	$\begin{aligned} & \text { MSB } \\ & \text { bass } \end{aligned}$			$\begin{aligned} & \text { LSB } \\ & \text { bass } \end{aligned}$

SYEPMENS

d) Switch Byte I

MSB	-	-	-	-	-	-	LSB
MUTE I	MUTE II	Ch1/Ch2 ${ }_{\text {vol }}$	Ch1/Ch2 ${ }_{\text {HP }}$	Mono	SCART	SCART-D	AM
MUTE I	$=0 \quad$ Al	All AF-outputs are muted (loudspeakers, headphones, SCART); power ON					
MUTE I	$=1 \quad$ Ald	All AF-outputs ON					
MUTE II	$=0 \quad$ L	Loudspeaker outputs muted; power ON					
MUTE II	$=1 \quad$ L	Loudspeaker outputs ON					
MUTE I and MUTE II are OR gated with respect to the loudspeaker outputs							

MUTE I	MUTE II	Loudspeaker outputs	Headphones, SCART-outputs
0	0	muted	muted
0	1	muted	muted
1	0	muted	ON
1	1	ON	ON

$\mathrm{CH} 1 / \mathrm{Ch} 2{ }_{\text {vol }}$	$=0$	Sound 1 on the loudspeaker outputs; power ON
CH1/Ch2vol	$=1$	Sound 2 on the loudspeaker outputs
CH1/Ch2 HP	0	Sound 1 on the headphone outputs; power ON
CH1/Ch2 HP		Sound 2 on the headphone outputs
$\mathrm{CH} 1 / \mathrm{Ch} 2_{\text {vol }}$ and $\mathrm{CH} 1 / \mathrm{Ch} 2_{\mathrm{HP}}$ are only effective if the matrix is set to the position "dual sound".		
Mono	0	identification signal decoder is set to mono position and held; power ON
Mono	$=1$	normal operation of identification signal decoder
SCART	$=0$	normal TV-operation; power ON
SCART	$=1$	SCART-playback; connection of SCART-inputs - AF-outputs. SCART $=1$ has priority over AM = 1 (loudspeaker and headphones)
SCART-D	0	SCART-playback stereo (mono); power ON
SCART-D	$=1$	Enable for the Ch1/Ch2 switch during SCART-playback (only effective when $\operatorname{SCART}=1$)
Standard L	$=0$	normal operation (G-standard)
Standard L	$=1$	AM AF-input is activated; power ON
		$A M=1$ has priority over bypass $=1$

SYEP9MENS

e) Switch Byte II

MSB	-	-	-	-	-	-	LSB
MPX0	MPX1	Quasi-st	Be	H-pul	Matrix 0	Matrix 1	Bypass
MPX0	MPX 1	MPX period		power ON		recommended $C_{25,26}$	
0	0	2 s				$1 \mu \mathrm{~F}$	
0	1	4 s				$2.2 \mu \mathrm{~F}$	
1	0	8 s				$4.7 \mu \mathrm{~F}$	

MPX-period = 2 s signifies: Identification (ID) signal decoder searches 1 s for dual and 1 s for stereo transmission

Quasi-st	$=0$	Quasi-stereo OFF; Power ON
Quasi-St	$=1$	Quasi-stereo ON Be
Be	$=0$	Stereo basewidth expansion OFF; Power ON
	$=1$	Stereo basewidth expansion ON

STEOMENS

Priority List of Setting Bits

1. MUTE I
2. MUTE II (only with regard to the loudspeaker outputs)
3. SCART
4. Standard L
5. Bypass
6. Matrix 0, 1
h) Talk Mode

MS	\bullet	\bullet	\bullet	\bullet		•	•
St	D	T5	T4	T3	X	X	X
0	0	decoder detects mono					
1	0	decoder detects stereo					
0	1	decoder detects dual					
1	1	internally inhibited					

T3 - T5 are test bits

SYEPMENS

Absolute Maximum Ratings

$T_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$; all voltages relatives to V_{SS}

