400 MHz to 3.7 GHz High Signal Level Downconverting Mixer

FGATURES

- 50Ω Single-Ended RF and LO Ports
- Wide RF Frequency Range: 400 MHz to $3.7 \mathrm{GHz}^{*}$
- High Input IP3: 24.5 dBm at 900 MHz
23.5 dBm at 1900 MHz
- Conversion Gain: 3.2 dB at 900 MHz
2.3 dB at 1900 MHz
- Integrated LO Buffer: Low LO Drive Level
- High LO-RF and LO-IF Isolation
- Low Noise Figure: 11.6 dB at 900 MHz
12.5 dB at 1900 MHz
- Very Few External Components
- Enable Function
- 4.5 V to 5.25 V Supply Voltage Range
- 16-Lead ($4 \mathrm{~mm} \times 4 \mathrm{~mm}$) QFN Package

APPLICATIONS

- Cellular, WCDMA, TD-SCDMA and UMTS Infrastructure
- GSM900/GSM1800/GSM1900 Infrastructure
- $900 \mathrm{MHz} / 2.4 \mathrm{GHz} / 3.5 \mathrm{GHz}$ WLAN
- MMDS, WiMAX
- High Linearity Downmixer Applications

DESCRIPTIOn

The $\mathrm{LT}^{\circledR} 5527$ active mixer is optimized for high linearity, wide dynamic range downconverter applications. The IC includes a high speed differential LO buffer amplifier driving a double-balanced mixer. Broadband, integrated transformers on the RF and LO inputs provide singleended 50Ω interfaces. The differential IF output allows convenient interfacing to differential IF filters and amplifiers, or is easily matched to drive 50Ω single-ended, with or without an external transformer.

The RF input is internally matched to 50Ω from 1.7 GHz to 3 GHz , and the LO input is internally matched to 50Ω from 1.2 GHz to 5 GHz . The frequency range of both ports is easily extended with simple external matching. The IF output is partially matched and usable for IF frequencies up to 600MHz.

The LT5527's high level of integration minimizes the total solution cost, board space and system-level variation.
$\mathbf{\triangle Y}$, LTC and LT are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.
*Operation over a wider frequency range is possible with reduced performance. Consult factory for information and assistance.

TYPICAL APPLICATION

High Signal Level Downmixer for Multi-Carrier Wireless Infrastructure

1.9 GHz Conversion Gain, IIP3, SSB NF and LO-RF Leakage vs LO Power

5527 TA01b

ABSOLUTE MAXIMUM RATINGS
(Note 1)
Supply Voltage ($\left.\mathrm{V}_{\mathrm{CC} 1}, \mathrm{~V}_{\mathrm{CC} 2}, \mathrm{IF}^{+}, \mathrm{IF}^{-}\right)$...................... 5.5 V
Enable Voltage -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
LO Input Power (380MHz to 4GHz) +10dBm
LO Input DC Voltage - 1 V to $\mathrm{V}_{\mathrm{CC}}+1 \mathrm{~V}$
RF Input Power (400MHz to 4GHz) +12 dBm
RF Input DC Voltage ... $\pm 0.1 \mathrm{~V}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Junction Temperature (T_{J}).................................. $125^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

	ORDER PART NUMBER
	LT5527EUF
	UF PART MARKING
	5527

Consult LTC Marketing for parts specified with wider operating temperature ranges.

DC ELECTRICAL CHARACTGRISTICS

$V_{C C}=5 V, E N=H$ High, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified. Test circuit shown in Figure 1. (Note 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Power Supply Requirements ($\mathrm{V}_{\text {cc }}$)					
Supply Voltage		4.5	5	5.25	V DC
Supply Current $V_{\mathrm{CC1}}(\operatorname{Pin} 7)$ $\mathrm{V}_{\mathrm{CC2}}(\operatorname{Pin} 6)$ $\mathrm{IF}^{+}+\mathrm{IF}^{-}(\operatorname{Pin} 11+\operatorname{Pin} 10)$ Total Supply Current			$\begin{gathered} 23.2 \\ 2.8 \\ 52 \\ 78 \end{gathered}$	$\begin{aligned} & 60 \\ & 88 \end{aligned}$	mA mA mA mA
Enable (EN) Low = Off, High = On					
Shutdown Current	EN = Low			100	$\mu \mathrm{A}$
Input High Voltage (On)		3			V DC
Input Low Voltage (Off)				0.3	V DC
EN Pin Input Current	EN = 5V DC		50	90	$\mu \mathrm{A}$
Turn-ON Time			3		$\mu \mathrm{S}$
Turn-OFF Time			3		$\mu \mathrm{s}$

