May 1999

# National Semiconductor

# LM6161/LM6261/LM6361 **High Speed Operational Amplifier**

# **General Description**

The LM6161 family of high-speed amplifiers exhibits an excellent speed-power product in delivering 300 V/µs and 50 MHz unity gain stability with only 5 mA of supply current. Further power savings and application convenience are possible by taking advantage of the wide dynamic range in operating supply voltage which extends all the way down to +5V. These amplifiers are built with National's VIP™ (Vertically Integrated PNP) process which provides fast PNP transistors that are true complements to the already fast NPN devices. This advanced junction-isolated process delivers high speed performance without the need for complex and expensive dielectric isolation.

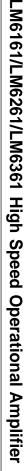
## **Features**

■ High slew rate 300 V/µs

## High unity gain freq 50 MHz Low supply current 5 mA

- Fast settling 120 ns to 0.1%
- Low differential gain <0.1%
- Low differential phase 0.1°
- Wide supply range 4.75V to 32V
- Stable with unlimited capacitive load
- Well behaved; easy to apply

#### Applications


- Video amplifier
- High-frequency filter
- Wide-bandwidth signal conditioning
- Radar
- Sonar



**Connection Diagrams** 

#### 10-Lead Flatpak ۷<sub>05</sub> V<sub>OUT</sub> N/C Adjust NC F Voc ADJUST VOS ADJUST INV INPUT LM6161W ⊐ v<sub>outpu</sub>. NON-INV INPUT I NO See NS Package Number W10A INV Vos Adjust input input DS009057-See NS Package Number J08A, N08E or M08A NSC **Temperature Range** Package Drawing Military Industrial Commercial -55°C ≤ T<sub>A</sub> ≤ +125°C -25°C ≤ T<sub>A</sub> ≤ +85°C $0^{\circ}C \leq T_{A} \leq +70^{\circ}C$ LM6261N LM6361N 8-Pin N08E Molded DIP LM6161J/883 LM6361J 8-Pin .108A 5962-8962101PA Ceramic DIP LM6261M LM6361M 8-Pin Molded M08A Surface Mt. LM6161WG/883 10-Lead WG10A 5962-8962101XA Ceramic SOIC LM6161W/883 10-Pin W10A 5962-8962101HA Ceramic Flatpak VIP™ is a trademark of National Semiconductor Corporation.

© 1999 National Semiconductor Corporation DS009057



# Absolute Maximum Ratings (Note 12)

.

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

| Supply Voltage (V <sup>+</sup> – V <sup>-</sup> )  | 36V                              |
|----------------------------------------------------|----------------------------------|
| Differential Input Voltage                         |                                  |
| (Note 8)                                           | ±8V                              |
| Common-Mode Voltage Range                          |                                  |
| (Note 10)                                          | $(V^+ - 0.7V)$ to $(V^- + 0.7V)$ |
| Output Short Circuit to GND                        |                                  |
| (Note 1)                                           | Continuous                       |
| Soldering Information                              |                                  |
| Dual-In-Line Package (N, J)<br>Soldering (10 sec.) | 260°C                            |
| Small Outline Package (M)                          |                                  |
| Vapor Phase (60 sec.)                              | 215°C                            |

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices. Storage Temp Range -65°C to +150°C Max Junction Temperature 150°C

| Max Junction Temperature   | 150 C |
|----------------------------|-------|
| ESD Tolerance (Notes 6, 7) | ±700V |
|                            |       |

# **Operating Ratings** (Note 12)

| ≤ +125°C  |
|-----------|
| S°C+ ≥ ر  |
| S +70°C د |
| 5V to 32V |
|           |

# **DC Electrical Characteristics**

The following specifications apply for Supply Voltage =  $\pm 15V$ ,  $V_{CM} = 0$ ,  $R_L \ge 100 \text{ k}\Omega$  and  $R_S = 50\Omega$  unless otherwise noted. **Boldface** limits apply for  $T_J = T_{MIN}$  to  $T_{MAX}$ ; all other limits  $T_J = 25^{\circ}C$ .