Parameter	Symbol	Limit Values		Unit
		min.	max.	
Supply voltage	V_{21}	0	14	V
Max. DC-voltage	V_{1}	0	V_{21}	V
Max. DC-voltage	V_{2}	0	V_{21}	V
Max. DC-voltage	V_{3}	0	V_{21}	V
Max. DC-voltage	V_{4}		V_{21}	V
Max. DC-voltage	V_{6}	0	V_{21}	V
Max. DC-voltage	V_{7}	0	V_{21}	V
Max. DC-voltage	V_{8}	0	V_{21}	V
Max. DC-voltage	V_{11}	0	V_{21}	V
Max. DC-voltage	V_{12}	0	V_{21}	V
Max. DC-voltage	V_{13}	0	V_{21}	V
Max. DC-voltage	V_{14}	0	V_{21}	V
Max. DC-voltage	V_{17}	0	V_{21}	V
Max. DC-voltage	V_{18}	0	V_{21}	V
Max. DC-voltage	V_{22}	0	V_{21}	V
Max. DC-voltage	V_{23}	0	V_{21}	V
Max. DC-voltage	V_{24}	0	V_{21}	V
Max. DC-voltage	V_{25}	0	V_{21}	V
Max. DC-voltage	V_{26}	0	V_{21}	V
Max. DC-current	I_{5}	0	2	mA
Max. DC-current	I_{9}	0	2	mA
Max. DC-current	I_{10}	0	2	mA
Max. DC-current	I_{15}	0	2	mA
Max. DC-current	I_{16}	0	2	mA
Max. DC-current	I_{19}	0	2	mA
Max. DC-current	I_{20}	0	2	mA
Max. DC-current	I_{27}	0	1	mA
Junction temperature	T_{j}		150	${ }^{\circ} \mathrm{C}$
Storage temperature	$T_{\text {stg }}$	-40	125	${ }^{\circ} \mathrm{C}$
Thermal resistance system ambient	$R_{\text {th SA }}$		53	K/W

Operating Range

Supply voltage	V_{6}	10	13.2	V
Ambient temperature	T_{A}	0	70	${ }^{\circ} \mathrm{C}$
Input frequency range	f_{l}	0.01	20	kHz

SHEq91ENS

Characteristics

$V_{\mathrm{S}}=12 \mathrm{~V} ; T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, in accordance with test circuit 1
$I^{2} \mathrm{C}$ Bus present: start-84-01,3F-0 2,3F-0 3,1F-05,88-06,10-07,C8-00,01-stop
Chip address - Vol ${ }_{\text {LSI }} 63$ - Vol ${ }_{\text {LSr }} 63$ - Vol hp 31 - tone lin - adj OdB - MUTE I, MUTE II, Mono Bypass

The basic setting for each point in the specification is always preset; only settings which deviate from this are given in the test conditions. Details in italics only provide explanation of the hexadecimal code and with switch bits on the set bits and features are stated.

Parameter	Symbol	Limit Values		Unit	Test Condition	
		min.	typ.	max.		
Current consumption	I_{21}		50		mA	

Signal Section

Max. gain	V_{16-1}	-2	0	2	dB	
Max. gain	V_{15-3}	-2	0	2	dB	
Max. gain	V_{20-1}	-2	0	2	dB	
Max. gain	$V_{\text {19-3 }}$	-2	0	2	dB	
Max. gain	V_{16-3}	-2	0	2	dB	$\begin{aligned} & 00,02 ; V_{1}=01 \\ & \text { Matrix: Stereo } \end{aligned}$
Max. gain	V_{15-3}	-2	0	2	dB	$\begin{aligned} & 00,02 ; V_{1}=01 \\ & \text { Matrix: Stereo } \end{aligned}$
Max. gain	V_{20-3}	-2	0	2	dB	$\begin{aligned} & 00,02 ; V_{1}=0 \\ & \text { Matrix: Stereo } \end{aligned}$
Max. gain	V_{19-3}	-2	0	2	dB	$\begin{aligned} & 00,02 ; V_{1}=0 \\ & \text { Matrix: Stereo } \end{aligned}$
Max. gain	V_{16-1}	4	6	8	dB	$00,02 ; V_{3}=0$ Matrix: Stereo
Max. gain	V_{20-1}	4	6	8	dB	$\begin{aligned} & 00,02 ; V_{3}=0 \\ & \text { Matrix: Stereo } \end{aligned}$
Max. gain	V_{16-7}	-5	-3	-1	dB	07,CC, SCART
Max. gain	V_{15-8}	-5	-3	-1	dB	07,CC, SCART
Max. gain	V_{20-7}	-5	-3	-1	dB	07,CC, SCART
Max. gain	V_{19-8}	-5	-3	-1	dB	07,CC, SCART
Max. gain	V_{16-6}	-2	0	2	dB	07,C9, Standard L
Max. gain	V_{15-6}	-2	0	2	dB	07,C9, Standard L
Max. gain	V_{20-6}	-2	0	2	dB	07,C9, Standard L
Max. gain	V_{19-6}	-2	0	2	dB	07,C9, Standard L