AC ELECTRICAL CHARACTERISTICS Test circuit shown in Figure 1. (Notes 2, 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
RF Input Frequency Range	No External Matching (Midband)	1700 to 3000			MHz	
	With External Matching (Low Band or High Band)	400		3700	MHz	
LO Input Frequency Range	No External Matching With External Matching	3801200 to 3500			$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	
IF Output Frequency Range	Requires Appropriate IF Matching	0.1 to 600			MHz	
RF Input Return Loss	$\mathrm{Z}_{0}=50 \Omega, 1700 \mathrm{MHz}$ to 3000 MHz	>10			dB	
LO Input Return Loss	$\mathrm{Z}_{0}=50 \Omega, 1200 \mathrm{MHz}$ to 3400MHz	>12			dB	
IF Output Impedance	Differential at 240MHz	407 ${ }^{\text {\|\|2.5pF }}$			R\|	C
LO Input Power	1200MHz to 3500MHz	-8	-3	2	dBm	
	380 MHz to 1200 MHz	-5	0	5	dBm	

AC ELECTRICAL CHARACTERISTICS Standard Downmixer Application: $V_{C C}=5 \mathrm{~V}, \mathrm{EN}=\mathrm{High}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $P_{R F}=-5 \mathrm{dBm}\left(-5 \mathrm{dBm} /\right.$ tone for 2-tone IIP3 tests, $\Delta f=1 \mathrm{MHz}$), $\mathrm{f}_{\mathrm{L} 0}=\mathrm{f}_{\mathrm{RF}}-\mathrm{f}_{\mathrm{IF}}, \mathrm{P}_{\mathrm{L} 0}=-3 \mathrm{dBm}$ (0 dBm for 450 MHz and 900 MHz tests), IF output measured at 240 MHz , unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3, 4)

PARAMETER	CONDITIONS	MIN TYP	MAX	UNITS
Conversion Gain	$\begin{aligned} & \mathrm{RF}=450 \mathrm{MHz}, \mathrm{IF}=140 \mathrm{MHz} \text {, High Side } \mathrm{LO} \\ & \mathrm{RF}=900 \mathrm{MHz}, \mathrm{IF}=140 \mathrm{MHz} \\ & R F=1700 \mathrm{MHz} \\ & R F=1900 \mathrm{MHz} \\ & R F=2200 \mathrm{MHz} \\ & R F=2650 \mathrm{MHz} \\ & R F=3500 \mathrm{MHz}, \mathrm{IF}=380 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.4 \\ & 2.3 \\ & 2.3 \\ & 2.0 \\ & 1.8 \\ & 0.3 \end{aligned}$		dB $d B$
Conversion Gain vs Temperature	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{RF}=1900 \mathrm{MHz}$	-0.018		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Input 3rd Order Intercept	$\begin{aligned} & \mathrm{RF}=450 \mathrm{MHz}, \mathrm{IF}=140 \mathrm{MHz} \text {, High Side LO } \\ & \mathrm{RF}=900 \mathrm{MHz}, \mathrm{IF}=140 \mathrm{MHz} \\ & \mathrm{RF}=1700 \mathrm{MHz} \\ & R F=1900 \mathrm{MHz} \\ & R F=2200 \mathrm{MHz} \\ & R F=2650 \mathrm{MHz} \\ & R F=3500 \mathrm{MHz}, \mathrm{IF}=380 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 23.2 \\ & 24.5 \\ & 24.2 \\ & 23.5 \\ & 22.7 \\ & 20.8 \\ & 18.2 \end{aligned}$		dBm dBm dBm dBm dBm dBm dBm
Single-Sideband Noise Figure	$\begin{aligned} & \text { RF }=450 \mathrm{MHz}, \mathrm{IF}=140 \mathrm{MHz} \text {, High Side } \mathrm{LO} \\ & R F=900 \mathrm{MHz}, \mathrm{IF}=140 \mathrm{MHz} \\ & R F=1700 \mathrm{MHz} \\ & R F=1900 \mathrm{MHz} \\ & R F=2200 \mathrm{MHz} \\ & R F=2650 \mathrm{MHz} \\ & R F=3500 \mathrm{MHz}, \mathrm{IF}=380 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \hline 13.3 \\ & 11.6 \\ & 12.1 \\ & 12.5 \\ & 13.2 \\ & 13.9 \\ & 16.1 \end{aligned}$		dB $d B$ $d B$ $d B$ $d B$ $d B$ $d B$
LO to RF Leakage	$\begin{aligned} & \mathrm{f}_{\mathrm{LO}}=400 \mathrm{MHz} \text { to } 2100 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{LO}}=2100 \mathrm{MHz} \text { to } 3200 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \leq-44 \\ & \leq-36 \end{aligned}$		$\begin{aligned} & \mathrm{dBm} \\ & \mathrm{dBm} \end{aligned}$
LO to IF Leakage	$\begin{aligned} & \mathrm{f}_{\mathrm{LO}}=400 \mathrm{MHz} \text { to } 700 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{LO}}=700 \mathrm{MHz} \text { to } 3200 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \leq-40 \\ & \leq-50 \end{aligned}$		$\begin{aligned} & \mathrm{dBm} \\ & \mathrm{dBm} \end{aligned}$
RF to LO Isolation	$\begin{aligned} & \mathrm{f}_{\mathrm{RF}}=400 \mathrm{MHz} \text { to } 2200 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{RF}}=2200 \mathrm{MHz} \text { to } 3700 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & >43 \\ & >38 \end{aligned}$		dB dB
RF to IF Isolation	$\begin{aligned} & \mathrm{f}_{\mathrm{RF}}=400 \mathrm{MHz} \text { to } 800 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{RF}}=800 \mathrm{MHz} \text { to } 3700 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & >42 \\ & >54 \end{aligned}$		dB dB
2RF-2LO Output Spurious Product $\left(f_{R F}=f_{L O}+f_{I F} / 2\right)$	$\begin{aligned} & \text { 900MHz: } \mathrm{f}_{\mathrm{RF}}=830 \mathrm{MHz} \text { at }-5 \mathrm{dBm}, \mathrm{f}_{\mathrm{IF}}=140 \mathrm{MHz} \\ & 1900 \mathrm{MHz}: \mathrm{f}_{\mathrm{RF}}=1780 \mathrm{MHz} \text { at }-5 \mathrm{dBm}, \mathrm{f}_{\mathrm{IF}}=240 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & -60 \\ & -65 \end{aligned}$		dBc dBc
3RF-3LO Output Spurious Product $\left(f_{R F}=f_{L 0}+f_{I F} / 3\right)$	$900 \mathrm{MHz}: \mathrm{f}_{\mathrm{RF}}=806.67 \mathrm{MHz}$ at $-5 \mathrm{dBm}, \mathrm{f}_{\mathrm{IF}}=140 \mathrm{MHz}$ $1900 \mathrm{MHz}: \mathrm{f}_{\mathrm{RF}}=1740 \mathrm{MHz}$ at $-5 \mathrm{dBm}, \mathrm{f}_{\mathrm{IF}}=240 \mathrm{MHz}$	$\begin{aligned} & -73 \\ & -63 \end{aligned}$		dBc dBc
Input 1dB Compression	$\begin{aligned} & \mathrm{RF}=450 \mathrm{MHz}, \mathrm{IF}=140 \mathrm{MHz}, \text { High Side } \mathrm{LO} \\ & R F=900 \mathrm{MHz}, \mathrm{IF}=140 \mathrm{MHz} \\ & \mathrm{RF}=1900 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.9 \\ & 9.0 \end{aligned}$		dBm dBm dBm