| Symbol           | Parameter            | Conditions                        | Тур   | LM6161        | LM6261   | LM6361   | Units |
|------------------|----------------------|-----------------------------------|-------|---------------|----------|----------|-------|
|                  |                      |                                   |       | Limit         | Limit    | Limit    | 1     |
|                  |                      |                                   |       | (Notes 3, 11) | (Note 3) | (Note 3) |       |
| Vos              | Input Offset Voltage |                                   | 5     | 7             | 7        | 20       | mV    |
|                  |                      |                                   |       | 10            | 9        | 22       | Max   |
| Vos              | Input Offset Voltage |                                   | 10    |               |          |          | μV/°C |
| Drift            | Average Drift        |                                   |       |               |          |          |       |
| l <sub>b</sub>   | Input Bias Current   |                                   | 2     | 3             | 3        | 5        | μA    |
|                  |                      |                                   |       | 6             | 5        | 6        | Max   |
| l <sub>os</sub>  | Input Offset Current |                                   | 150   | 350           | 350      | 1500     | nA    |
|                  |                      |                                   |       | 800           | 600      | 1900     | Max   |
| l <sub>os</sub>  | Input Offset Current |                                   | 0.4   |               |          |          | nA/°C |
| Drift            | Average Drift        |                                   |       |               |          |          |       |
| R <sub>IN</sub>  | Input Resistance     | Differential                      | 325   |               |          |          | kΩ    |
| CIN              | Input Capacitance    | A <sub>V</sub> = +1 @ 10 MHz      | 1.5   |               |          |          | pF    |
| A <sub>VOL</sub> | Large Signal         | $V_{OUT} = \pm 10V,$              | 750   | 550           | 550      | 400      | V/V   |
|                  | Voltage Gain         | $R_L = 2 k\Omega$ (Note 9)        |       | 300           | 400      | 350      | Min   |
|                  |                      | R <sub>L</sub> = 10 kΩ (Note 9)   | 2900  |               |          |          | V/V   |
| V <sub>CM</sub>  | Input Common-Mode    | Supply = $\pm 15V$                | +14.0 | +13.9         | +13.9    | +13.8    | Volts |
|                  | Voltage Range        |                                   |       | +13.8         | +13.8    | +13.7    | Min   |
|                  |                      |                                   | -13.2 | -12.9         | -12.9    | -12.8    | Volts |
|                  |                      |                                   |       | -12.7         | -12.7    | -12.7    | Min   |
|                  |                      | Supply = +5V                      | 4.0   | 3.9           | 3.9      | 3.8      | Volts |
|                  |                      | (Note 4)                          |       | 3.8           | 3.8      | 3.7      | Min   |
|                  |                      |                                   | 1.8   | 2.0           | 2.0      | 2.1      | Volts |
|                  |                      |                                   |       | 2.2           | 2.2      | 2.2      | Max   |
| CMRR             | Common-Mode          | $-10V \le V_{CM} \le +10V$        | 94    | 80            | 80       | 72       | dB    |
|                  | Rejection Ratio      |                                   |       | 74            | 76       | 70       | Min   |
| PSRR             | Power Supply         | $\pm 10V \le V^{\pm} \le \pm 16V$ | 90    | 80            | 80       | 72       | dB    |
|                  | Rejection Ratio      |                                   |       | 74            | 76       | 70       | Min   |

# DC Electrical Characteristics (Continued)

The following specifications apply for Supply Voltage =  $\pm 15V$ ,  $V_{CM} = 0$ ,  $R_L \ge 100 \text{ k}\Omega$  and  $R_S = 50\Omega$  unless otherwise noted.