S9EP91ENS

Characteristics (cont'd)
$V_{\mathrm{S}}=12 \mathrm{~V} ; T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, in accordance with test circuit 1

SYE9NENS

Characteristics (cont'd)
$V_{\mathrm{S}}=12 \mathrm{~V} ; T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, in accordance with test circuit 1

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
Step width Vol_{15}	ΔV_{15}	0	1.25	2.5	dB	$01, X-01,(X \pm 1)$
Step width Vol_{16}	ΔV_{16}	0	1.25	2.5	dB	$\begin{aligned} & 02, \mathrm{X}-02,(\mathrm{X} \pm 1) \\ & \text { Vol }_{\mathrm{Lsr}} X-\mathrm{Vol} \mathrm{LSr}_{\mathrm{LSr}}\left(\begin{array}{ll} \mathrm{X} & 1 \end{array}\right. \end{aligned}$
Step width Vol_{19}	ΔV_{19}	0	2	4	dB	$\begin{aligned} & 03, \mathrm{X}-03,(\mathrm{X} \pm 1) \\ & \mathrm{Vol}_{\mathrm{KH}} X-\mathrm{Vol}_{\mathrm{KH}}(X \quad 1) \end{aligned}$
Step width Vol_{20}	ΔV_{20}	0	2	4	dB	$\begin{aligned} & 03, \mathrm{X}-03,(\mathrm{X} \pm 1) \\ & \mathrm{Vol}_{\mathrm{KH}} X-\mathrm{Vol}_{\mathrm{KH}}\left(\begin{array}{ll} X & 1 \end{array}\right) \end{aligned}$
Bass boost	V_{16-1}	13	15		dB	$05,8 \mathrm{~F} ; f_{1}=40 \mathrm{~Hz}$ Bass max, treble lin.
Bass boost	V_{15-3}	13	15		dB	$05,8 \mathrm{~F} ; f_{1}=40 \mathrm{~Hz}$ Bass max, treble lin.
Bass boost	V_{16-1}	- 10	-12		dB	$05,8 \mathrm{~F} ; f_{1}=40 \mathrm{~Hz}$ Bass max, treble lin.
Bass boost	V_{15-3}	- 10	- 12		dB	$05,8 \mathrm{~F} ; f_{1}=40 \mathrm{~Hz}$ Bass max, treble lin.
Step wide bass	ΔV_{15}	1	3	5	dB	05,8X-05,8 ($\mathrm{X} \pm 1$)
Step wide bass	ΔV_{16}					$\begin{aligned} & \text { Bass } X-\text { bass }(X \pm 1) \\ & 05,8 X-05,8(X \pm 1) \\ & \text { Bass } X-\text { bass }(X \pm 1) \end{aligned}$
High frequency emphasis						$05,8 \mathrm{~F} ; f_{1}=15 \mathrm{kHz}$ Treble max, bass lin.
High frequency emphasis	V_{15-3}	10	12		dB	$05,8 \mathrm{~F} ; f_{\mathrm{l}}=15 \mathrm{kHz}$ Treble max, bass lin.
High frequency emphasis	V_{16-1}	- 10	-12		dB	$05,8 \mathrm{~F} ; f_{\mathrm{l}} \mathrm{l}=15 \mathrm{kHz}$ Treble max, bass lin.
High frequency emphasis	V_{15-3}	- 10	- 12		dB	$05,8 \mathrm{~F} ; f_{\mathrm{l}}=15 \mathrm{kHz}$ Treble max, bass lin.
Step wide treble						$\begin{aligned} & 05, \mathrm{X} 8-0,5(X \pm 1) 8 \\ & \text { Treble } X \text { - treble }(X \pm 1) \end{aligned}$
Step wide treble	ΔV_{16}	1	3	5	dB	$\begin{aligned} & 05, X 8-0,5(X \pm 1) 8 \\ & \text { Treble } X \text { - treble }(X \pm 1) \end{aligned}$
Linearity sound	ΔV_{15}			± 2	dB	$05,88 ; f_{1}=40 \mathrm{~Hz}-15 \mathrm{kHz}$
Linearity sound				± 2	dB	$\begin{aligned} & 05,88 ; f_{1}=40 \mathrm{~Hz}-15 \mathrm{kHz} \\ & \text { Treble, bass lin. } \end{aligned}$
Channel separation	ΔV_{15-16}	50			dB	V_{3} or $V_{1}=600 \mathrm{mVrms}$
Channel separation	ΔV_{19-20}	50			dB	V_{3} or $V_{1}=600 \mathrm{mVrms}$
Channel separation	ΔV_{9-10}	50			dB	V_{3} or $V_{1}=600 \mathrm{mVrms}$