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: $450 \mathrm{MHz}, 900 \mathrm{MHz}$ and 3500 MHz performance measured with external LO and RF matching. See Figure 1 and Applications Information.
Note 3: Specifications over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ temperature range are assured by design, characterization and correlation with statistical process controls.

Note 4: SSB Noise Figure measurements performed with a small-signal noise source and bandpass filter on RF input, and no other RF signal applied.

TYPICAL AC PGRFORMARCE CHAßACTERISTICS Midband (No oxtermal RFL0 matching)
$V_{C C}=5 \mathrm{~V}, \mathrm{EN}=\mathrm{High}, \mathrm{P}_{\mathrm{RF}}=-5 \mathrm{dBm}\left(-5 \mathrm{dBm} /\right.$ tone for 2 -tone IIP3 tests, $\Delta \mathrm{f}=1 \mathrm{MHz}$), $\mathrm{P}_{\mathrm{Lo}}=-3 \mathrm{dBm}$, IF output measured at 240 MHz , unless otherwise noted. Test circuit shown in Figure 1.

TYPICAL AC PGRFORMARCE CHARACTERISTICS Midband (No external RFLo matching)
$V_{C C}=5 \mathrm{~V}, \mathrm{EN}=\mathrm{High}, \mathrm{P}_{\mathrm{RF}}=-5 \mathrm{dBm}\left(-5 \mathrm{dBm} /\right.$ tone for 2 -tone IIP3 tests, $\Delta \mathrm{f}=1 \mathrm{MHz}$), $\mathrm{P}_{\mathrm{Lo}}=-3 \mathrm{dBm}$, IF output measured at 240 MHz , unless otherwise noted. Test circuit shown in Figure 1.

High Band (3500 MHz application with external RF matching) $\mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V}$, EN $=$ High, $\mathrm{P}_{\mathrm{RF}}=-5 \mathrm{dBm}$ ($-5 \mathrm{dBm} /$ tone for 2-tone IIP3 tests, $\Delta f=1 \mathrm{MHz}$), Iow side LO, $\mathrm{P}_{\mathrm{L} 0}=-3 \mathrm{dBm}$, IF output measured at 380 MHz , unless otherwise noted. Test circuit shown in Figure 1.

Low Band (450MHz application with external RF/LO matching) $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, $\mathrm{EN}=$ High, $\mathrm{P}_{\mathrm{RF}}=-5 \mathrm{dBm}(-5 \mathrm{dBm} /$ tone for 2-tone IIP3 tests, $\Delta f=1 \mathrm{MHz}$), $\mathrm{P}_{\mathrm{L} 0}=0 \mathrm{OdBm}$, IF output measured at 140 MHz , unless otherwise noted. Test circuit shown in Figure 1 .