| Symbol | Parameter       | Conditions            | Тур   | LM6161        | LM6261   | LM6361   | Units |
|--------|-----------------|-----------------------|-------|---------------|----------|----------|-------|
|        |                 |                       |       | Limit         | Limit    | Limit    | 1     |
|        |                 |                       |       | (Notes 3, 11) | (Note 3) | (Note 3) |       |
| Vo     | Output Voltage  | Supply = $\pm 15V$    | +14.2 | +13.5         | +13.5    | +13.4    | Volts |
|        | Swing           | and $R_L = 2 k\Omega$ |       | +13.3         | +13.3    | +13.3    | Min   |
|        |                 |                       | -13.4 | -13.0         | -13.0    | -12.9    | Volts |
|        |                 |                       |       | -12.7         | -12.8    | -12.8    | Min   |
|        |                 | Supply = +5V          | 4.2   | 3.5           | 3.5      | 3.4      | Volts |
|        |                 | and $R_L = 2 k\Omega$ |       | 3.3           | 3.3      | 3.3      | Min   |
|        |                 | (Note 4)              | 1.3   | 1.7           | 1.7      | 1.8      | Volts |
|        |                 |                       |       | 2.0           | 1.9      | 1.9      | Max   |
|        | Output Short    | Source                | 65    | 30            | 30       | 30       | mA    |
|        | Circuit Current |                       | 20    | 25            | 25       | Min      |       |
|        |                 | Sink                  | 65    | 30            | 30       | 30       | mA    |
|        |                 |                       |       | 20            | 25       | 25       | Min   |
| ls     | Supply Current  |                       | 5.0   | 6.5           | 6.5      | 6.8      | mA    |
|        |                 |                       |       | 6.8           | 6.7      | 6.9      | Max   |

# **AC Electrical Characteristics**

The following specifications apply for Supply Voltage = ±15V,  $V_{CM}$  = 0,  $R_L \ge 100 \text{ k}\Omega$  and  $R_S$  = 50 $\Omega$  unless otherwise noted. Boldface limits apply for  $T_J$  =  $T_{MIN}$  to  $T_{MAX}$ ; all other limits  $T_J$  = 25°C.

|                   |                     |                             |      | LM6161        | LM6261   | LM6361   |        |
|-------------------|---------------------|-----------------------------|------|---------------|----------|----------|--------|
| Symbol            | Parameter           | Conditions                  | Тур  | Limit         | Limit    | Limit    | Units  |
|                   |                     |                             |      | (Notes 3, 11) | (Note 3) | (Note 3) |        |
| GBW               | Gain-Bandwidth      | @f = 20 MHz                 | 50   | 40            | 40       | 35       | MHz    |
|                   | Product             |                             |      | 30            | 35       | 32       | Min    |
|                   |                     | Supply = $\pm 5V$           | 35   |               |          |          | MHz    |
| SR                | Slew Rate           | $A_{V} = +1$ (Note 8)       | 300  | 200           | 200      | 200      | V/µs   |
|                   |                     |                             |      | 180           | 180      | 180      | Min    |
|                   |                     | Supply = $\pm 5V$ (Note 8)  | 200  |               |          |          | V/µs   |
| PBW               | Power Bandwidth     | $V_{OUT} = 20 V_{PP}$       | 4.5  |               |          |          | MHz    |
| ts                | Settling Time       | 10V Step to 0.1%            | 120  |               |          |          | ns     |
|                   |                     | $A_V = -1, R_L = 2 k\Omega$ |      |               |          |          |        |
| φm                | Phase Margin        |                             | 45   |               |          |          | Deg    |
| A <sub>D</sub>    | Differential Gain   | NTSC, $A_V = +4$            | <0.1 |               |          |          | %      |
| φD                | Differential Phase  | NTSC, $A_V = +4$            | 0.1  |               |          |          | Deg    |
| e <sub>np-p</sub> | Input Noise Voltage | f = 10 kHz                  | 15   |               |          |          | nV/√Hz |
| İ <sub>np-p</sub> | Input Noise Current | f = 10 kHz                  | 1.5  |               |          |          | pA/√Hz |
|                   |                     |                             |      |               |          |          |        |

Note 1: Continuous short-circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Note 2: The typical junction-to-ambient thermal resistance of the molded plastic DIP (N) is 105°C/W, the molded plastic SO (M) package is 155°C/W, and the cerdip

(J) package is 125°C/W. All numbers apply for packages soldered directly into a printed circuit board.

Note 3: Limits are guaranteed by testing or correlation.