SYE9NENS

Characteristics (cont'd)
$V_{\mathrm{S}}=12 \mathrm{~V} ; T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, in accordance with test circuit 1

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
Cross talk attenuation switch	$\alpha_{\text {inputinterf }}$ / Outputrms	60			dB	$V_{1 \text { rms }}=0$ $\mathrm{V}_{1 \mathrm{Int} 1,3,6}=600 \mathrm{mVrms}$ $\mathrm{V}_{1 \text { Int } 7,8}=2 \mathrm{Vrms}$
Attenuation MUTE	α_{1-16}	80			dB	$\begin{aligned} & 01,00-02,00 \\ & V_{\text {LI }} O-\text {-Vol } \mathrm{LSS} \\ & V_{1}=600 \mathrm{mVrms} \end{aligned}$
Attenuation MUTE	α_{1-16}	80			dB	07,$48 ; V_{1}=600 \mathrm{mVrms}$ MUTE I: 0
Attenuation MUTE	α_{1-16}	80			dB	07,88; $V_{1}=600 \mathrm{mVrms}$ MUTE II: 0
Attenuation MUTE	α_{3-15}	80			dB	01,00-02,00 $\mathrm{Vol}_{\mathrm{LSI}} \mathrm{O}-\mathrm{Vol} \mathrm{LSr}^{\mathrm{O}}$ $V_{3}=600 \mathrm{mVrms}$
Attenuation MUTE	α_{3-15}	80			dB	07,$48 ; V_{3}=600 \mathrm{mVrms}$ MUTE I: 0
Attenuation MUTE	α_{3-15}	80			dB	07,$88 ; V_{3}=600 \mathrm{mVrms}$ MUTE II: 0
Attenuation MUTE	α_{1-20}	80			dB	$\begin{aligned} & 03,00 ; V_{1}=600 \mathrm{mVrms} \\ & \mathrm{Vol}_{\mathrm{KH}} \mathrm{O} \end{aligned}$
Attenuation MUTE	α_{1-20}	80			dB	07,$48 ; V_{1}=600 \mathrm{mVrms}$ MUTE I: 0
Attenuation MUTE	α_{3-19}	80			dB	$\begin{aligned} & 03,00 ; V_{3}=600 \mathrm{mVrms} \\ & \text { Vol }_{\mathrm{KH}} 0 \end{aligned}$
Attenuation MUTE	α_{3-19}	80			dB	07,48; $V_{3}=600 \mathrm{mVrms}$ MUTE I: 0

Analog values are valid for feed-in at the pin 6, 7, 8; $V_{7,8}=2 \mathrm{Vrms} ; V_{6}=600 \mathrm{mVrms}$

Attenuation MUTE	α_{3-10}	80		dB	07,48; $V_{3}=600 \mathrm{mVrms}$ MUTE I: 0
Attenuation MUTE	α_{1-9}	80		dB	07,$48 ; V_{3}=600 \mathrm{mVrms}$ MUTE I: 0
Attenuation MUTE	α_{6-10}	80		dB	07,49; $V_{6}=600 \mathrm{mVrms}$ MUTE I: O, Standard L
Attenuation MUTE	α_{6-9}	80		dB	07,$49 ; V_{6}=600 \mathrm{mVrms}$ MUTE I: O, Standard L

SYE9NENS

Characteristics (cont'd)
$V_{\mathrm{S}}=12 \mathrm{~V} ; T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, in accordance with test circuit 1