TYPICAL AC PERFORMARCE CHARACTERISTICS Low Band (900nHz application witi exemal $R F / L O$ matching) $V_{C C}=5 V$, $\mathrm{EN}=$ High, $\mathrm{P}_{\mathrm{RF}}=-5 \mathrm{dBm}(-5 \mathrm{dBm} /$ tone for 2-tone IIP3 tests, $\Delta f=1 \mathrm{MHz}), \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}$, IF output measured at 140MHz, unless otherwise noted. Test circuit shown in Figure 1.

TYPICAL DC PGRFORMARCG CHARACTGRISTICS Test i ircuit shown in Figure 1.

Shutdown Current vs Supply Voltage

PIn functions

NC (Pins 1, 2, 4, 8, 13, 14, 16): Not Connected Internally. These pins should be grounded on the circuit board for improved LO-to-RF and LO-to-IF isolation.

RF (Pin 3): Single-Ended Input for the RF Signal. This pin is internally connected to the primary side of the RF input transformer, which has low DC resistance to ground. If the RF source is not DC blocked, then a series blocking capacitor must be used. The RF input is internally matched from 1.7GHz to 3GHz. Operation down to 400MHz or up to 3700 MHz is possible with simple external matching.
EN (Pin 5): Enable Pin. When the input enable voltage is higher than 3 V , the mixer circuits supplied through Pins 6 , 7,10 and 11 are enabled. When the input voltage is less than 0.3 V , all circuits are disabled. Typical input current is $50 \mu \mathrm{~A}$ for $\mathrm{EN}=5 \mathrm{~V}$ and $0 \mu \mathrm{~A}$ when $\mathrm{EN}=0 \mathrm{~V}$. The EN pin should not be left floating. Under no conditions should the EN pin voltage exceed $\mathrm{V}_{C C}+0.3 \mathrm{~V}$, even at start-up.
$V_{\text {CC2 }}$ (Pin 6): Power Supply Pin for the Bias Circuits. Typical current consumption is 2.8 mA . This pin should be externally connected to the $\mathrm{V}_{\mathrm{CC1}}$ pin and decoupled with 1000 pF and $1 \mu \mathrm{~F}$ capacitors.
$V_{\text {CC1 }}$ (Pin 7): Power Supply Pin for the LO Buffer Circuits. Typical current consumption is 23.2 mA . This pin should
be externally connected to the $\mathrm{V}_{\mathrm{CC2}}$ pin and decoupled with 1000 pF and $1 \mu \mathrm{~F}$ capacitors.
GND (Pins 9, 12): Ground. These pins are internally connected to the backside ground for improved isolation. They should be connected to the RF ground on the circuit board, although they are not intended to replace the primary grounding through the backside contact of the package.
IF-, IF+ (Pins 10, 11): Differential Outputs for the IF Signal. An impedance transformation may be required to match the outputs. These pins must be connected to $\mathrm{V}_{C C}$ through impedance matching inductors, RF chokes or a transformer center tap.
LO (Pin 15): Single-Ended Input for the Local Oscillator Signal. This pin is internally connected to the primary side of the LO transformer, which is internally DC blocked. An external blocking capacitor is not required. The LO input is internally matched from 1.2 GHz to 5 GHz . Operation down to 380 MHz is possible with simple external matching.
Exposed Pad (Pin 17): Circuit Ground Return for the Entire IC. This must be soldered to the printed circuit board ground plane.

BLOCK DIAGRAM

TEST CIRCUITS

Figure 1. Downmixer Test Schematic—Standard IF Matching (240MHz IF)

REF DES	VALUE	SIZE	PART NUMBER	REF DES	VALUE	SIZE	PART NUMBER
C1, C3	1000 pF	0402	AVX 04025C102JAT	L4, C4, C5		0402	See Applications Information
C2	$1 \mu \mathrm{~F}$	0603	AVX 0603ZD105KAT	L1, L2	100 nH	0603	Toko LLQ1608-AR10
C6, C7	4.7 pF	0402	AVX 04025A4R7CAT	L3	220 nH	0603	Toko LLQ1608-AR22

Figure 2. Downmixer Test Schematic—Discrete IF Balun Matching (240MHz IF)

APPLICATIONS INFORMATION

Introduction

The LT5527 consists of a high linearity double-balanced mixer, RF buffer amplifier, high speed limiting LO buffer amplifier and bias/enable circuits. The RF and LO inputs are both single ended. The IF output is differential. Low side or high side LO injection can be used.

Two evaluation circuits are available. The standard evaluation circuit, shown in Figure 1, incorporates transformerbased IF matching and is intended for applications that require the lowest LO-IF leakage levels and the widest IF bandwidth. The second evaluation circuit, shown in Figure 2, replaces the IF transformer with a discrete IF balun for reduced solution cost and size. The discrete IF balun delivers comparable noise figure and linearity, higher conversion gain, but degraded LO-IF leakage and reduced IF bandwidth.