Note 4: For single supply operation, the following conditions apply:  $V^+ = 5V$ ,  $V^- = 0V$ ,  $V_{CM} = 2.5V$ ,  $V_{OUT} = 2.5V$ . Pin 1 & Pin 8 (Vos Adjust) are each connected to Pin 4 ( $V^-$ ) to realize maximum output swing. This connection will degrade  $V_{OS}$ ,  $V_{OS}$  Drift, and Input Voltage Noise.

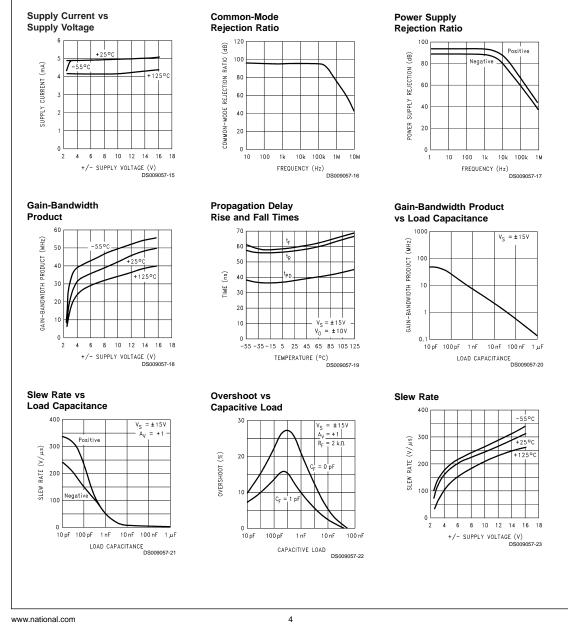
Note 5:  $C_L \le 5 \text{ pF.}$ 

Note 6: In order to achieve optimum AC performance, the input stage was designed without protective clamps. Exceeding the maximum differential input voltage results in reverse breakdown of the base-emitter junction of one of the input transistors and probable degradation of the input parameters (especially Vos, Ios, and Noise).

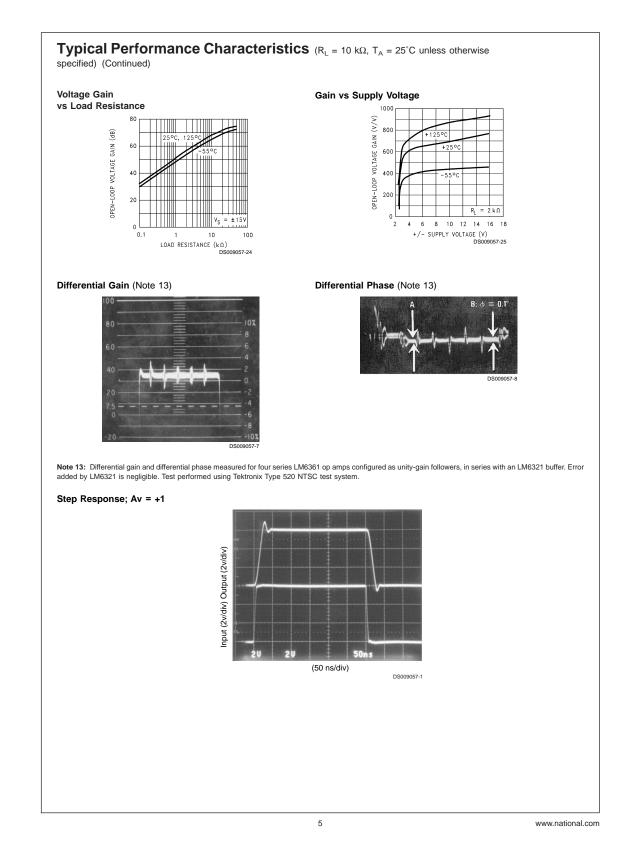
# AC Electrical Characteristics (Continued)