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
Max. input voltage	V_{6}	600			mVrms	$T H D_{15,16}=1 \%$
Max. input voltage	V_{3}	600			mVrms	$T H D_{15}=1 \%$
Max. input voltage	V_{1}	600			mVrms	$T H D_{16}=1 \%$
Max. input voltage	V_{1}	300			mVrms	$\begin{aligned} & \text { THD }_{16}=1 \% ; 00,02 \\ & \text { Matrix: Stereo } \end{aligned}$
Max. input voltage	V_{7}	2			Vrms	$T H D_{16}=1 \%$
					Vrms	07, CC, SCART
Max. input voltage	V_{8}	2				$\begin{aligned} & T H D_{15}=3 \% \\ & 07, \text { CC, SCART } \end{aligned}$
Distortion	THD ${ }_{19}$	0	0.01	0.1	\%	$V_{3}=250 \mathrm{mVrms}$
Distortion	$T H D_{20}$		0.01	0.1	\%	$V_{1}=250 \mathrm{mVrms}$
Distortion	$T H D_{19}$		0.01	0.1	\%	$\begin{aligned} & V_{3}=250 \mathrm{mVrms} ; 03,15 \\ & \text { Vol }_{\text {KH }} 21 \end{aligned}$
Distortion	$T H D_{20}$		0.01	0.1	\%	$\begin{aligned} & V_{1}=250 \mathrm{mVrms} ; 03,15 \\ & \text { Vol }_{\text {KH }} 21 \end{aligned}$

Analog values are valid for feed-in at the pin 6, 7, 8; $V_{7,8}=2 \mathrm{Vrms} ; V_{6}=250 \mathrm{mVrms}$

Distortion	$T H D_{16}$	0.01	0.1	\%	$V_{1}=250 \mathrm{mVrms}$
Distortion	$T H D_{15}$	0.01	0.1	\%	$V_{3}=250 \mathrm{mVrms}$
Distortion	$T H D_{16}$	0.01	0.2	\%	$\begin{aligned} & V_{1}=250 \mathrm{mVrms} ; 01 \\ & 2 \mathrm{~F}-02,2 \mathrm{~F} \end{aligned}$
Distortion	$T H D_{15}$	0.01	0.2	\%	Vol LSI $47-\mathrm{Vol}$ LSr 47 $V_{3}=250 \mathrm{mVrms} ; 01$ 2F-02,2F
Distortion	$T H D_{16}$	0.01	0.4	\%	$\begin{aligned} & \mathrm{Vol} \mathrm{LSI}^{47-\mathrm{Vol}} \mathrm{LSr}^{47} \\ & V_{1}=250 \mathrm{mVrms} ; 05, \mathrm{XX} \\ & \text { any sound } \end{aligned}$
Distortion	$T H D_{15}$	0.01	0.4	\%	$\begin{aligned} & V_{3}=250 \mathrm{mVrms} ; 05, \mathrm{XX} \\ & \text { any sound } \end{aligned}$

Analog values are valid for feed-in at the pin 6, 7, 8; $V_{7,8}=2 \mathrm{Vrms} ; V_{6}=250 \mathrm{mVrms}$

Distortion	$T H D_{10}$		0.01	0.1	$\%$	$V_{3}=250 \mathrm{mVrms}$
Distortion	$T H D_{9}$		0.01	0.1	$\%$	$V_{1}=250 \mathrm{mVrms}$
Distortion	$T H D_{10}$		0.01	0.1	$\%$	$V_{6}=250 \mathrm{mVrms}$ $07, \mathrm{C} 9$, Standard L
Distortion	$T H D_{9}$		0.01	0.1	$\%$	$V_{1}=250 \mathrm{mVrms}$ $07, \mathrm{C} 9$, Standard L
Antiphase Cross talk atten.	ΔV_{16-15}	0.5	0.55			
Base width						$V_{3}=600 \mathrm{mVrms}$

S9EPMENS

Characteristics (cont'd)
$V_{\mathrm{S}}=12 \mathrm{~V} ; T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, in accordance with test circuit 1