RF Input Port

The mixer's RF input, shown in Figure 3, consists of an integrated transformer and a high linearity differential amplifier. The primary terminals of the transformer are connected to the RF input pin (Pin 3) and ground. The secondary side of the transformer is internally connected to the amplifier's differential inputs.
One terminal of the transformer's primary is internally grounded. If the RF source has DC voltage present, then a coupling capacitor must be used in series with the RF input pin.
The RF input is internally matched from 1.7 GHz to 3 GHz , requiring no external components over this frequency range. The input return loss, shown in Figure 4a, is typically 10 dB at the band edges. The input match at the lower band edge can be optimized with a series 2.7 pF capacitor

Figure 3. RF Input Schematic
at Pin 3 , which improves the 1.7 GHz return loss to greater than 20 dB . Likewise, the 2.7 GHz match can be improved to greater than 30 dB with a series 1.5 nH inductor. A series 1.5nH/2.7pFnetwork will simultaneously optimize the lower and upper band edges and expand the RF input bandwidth to $1.1 \mathrm{GHz}-3.3 \mathrm{GHz}$. Measured RF input return losses for these three cases are also plotted in Figure 4a.

Alternatively, the input match can be shifted down, as low as 400 MHz or up to 3700 MHz , by adding a shunt capacitor (C5) to the RF input. A 450MHz input match is realized with C5 $=12 \mathrm{pF}$, located 4.5 mm away from Pin 3 on the evaluation board's 50Ω input transmission line. A 900 MHz input match requires $C 5=3.9 p F$, located at 1.3 mm . A 3500 MHz input match is realized with $\mathrm{C} 5=0.5 \mathrm{pF}$, located

(4a) Series Reactance Matching

(4b) Series Shunt Matching
Figure 4. RF Input Return Loss With and Without External Matching

APPLICATIONS INFORMATION

at 4.5 mm . This series transmission line/shunt capacitor matching topology allows the LT5527 to be used for multiple frequency standards without circuit board layout modifications. The series transmission line can also be replaced with a series chip inductor for a more compact layout.

Input return loss for these three cases (450MHz, 900MHz and 3500 MHz) are plotted in Figure 4b. The input return loss with no external matching is repeated in Figure 4b for comparison.

RF input impedance and S11 versus frequency (with no external matching) is listed in Table 1 and referenced to Pin 3. The S11 data can be used with a microwave circuit simulator to design custom matching networks and simulate board-level interfacing to the RF input filter.
Table 1. RF Input Impedance vs Frequency

FREQUENCY	INPUT	S11	
$(\mathbf{M H z)}$	IMPEDANCE	MAG	ANGLE
50	$4.8+j 2.6$	0.825	173.9
300	$9.0+j 11.9$	0.708	152.5
450	$11.9+j 15.3$	0.644	144.3
600	$14.3+j 18.2$	0.600	137.2
900	$19.4+j 23.8$	0.529	123.2
1200	$26.1+j 29.8$	0.467	107.4
1500	$37.3+j 33.9$	0.386	89.3
1850	$57.4+j 29.7$	0.275	60.6
2150	$71.3+j 10.1$	0.193	20.6
2450	$64.6-\mathrm{j} 13.9$	0.175	-36.8
2650	$53.0-\mathrm{j} 21.8$	0.209	-70.3
3000	$35.0-\mathrm{j} 21.2$	0.297	-111.2
3500	$20.7-\mathrm{j} 9.0$	0.431	-155.8
4000	$14.2+\mathrm{j} 6.2$	0.564	164.8
5000	$10.4+\mathrm{j} 31.9$	0.745	113.3

LO Input Port

The mixer's LO input, shown in Figure 5, consists of an integrated transformer and high speed limiting differential amplifiers. The amplifiers are designed to precisely drive the mixer for the highest linearity and the lowest noise figure. An internal DC blocking capacitor in series with the transformer's primary eliminates the need for an external blocking capacitor.

The LO input is internally matched from 1.2 GHz to 5 GHz , although the maximum useful frequency is limited to 3.5 GHz by the internal amplifiers. The input match can be shifted down, as low as 750 MHz , with a single shunt capacitor (C4) on Pin 15. One example is plotted in Figure 6 where $\mathrm{C} 4=2.7 \mathrm{pF}$ produces an 850 MHz to 1.2 GHz match.

LO input matching below 750 MHz requires the series inductor (L4)/shunt capacitor (C4) network shown in Figure 5. Two examples are plotted in Figure 6 where $L 4=$ $3.9 \mathrm{nH} / \mathrm{C} 4=5.6 \mathrm{pF}$ produces a 650 MHz to 830 MHz match and $\mathrm{L} 4=6.8 \mathrm{nH} / \mathrm{C4}=10 \mathrm{pF}$ produces a 540 MHz to 640 MHz match. The evaluation boards do not include pads for L4, so the circuit trace needs to be cut near Pin 15 to insert L4. A low cost multilayer chip inductor is adequate for L4.

The optimum LO drive is -3 dBm for LO frequencies above 1.2 GHz , although the amplifiers are designed to accommodate several dB of LO input power variation without significant mixer performance variation. Below 1.2 GHz ,

Figure 5. LO Input Schematic

Figure 6. LO Input Return Loss

APPLICATIONS InFORMATION

$0 \mathrm{dBm} L O$ drive is recommended for optimum noise figure, although -3 dBm will still deliver good conversion gain and linearity.