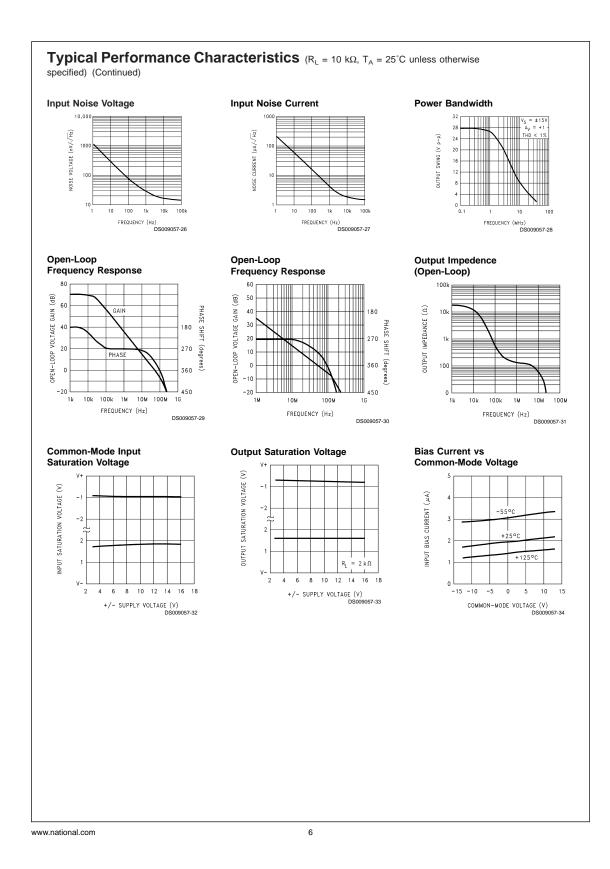
Note 7: The average voltage that the weakest pin combinations (those involving Pin 2 or Pin 3) can withstand and still conform to the datasheet limits. The test circuit used consists of the human body model of 100 pF in series with 1500Ω.

Note 8:  $V_{IN}$  = 8V step. For supply = ±5V,  $V_{IN}$  = 5V step.

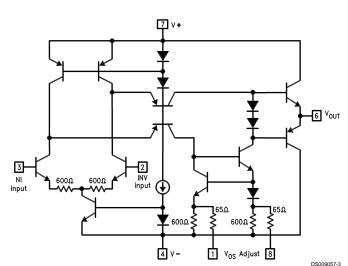

Note 9: Voltage Gain is the total output swing (20V) divided by the input signal required to produce that swing.

Note 10: The voltage between  $\mathsf{V}^{+}$  and either input pin must not exceed 36V.


Note 11: A military RETS electrical test specification is available on request. At the time of printing, the RETS6161X specs complied with all Boldface limits in this column.


Note 12: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.