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
Antiphase Cross talk atten. Base width	ΔV_{16-15}	0.5	0.55			$\begin{aligned} & V_{3}=600 \mathrm{mVrms} \\ & f_{\mathrm{l}}=2 \mathrm{kHz} ; 00,11 \text {, Basis width } \end{aligned}$
Base width phase Base width phase	$\begin{aligned} & \Phi_{16-15} \\ & \Phi_{15-16} \end{aligned}$	$\begin{aligned} & \hline 150 \\ & 150 \end{aligned}$	$\begin{aligned} & \hline 180 \\ & 180 \end{aligned}$	$\begin{array}{\|l\|} \hline 210 \\ 210 \end{array}$	deg deg	$V_{1}=600 \mathrm{mVrms} ; 00,11$ Basis width, $f=2 \mathrm{kHz}$ $V_{1}=600 \mathrm{mVrms} ; 00,11$ Basis width, $f=2 \mathrm{kHz}$
Phase rotation quasi stereo Phase rotation quasi stereo Phase rotation quasi stereo	$\begin{aligned} & \Phi_{16-15} \\ & \Phi_{16-15} \\ & \Phi_{16-15} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 130 \\ & -30 \end{aligned}$	$\begin{array}{\|l\|} \hline 10 \\ 180 \\ 10 \end{array}$	$\begin{aligned} & \hline 40 \\ & 230 \\ & 0 \end{aligned}$	deg deg deg	$V_{3,1}=600 \mathrm{mVrms} ; 00,21$ Quasi stereo, $f=40 \mathrm{~Hz}$ $V_{3,1}=600 \mathrm{mVrms} ; 00,21$ Quasi stereo, $f=1 \mathrm{kHz}$ $V_{3,1}=600 \mathrm{mVrms} ; 00,21$ Quasi stereo, $f=15 \mathrm{kHz}$
Unweighted signal- to-noise ratio Unweighted signal-to-noise ratio Unweighted signal-to-noise ratio Unweighted signal-to-noise ratio	$\begin{aligned} & \alpha_{\text {s /N16 }} \\ & \alpha_{\text {S /N15 }} \\ & \alpha_{\text {S/N16 }} \\ & \\ & \alpha_{\text {S/N15 }} \end{aligned}$	1 1 70 70	90 90 80 80	97 97	dB dB dB dB	$\mathrm{V}_{\mathrm{N} \text { rms } 20 \mathrm{~Hz}-20 \mathrm{kHz}}$; $V_{1}=0.6 \mathrm{Vrms}$ $\mathrm{V}_{\mathrm{N} \text { rms } 20 \mathrm{~Hz}-20 \mathrm{kHz}}$; $V_{3}=0.6 \mathrm{Vrms}$ $\mathrm{V}_{\mathrm{N} \text { rms } 20 \mathrm{~Hz}-20 \mathrm{kHz}}$; $V_{1}=0.6 \mathrm{Vrms}$ 01,27-02,27 Vol ${ }_{\text {LSI }} 39-\mathrm{Vol}{ }_{\mathrm{LSr}} 39$ $\mathrm{V}_{\mathrm{N} \text { rms } 20 \mathrm{~Hz}-20 \mathrm{kHz}}$; $V_{3}=0.6 \mathrm{Vrms}$ 01,27-02,27 $\mathrm{Vol}_{\mathrm{LSI}} 39-\mathrm{Vol} \mathrm{LSr}^{39}$
External voltage	$V_{\mathrm{N} 15}$ $V_{\mathrm{N} 16}$		2 2	10 10	$\mu \mathrm{Vrms}$ $\mu \mathrm{Vrms}$	$\mathrm{V}_{\mathrm{N} \text { rms } 20 \mathrm{~Hz}-20 \mathrm{kHz}}$ 01,00-02,00 $\mathrm{Vol}_{\mathrm{LSI}} \mathrm{O}-\mathrm{Vol} \mathrm{LSr}^{\mathrm{O}}$ $\mathrm{V}_{\mathrm{N} \text { rms } 20 \mathrm{~Hz}-20 \mathrm{kHz}}$ 01,00-02,00 $\mathrm{Vol}_{\mathrm{LSI}} \mathrm{O}-\mathrm{Vol} \mathrm{LSr}^{0}$

SYEPMENS

Characteristics (cont'd)
$V_{\mathrm{S}}=12 \mathrm{~V} ; T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, in accordance with test circuit 1

STEOMENS

Characteristics (cont'd)
$V_{\mathrm{S}}=12 \mathrm{~V} ; T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, in accordance with test circuit 1

Parameter	Symbol	Limit Values		Unit	Test Condition
		min.	typ.	max.	