Custom matching networks can be designed using the port impedance data listed in Table 2. This data is referenced to the LO pin with no external matching.
Table 2. LO Input Impedance vs Frequency

FREQUENCY	INPUT	S11	
(MHz)	IMPEDANCE	MAG	ANGLE
50	$30.4-j 355.7$	0.977	-15.9
300	$8.7-\mathrm{j} 52.2$	0.847	-86.7
450	$9.4-\mathrm{j} 25.4$	0.740	-124.8
600	$11.5-\mathrm{j} 8.9$	0.635	-158.7
900	$19.7+j 12.8$	0.463	146.7
1200	$34.3+\mathrm{j} 24.3$	0.330	106.9
1500	$49.8+\mathrm{j} 21.3$	0.209	78.5
1850	$53.8+\mathrm{j} 8.9$	0.093	61.7
2150	$50.4+\mathrm{j} 3.2$	0.032	80.5
2450	$45.1+\mathrm{j} 0.3$	0.052	176.5
2650	$41.1+\mathrm{j} 2.4$	0.101	163.1
3000	$41.9+\mathrm{j} 8.1$	0.124	129.8
3500	$49.0+\mathrm{j} 12.0$	0.120	87.9
4000	$55.4+\mathrm{j} 8.6$	0.096	53.2
5000	$33.2+\mathrm{j} 8.7$	0.226	146.7

IF Output Port

The IF outputs, IF^{+}and IF^{-}, are internally connected to the collectors of the mixer switching transistors (see Figure 7). Both pins must be biased at the supply voltage, which can be applied through the center tap of a transformer or through matching inductors. Each IF pin draws 26 mA of supply current (52mA total). For optimum singleended performance, these differential outputs should be combined externally through an IF transformer or a discrete IF balun circuit. The standard evaluation board (see Figure 1) includes an IF transformer for impedance transformation and differential to single-ended transformation. A second evaluation board (see Figure 2) realizes the same functionality with a discrete IF balun circuit.
The IF output impedance can be modeled as 415Ω in parallel with 2.5 pF at low frequencies. An equivalent small-signal model (including bondwire inductance) is shown in Figure 8. Frequency-dependent differential IF
output impedance is listed in Table 3. This data is referenced to the package pins (with no external components) and includes the effects of IC and package parasitics. The IF output can be matched for IF frequencies as low as several kHz or as high as 600 MHz .
Table 3. IF Output Impedance vs Frequency

FREQUENCY (MHz)	DIFFERENTIAL OUTPUT IMPEDANCE ($\mathrm{R}_{\mathrm{IF}} \\| \mathrm{X}_{\mathrm{IF}}$)
1	415\|
10	415\|
70	415\|
140	413\|
240	407\|
300	403\|
380	395\|
450	387\|
500	381\|

The following three methods of differential to singleended IF matching will be described:

- Direct 8:1 transformer
- Lowpass matching + 4:1 transformer
- Discrete IF balun

Figure 7. IF Output with External Matching

Figure 8. IF Output Small-Signal Model

APPLICATIONS INFORMATION

Direct 8:1 IF Transformer Matching

For IF frequencies below 100MHz, the simplest IF matching technique is an 8:1 transformer connected across the IF pins. The transformer will perform impedance transformation and provide a single-ended 50Ω output. No other matching is required. Measured performance using this technique is shown in Figure 9. This matching is easily implemented on the standard evaluation board by shorting across the pads for L1 and L2 and replacing the 4:1 transformer with an 8:1 (C3 not installed).

Figure 9. Typical Conversion Gain, IIP3 and SSB NF Using an 8:1 IF Transformer

Lowpass + 4:1 IF Transformer Matching

The lowest LO-IF leakage and wide IF bandwidth are realized by using the simple, three element lowpass matching network shown in Figure 7. Matching elements C3, L1 and L2, in conjunction with the internal 2.5 pF capacitance, form a 400Ω to 200Ω lowpass matching network which is tuned to the desired IF frequency. The 4:1 transformer then transforms the 200Ω differential output to a 50Ω single-ended output.

This matching network is most suitable for IF frequencies above 40MHz or so. Below 40MHz, the value of the series inductors (L1 and L2) becomes unreasonably high, and could cause stability problems, depending on the inductor value and parasitics. Therefore, the 8:1 transformer technique is recommended for low IF frequencies.

Suggested lowpass matching element values for several IF frequencies are listed in Table 4. High-Q wire-wound
chip inductors (L1 and L2) improve the mixer's conversion gain by a few tenths of a dB , but have little effect on linearity. Measured output return losses for each case are plotted in Figure 10 for the simple 8:1 transformer method and for the lowpass/4:1 transformer method.