# **Typical Performance Characteristics** ( $R_L = 10 \text{ k}\Omega$ , $T_A = 25^{\circ}C$ unless otherwise specified)




Downloaded from Elcodis.com electronic components distributor





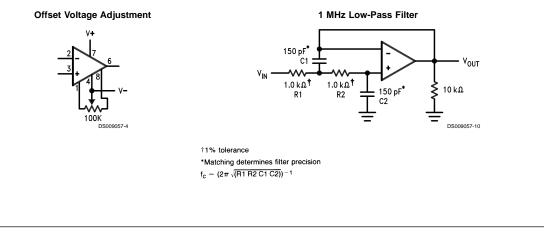
## **Simplified Schematic**



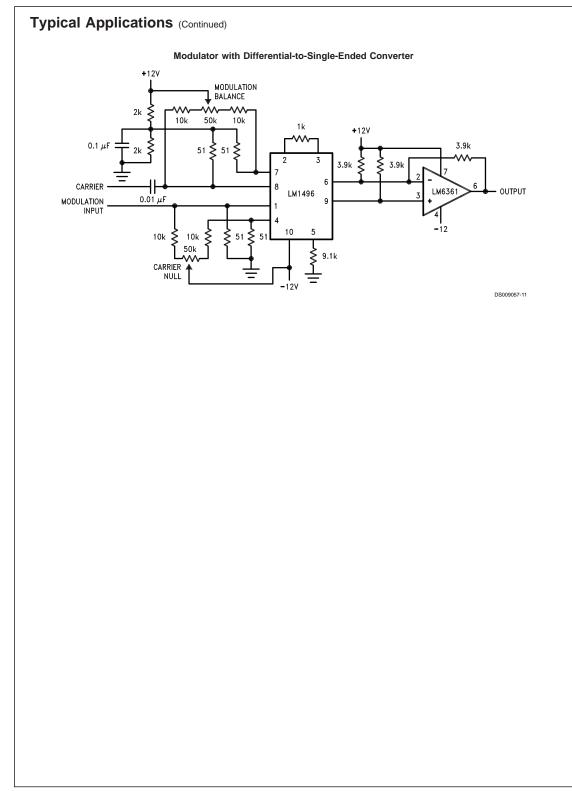
# **Applications Tips**

The LM6361 has been compensated for unity-gain operation. Since this compensation involved adding emitter-degeneration resistors to the op amp's input stage, the open-loop gain was reduced as the stability increased. Gain error due to reduced  $A_{VOL}$  is most apparent at high gains; thus, for gains between 5 and 25, the less-compensated LM6364 should be used, and the uncompensated LM6365 is appropriate for gains of 25 or more. The LM6361, LM6364, and LM6365 have the same high slew rate, regardless of their compensation.

The LM6361 is unusually tolerant of capacitive loads. Most op amps tend to oscillate when their load capacitance is greater than about 200 pF (especially in low-gain circuits). The LM6361's compensation is effectively increased with load capacitance, reducing its bandwidth and increasing its stability.

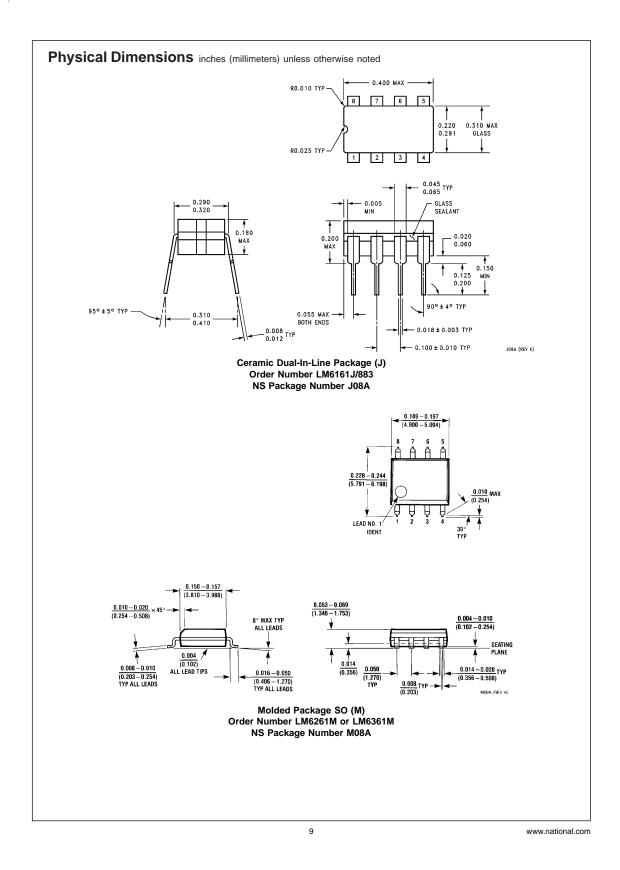

Power supply bypassing is not as critical for the LM6361 as it is for other op amps in its speed class. Bypassing will, how-