Design-Related Data

Input resistance	R_{7}	35			$\mathrm{k} \Omega$	
Input resistance	R_{8}	35			$\mathrm{k} \Omega$	
Input resistance	R_{6}	20			$\mathrm{k} \Omega$	
Input resistance	R_{3}	20			$\mathrm{k} \Omega$	
Input resistance	R_{1}	20			$\mathrm{k} \Omega$	
Output resistance	R_{19}			200	Ω	
Output resistance	R_{20}			200	Ω	
Output resistance	R_{15}			200	Ω	
Output resistance	R_{16}			200	Ω	
Output resistance	R_{9}			200	Ω	
Output resistance	R_{10}			200	Ω	

SYEPMENS

Characteristics (cont'd)
$V_{\mathrm{S}}=12 \mathrm{~V} ; T_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values		Unit	Test Condition	Test
	Circuit					

ID-Signal Decoder

$\begin{aligned} & \text { Gain } \\ & \text { Filter OP-amp } \end{aligned}$	V_{5}	13	14	15	dB	$V_{\text {IF }}=80 \mathrm{mVpp}$	1
Max. input voltage	V_{5}	600			mVpp	Function	2
VCO voltage PLL	V_{27}	1.3			V	$\begin{aligned} f_{24} & =14.6 \mathrm{kHz} ; \\ V_{24} & =2.5 \mathrm{~V} \end{aligned}$	2
VCO voltage PLL	V_{27}	2	3	4	V	$\begin{aligned} & f_{24}=15.625 \mathrm{kHz} ; \\ & V_{24}=2.5 \mathrm{~V} \end{aligned}$	2
VCO voltage PLL	V_{27}			4.7	V	$\begin{aligned} & f_{24}=16.6 \mathrm{kHz} ; \\ & V_{24}=2.5 \mathrm{~V} \end{aligned}$	2
VCO voltage PLL	V_{27}	1.3			V	$\begin{aligned} & f_{24}=58.4 \mathrm{kHz} ; \\ & V_{24}=2.5 \mathrm{~V} \\ & 00,09, \mathrm{H}-\mathrm{Imp} \end{aligned}$	2
VCO voltage PLL	V_{27}			4.7	V	$\begin{aligned} & f_{24}=66.4 \mathrm{kHz} ; \\ & V_{24}=2.5 \mathrm{~V} \\ & 00,09, \mathrm{H}-\mathrm{Imp} \end{aligned}$	2

$$
V_{\text {KT FLTTER }}=\frac{\sqrt{\left.\left(V_{25}-V_{25}{ }^{*}\right)^{2}+\left(V_{26}-V_{26}\right)^{*}\right)^{2}}}{V_{5}} \begin{aligned}
& V_{25} \text { or } V_{26} \text { when } V_{5}=0 \\
& V_{25^{*}} \text { or } V_{26} \text { when } V_{5}=400 \mathrm{mVpp}
\end{aligned}
$$

| ID-filter gain | $V_{\text {KT Filter }}$ | 3.4 | | 6.8 | $f_{5}=$ Pilot signal: dual
 $\mathrm{I}^{2} \mathrm{C}$-talk: dual
 $f_{5}=$ Pilot signal:
 stereo
 $\mathrm{I}^{2} \mathrm{C}$-talk: stereo | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$V_{25 \text { test }}=V_{25}\left(V_{5}=0\right) \pm \Delta V_{25} ; V_{26 \text { test }}=V_{26}\left(V_{5}=0\right) \pm \Delta V_{26}$

| Detection threshold | ΔV_{25} | 900 | | mV | $\mathrm{I}^{2} \mathrm{C}$-talk: stereo or
 dual
 $\mathrm{I}^{2} \mathrm{C}$-talk: stereo or
 dual | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Detection threshold | $-\Delta V_{25}$ | 900 | mV | | | |
| Detection threshold | ΔV_{26} | 900 | $\mathrm{I}^{2} \mathrm{C}$-talk: stereo or
 dual
 $\mathrm{I}^{2} \mathrm{C}$-talk: stereo or
 dual | 3 | | |
| Detection threshold | $-\Delta V_{26}$ | 900 | | 3 | | |