Table 4. IF Matching Element Values

PLOT	IF FREQUENCY $\mathbf{(M H z)}$	L1, L2 $\mathbf{(n H)}$	C3 (pF)	IF TRANSFORMER
1	1 to 100	Short	-	TC8-1 (8:1)
2	140	120	-	ETC4-1-2 (4:1)
3	190	110	2.7	ETC4-1-2 (4:1)
4	240	82	2.7	ETC4-1-2 (4:1)
5	380	56	2.2	ETC4-1-2 (4:1)
6	450	43	2.2	ETC4-1-2 (4:1)

Figure 10. IF Output Return Losses with Lowpass/Transformer Matching

Discrete IF Balun Matching

For many applications, it is possible to replace the IF transformer with the discrete IF balun shown in Figure 2. The values of L1, L2, C6 and C7 are calculated to realize a 180 degree phase shift at the desired IF frequency and provide a 50Ω single-ended output, using the equations listed below. Inductor L3 is calculated to cancel the internal 2.5pF capacitance. L3also supplies bias voltage to the IF^{+}pin. Low cost multilayer chip inductors are adequate for L1 and L2. A high Q wire-wound chip inductor is recommended for L 3 to maximize conversion gain and minimize DC voltage drop to the IF^{+}pin. C 3 is a DC blocking capacitor.

APPLICATIONS INFORMATION

$\mathrm{L} 1, \mathrm{~L} 2=\frac{\sqrt{\mathrm{R}_{\mathrm{IF}} \cdot \mathrm{R}_{\text {OUT }}}}{\omega_{\mathrm{IF}}}$
$\mathrm{C}, \mathrm{C} 7=\frac{1}{\omega_{\mathrm{IF}} \cdot \sqrt{\mathrm{R}_{\mathrm{IF}} \cdot \mathrm{R}_{\text {OUT }}}}$
$L 3=\frac{\left|X_{\text {IF }}\right|}{\omega_{\text {IF }}}$
Compared to the lowpass/4:1 transformer matching technique, this network delivers approximately 0.8 dB higher conversion gain (since the IF transformer loss is eliminated) and comparable noise figure and IIP3. At a $\pm 15 \%$ offset from the IF center frequency, conversion gain and noise figure degrade about 1 dB . Beyond $\pm 15 \%$, conversion gain decreases gradually but noise figure increases rapidly. IIP3 is less sensitive to bandwidth. Other than IF bandwidth, the most significant difference is LO-IF leakage, which degrades to approximately - 38dBm compared to the superior performance realized with the lowpass/4:1 transformer matching.

Discrete IF balun element values for four common IF frequencies are listed in Table 5. The corresponding measured IF output return losses are shown in Figure 11. The values listed in Table 5 differ from the calculated values slightly due to circuit board and component parasitics. Typical conversion gain, IIP3 and LO-IF leakage, versus RF input frequency, for all four IF frequency examples is shown in Figure 12. Typical conversion gain, IIP3 and noise figure versus IF output frequency for the same circuits are shown in Figure 13.

Table 5. Discrete IF Balun Element Values $\left(\mathrm{R}_{\text {OUT }}=50 \Omega\right.$)

IF FREQUENCY $\mathbf{(M H z)}$	L1, L2 $\mathbf{(n H)}$	C6, C7 $\mathbf{(p F)}$	L3 $\mathbf{(n H)}$
190	120	6.8	220
240	100	4.7	220
380	56	3	68
450	47	2.7	47

For fully differential IF architectures, the IF transformer can be eliminated. An example is shown in Figure 14, where the mixer's IF output is matched directly into a SAW filter. Supply voltage to the mixer's IF pins is applied

Figure 11. IF Output Return Losses with Discrete Balun Matching

5527 F12
Figure 12. Conversion Gain, IIP3 and LO-IF Leakage vs RF Input Frequency Using Discrete IF Balun Matching

Figure 13. Conversion Gain, IIP3 and SSB NF vs IF Output Frequency Using Discrete IF Balun Matching

APPLICATIONS INFORMATION

through matching inductors in a band-pass IF matching network. The values of L1, L2 and C3 are calculated to resonate at the desired IF frequency with a quality factor that satisfies the required IF bandwidth. The L and C values are then adjusted to account for the mixer's internal 2.5 pF capacitance and the SAW filter's input capacitance. In this case, the differential IF output impedance is 400Ω since the bandpass network does not transform the impedance.
Additional matching elements may be required if the SAW filter's input impedance is less than or greater than 400Ω. Contact the factory for application assistance.