## **Typical Applications**

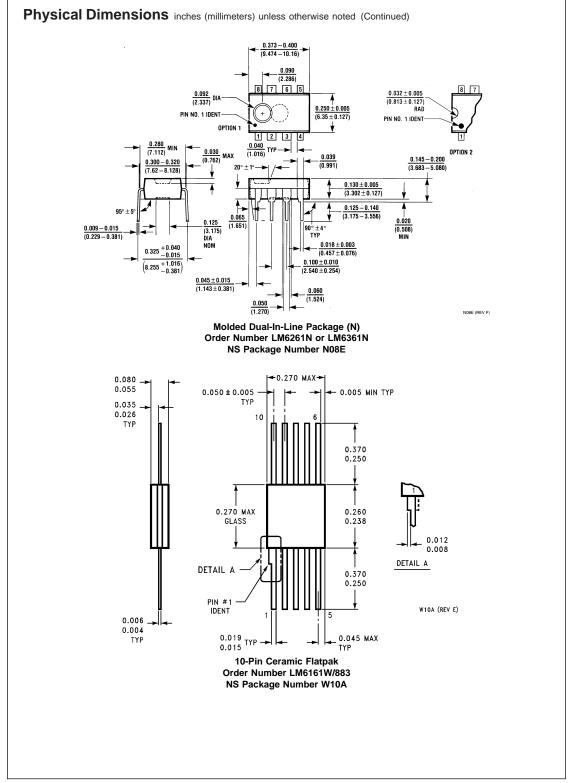

ever, improve the stability and transient response and is recommended for every design. 0.01  $\mu F$  to 0.1  $\mu F$  ceramic capacitors should be used (from each supply "rail" to ground); if the device is far away from its power supply source, an additional 2.2  $\mu F$  to 10  $\mu F$  of tantalum may provide extra noise reduction.

Keep all leads short to reduce stray capacitance and lead inductance, and make sure ground paths are low-impedance, especially where heavier currents will be flowing. Stray capacitance in the circuit layout can cause signal coupling across adjacent nodes and can cause gain to unintentionally vary with frequency.

Breadboarded circuits will work best if they are built using generic PC boards with a good ground plane. If the op amps are used with sockets, as opposed to being soldered into the circuit, the additional input capacitance may degrade circuit performance.




7




www.national.com

8



Downloaded from **Elcodis.com** electronic components distributor



|                                                                                                                                                                                                                          | Notes                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                      |                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        |                                                                                    |
|                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        |                                                                                    |
|                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        |                                                                                    |
|                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        |                                                                                    |
|                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        |                                                                                    |
|                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        |                                                                                    |
|                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        |                                                                                    |
|                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        |                                                                                    |
|                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        |                                                                                    |
|                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        |                                                                                    |
|                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        |                                                                                    |
|                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        |                                                                                    |
|                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        |                                                                                    |
|                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        |                                                                                    |
|                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        |                                                                                    |
|                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        |                                                                                    |
|                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        |                                                                                    |
| LIFE SUPPORT POLICY                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        |                                                                                    |
| DEVICES OR SYSTEMS WITH                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                | E AS CRITICAL COMPONENTS<br>N APPROVAL OF THE PRESIDE<br>N. As used herein:                                                                                                            |                                                                                    |
| <ol> <li>Life support devices or systems which, (a) are interint into the body, or (b) supp whose failure to perform accordance with instructions labeling, can be reasonably significant injury to the user.</li> </ol> | ded for surgical implant<br>ort or sustain life, and<br>when properly used in<br>for use provided in the<br>expected to result in a                                                                                                                                                                                                                                                                            | <ol> <li>A critical component is any c<br/>support device or system whos<br/>can be reasonably expected to<br/>the life support device or syst<br/>safety or effectiveness.</li> </ol> | e failure to perform cause the failure of                                          |
| National Semiconductor<br>Corporation<br>Americas<br>Tel: 1.800-272-9959<br>Fax: 1.800-737-7018<br>Email: support@nsc.com                                                                                                | National Semiconductor           Europe         Fax: +49 (0) 1 80-530 85 86           Email:         europe.support@nsc.com           Deutsch Tel: +49 (0) 1 80-530 85 85         English Tel: +49 (0) 1 80-532 78 32           Français Tel: +49 (0) 1 80-532 78 32         Français Tel: +49 (0) 1 80-532 78 36           Italiano Tel: +49 (0) 1 80-533 416 80         Fançais Tel: +49 (0) 1 80-533 416 80 | National Semiconductor<br>Asia Pacific Customer<br>Response Group<br>Tel: 65-2544466<br>Fax: 65-2504466<br>Email: sea.support@nsc.com                                                  | National Semiconductor<br>Japan Ltd.<br>Tel: 81-3-5639-7560<br>Fax: 81-3-5639-7507 |

LM6161/LM6261/LM6361 High Speed Operational Amplifier

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.