STEPGENS

Characteristics (cont'd)
$V_{\mathrm{S}}=12 \mathrm{~V} ; T_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values			Unit	Test Condition	Test Circuit
		min.	typ.	max.			
Mono threshold	ΔV_{25}	0		100	mV	I2C-talk: mono	3
Mono threshold	$-\Delta V_{25}$	0		100	mV	$\mathrm{I}^{2} \mathrm{C}$-talk: mono	3
Mono threshold	ΔV_{26}	0		100	mV	$\mathrm{I}^{2} \mathrm{C}$-talk: mono	3
Mono threshold	$-\Delta V_{26}$	0		100	mV	$\mathrm{I}^{2} \mathrm{C}$-talk: mono	3
Detection response	$t_{\text {det }}$	1/4		1/2		$\mathrm{I}^{2} \mathrm{C}$-talk: stereo or dual	
Detection response					$t_{\text {MPX }}$	$\pm \Delta V_{25}=1 \mathrm{~V}$	3
	$t_{\text {det }}$					$\mathrm{I}^{2} \mathrm{C}$-talk: stereo or dual	
		1/4		1/2	$t_{\text {MPX }}$	$\pm \Delta V_{25}=1 \mathrm{~V}$	3
Switching	V_{24}	0		1.5	V		2
threshold $f_{\text {REF-input }}$							
Switching	V_{24}	3.5		V_{21}	V		2
threshold $f_{\text {REF-input }}$							
Multiplexer clock	$t_{\text {MPX }}$		1.08		s	$00, C 0, M P X=1 \mathrm{~s}$	
Multiplexer clock	$t_{\text {MPX }}$		2.17		s	$00, C 0, M P X=2 s$	
Multiplexer clock	$t_{\text {MPX }}$		4.34		s	$00, C 0, M P X=4 \mathrm{~s}$	
Multiplexer clock	$t_{\text {MPX }}$		8.68			$00, C 0, M P X=8 \mathrm{~s}$	

Design-Related Data

Filter output resistance	$R_{25,26}$	110			$\mathrm{k} \Omega$		
$f_{\text {REF-input resistance }}$	R_{24}	7			$\mathrm{k} \Omega$		

STEOMENS

Characteristics
$V_{\mathrm{S}}=12 \mathrm{~V} ; T_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values			Unit
		min.	typ.	max.	
$\mathrm{I}^{2} \mathrm{C}$ Bus (SCL, SDA)					
SCL, SDA edges Rise time Fall time	$\begin{aligned} & t_{\mathrm{R}} \\ & t_{\mathrm{F}} \end{aligned}$			$\begin{array}{\|l\|} \hline 1 \\ 300 \end{array}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mathrm{~ns} \end{aligned}$
Shift register clock pulse SCL Frequency H-pulse width L-pulse width	f_{SCL} $t_{\text {HIGH }}$ $t_{\text {LOW }}$	$\begin{array}{\|l} 0 \\ 4 \\ 4 \end{array}$		100	kHz $\mu \mathrm{s}$ $\mu \mathrm{S}$
Start Setup time Hold time	$t_{\text {SUSTA }}$ $t_{\text {HDSTA }}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$			$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
Stop Setup time Bus free time	$t_{\text {SUSTO }}$ $t_{\text {BUF }}$	4			$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
Data transfer Setup time Hold time	$t_{\text {SUDAT }}$ $t_{\text {HDDAT }}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$			$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
Input SCL, SDA Input voltage Input current	V_{QH} $V_{\text {QL }}$ I_{QH} $I_{Q L}$	2.4		$\begin{aligned} & 5.5 \\ & 1 \\ & 20 \\ & 20 \end{aligned}$	V V $\mu \mathrm{A}$ $\mu \mathrm{A}$
Output SDA (open collector) Output voltage $\begin{aligned} & R_{\mathrm{L}}=2.5 \mathrm{k} \Omega \\ & I_{\mathrm{QL}}=3 \mathrm{~mA} \end{aligned}$	$\begin{array}{\|l} V_{Q H} \\ V_{Q L} \end{array}$	5.4		0.4	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

Test Circuit 1

Test Circuit 2

Test Circuit 3

Application Circuit 1

Application Circuit 2

$\mathbf{I}^{2} \mathbf{C}$ Bus Timing Diagram

$t_{\text {SUSTA }}$	Setup time (start)
$t_{\text {HDSTA }}$	Hold time (start)
$t_{\text {HIGH }}$	H-pulse width (clock)
$t_{\text {LOW }}$	L-pulse width (clock)
$t_{\text {SUDAT }}$	Setup time (data transfer)
$t_{\text {HDDAT }}$	Hold time (data transfer)
$t_{\text {SUSTO }}$	Setup time (stop)
$t_{\text {BUF }}$	Bus free time
t_{F}	Fall time
t_{R}	Rise time

All times referred to V_{IH} and V_{IL} values.