Standard Evaluation Board Layout

Figure 14. Bandpass IF Matching for Differential IF Architectures

Discrete IF Evaluation Board Layout

PACKAGE DESCRIPTION
UF Package
16-Lead Plastic QFN ($4 \mathrm{~mm} \times 4 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1692)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

NOTE:

1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC)
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE

MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
Infrastructure		
LT5511	High Linearity Upconverting Mixer	RF Output to 3GHz, 17dBm IIP3, Integrated L0 Buffer
LT5512	DC-3GHz High Signal Level Downconverting Mixer	DC to 3GHz, 17dBm IIP3, Integrated LO Buffer
LT5514	Ultralow Distortion, IF Amplifier/ADC Driver with Digitally Controlled Gain	850MHz Bandwidth, 47dBm OIP3 at 100MHz, 10.5dB to 33dB Gain Control Range
LT5515	1.5 GHz to 2.5 GHz Direct Conversion Quadrature Demodulator	20dBm IIP3, Integrated LO Quadrature Generator
LT5516	0.8 GHz to 1.5 GHz Direct Conversion Quadrature Demodulator	21.5dBm IIP3, Integrated LO Quadrature Generator
LT5517	40MHz to 900MHz Quadrature Demodulator	21dBm IIP3, Integrated LO Quadrature Generator
LT5519	0.7GHz to 1.4GHz High Linearity Upconverting Mixer	17.1 dBm IIP3 at 1GHz, Integrated RF Output Transformer with 50Ω Matching, Single-Ended LO and RF Ports Operation
LT5520	1.3 GHz to 2.3GHz High Linearity Upconverting Mixer	15.9 dBm IIP3 at 1.9 GHz , Integrated RF Output Transformer with 50Ω Matching, Single-Ended LO and RF Ports Operation
LT5521	10MHz to 3700MHz High Linearity Upconverting Mixer	24.2dBm IIP3 at 1.95GHz, NF $=12.5 \mathrm{~dB}, 3.15 \mathrm{~V}$ to 5.25 V Supply, Single-Ended LO Port Operation
LT5522	400MHz to 2.7GHz High Signal Level Downconverting Mixer	4.5 V to 5.25 V Supply, 25 dBm IIP3 at $900 \mathrm{MHz}, \mathrm{NF}=12.5 \mathrm{~dB}, 50 \Omega$ Single-Ended RF and LO Ports
LT5524	Low Power, Low Distortion ADC Driver with Digitally Programmable Gain	450MHz Bandwidth, 40dBm 0IP3, 4.5dB to 27dB Gain Control
LT5525	High Linearity, Low Power Downconverting Mixer	Single-Ended 50Ω RF and LO Ports, 17.6 dBm IIP3 at $1900 \mathrm{MHz}, \mathrm{I}_{\mathrm{CC}}=28 \mathrm{~mA}$
LT5526	High Linearity, Low Power Downconverting Mixer	3 V to 5.3 V Supply, 16.5 dBm IIP3, 100 kHz to $2 \mathrm{GHz} \mathrm{RF}, \mathrm{NF}=11 \mathrm{~dB}, \mathrm{I}_{\mathrm{CC}}=28 \mathrm{~mA}$, -65dBm LO-RF Leakage
LT5528	1.5GHz to 2.4GHz High Linearity Direct I/Q Modulator	21.8dBm OIP3 at 2GHz, -159dBm/Hz Noise Floor, 50Ω Interface at all Ports

RF Power Detectors

LT5504	800MHz to 2.7GHz RF Measuring Receiver	80dB Dynamic Range, Temperature Compensated, 2.7V to 5.25V Supply
LTC ${ }^{\text {5 5 }}$ 505	RF Power Detectors with >40dB Dynamic Range	300MHz to 3GHz, Temperature Compensated, 2.7V to 6V Supply
LTC5507	100kHz to 1000MHz RF Power Detector	100 kHz to 1GHz, Temperature Compensated, 2.7V to 6V Supply
LTC5508	$300 \mathrm{MHz} \mathrm{to} \mathrm{7GHz} \mathrm{RF} \mathrm{Power} \mathrm{Detector}$	44dB Dynamic Range, Temperature Compensated, SC70 Package
LTC5509	300 MHz to 3GHz RF Power Detector	36dB Dynamic Range, Low Power Consumption, SC70 Package
LTC5530	300MHz to 7GHz Precision RF Power Detector	Precision V ${ }_{\text {Out }}$ Offset Control, Shutdown, Adjustable Gain
LTC5531	300MHz to 7GHz Precision RF Power Detector	Precision Vout Offset Control, Shutdown, Adjustable Offset
LTC5532	300MHz to 7GHz Precision RF Power Detector	Precision V ${ }_{\text {Out }}$ Offset Control, Adjustable Gain and Offset
LT5534	50MHz to 3GHz RF Power Detector with 60dB Dynamic Range	$\pm 1 \mathrm{~dB}$ Output Variation over Temperature, 38ns Response Time
LTC5536	Precision 600MHz to 7GHz RF Detector with Fast Compatator Output	25ns Response Time, Comparator Reference Input, Latch Enable Input, -26 dBm to +12 dBm Input Range
Low Voltage RF Building Block		
LT5546	500MHz Quadrature Demodulator with VGA and 17MHz Baseband Bandwidth	17MHz Baseband Bandwidth, 40MHz to 500MHz IF, 1.8V to 5.25V Supply, -7dB to 56dB Linear Power Gain
Wide Bandwidth ADCs		
LTC1749	12-Bit, 80Msps	500MHz BW S/H, 71.8dB SNR
LTC1750	14-Bit, 80Msps	500MHz BW S/H, 75.5dB SNR

