

300 krad(Si)

Dual High Speed, Low Power, Low Distortion, Voltage Feedback Amplifiers

General Description

The LM6172 is a dual high speed voltage feedback amplifier. It is unity-gain stable and provides excellent DC and AC performance. With 100MHz unity-gain bandwidth, 3000V/µs slew rate and 50mA of output current per channel, the LM6172 offers high performance in dual amplifiers; yet it only consumes 2.3mA of supply current each channel.

The LM6172 operates on ±15V power supply for systems requiring large voltage swings, such as ADSL, scanners and ultrasound equipment. It is also specified at ±5V power supply for low voltage applications such as portable video systems. The LM6172 is built with National's advanced VIP® III (Vertically Integrated PNP) complementary bipolar process.

Features

- Available with radiation guaranteed
- (Typical Unless Otherwise Noted)
- Easy to Use Voltage Feedback Topology
- High Slew Rate 3000V/µs
- Wide Unity-Gain Bandwidth 100MHz
- Low Supply Current 2.3mA / Amplifier
- High Output Current 50mA / Amplifier
- Specified for ±15V and ±5V operation

Applications

- Scanner I- to -V Converters
- ADSL/HDSL Drivers
- Multimedia Broadcast Systems
- Video Amplifiers
- NTSC, PAL® and SECAM Systems
- ADC/DAC Buffers
- Pulse Amplifiers and Peak Detectors

Ordering Information

NS Part Number	SMD Part Number	NS Package Number	Package Description
LM6172AMJ-QML	5962-9560401QPA	J08A	8LD Ceramic Dip
LM6172AMJFQML	5962F9560401QPA 300 krad(Si)	J08A	8LD Ceramic Dip
LM6172AMJFQMLV	5962F9560401VPA 300 krad(Si)	J08A	8LD Ceramic Dip
LM6172AMWG-QML	5962-9560401QXA	WG16A	10LD Ceramic SOIC
LM6172AMWGFQMLV	5962F9560401VXA 300 krad(Si)	WG16A	10LD Ceramic SOIC
LM6172 MDR		(Note 1)	Bare Die

Note 1: FOR ADDITIONAL DIE INFORMATION, PLEASE VISIT THE HI REL WEB SITE AT: www.national.com/analog/space/level_die

VIP® is a registered trademark of National Semiconductor Corporation.

PAL® is a registered trademark of and used under lisence from Advanced Micro Devices, Inc.

© 2010 National Semiconductor Corporation 201594

Connection Diagrams

Absolute Maximum Ratings (Note 2)

Supply Voltage (V+ – V-)	36V
Differential Input Voltage (Note 7)	±10V
Maximum Junction Temperature	150°C
Power Dissipation (<i>Note 3</i>), (<i>Note 4</i>)	1.03W
Output Short Circuit to Ground (<i>Note 6</i>)	Continuous
Storage Temperature Range	$-65^{\circ}C \le T_{A} \le +150^{\circ}C$
Common Mode Voltage Range	V+ +0.3V to V0.3V
Input Current	±10mA
Thermal Resistance (Note 8)	
θ_{JA}	
8LD Ceramic Dip (Still Air)	100°C/W
8LD Ceramic Dip (500LF/Min Air Flow)	46°C/W
16LD Ceramic SOIC (Still Air)	124°C/W
16LD Ceramic SOIC (500LF/Min Air Flow)	74°C/W
θ _{JC} (<i>Note 4</i>)	
8LD Ceramic Dip	2°C/W
16LD Ceramic SOIC	6°C/W
Package Weight	
8LD Ceramic Dip	980mg
16LD Ceramic SOIC	365mg
ESD Tolerance (<i>Note 5</i>)	4KV

Recommended Operating Conditions (Note 2)

Supply Voltage	$5.5V \le V_S \le 36V$
Operating Temperature Range	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$

Quality Conformance Inspection

Mil-Std-883, Method 5005 - Group A

•		
Subgroup	Description	Temp (°C)
1	Static tests at	+25
2	Static tests at	+125
3	Static tests at	-55
4	Dynamic tests at	+25
5	Dynamic tests at	+125
6	Dynamic tests at	-55
7	Functional tests at	+25
8A	Functional tests at	+125
8B	Functional tests at	-55
9	Switching tests at	+25
10	Switching tests at	+125
11	Switching tests at	-55
12	Settling time at	+25
13	Settling time at	+125
14	Settling time at	-55

LM6172 (±5V) Electrical Characteristics (Note 14)

DC Parameters

The following conditions apply, unless otherwise specified. $T_J = 25^{\circ}C$, $V^+ = +5V$, $V^- = -5V$, $V_{CM} = 0V \& R_L > 1M\Omega$

		v		0		-	
Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
V					1.0	mV	1
v _{IO} Input Oπset Voltage					3.0	mV	2, 3
1	Input Riss Current				2.5	μA	1
ΊΒ	Input Blas Current				3.5	μA	2, 3
1	Input Offect Current				1.5	μA	1
10	input Onset Current				2.2	μA	2, 3
CMPP	CMRR Common Mode Rejection Ratio	$V_{-+2} = 5V_{-}$		70		dB	1
		V _{CM} - ±2.5V		65		dB	2, 3
PSRR Power Supply Rejection Ratio	Power Supply Rejection Patio	$V_{\rm S} = \pm 15 V$ to $\pm 5 V$		75		dB	1
	Fower Supply Rejection Ratio			70		dB	2, 3
		$R_{L} = 1K\Omega \qquad \qquad (\Lambda \\ (\Lambda \\$	(<i>Note 9</i>)	70		dB	1
	Larga Signal Voltaga Gain		(<i>Note 9</i>)	65		dB	2, 3
harmondown harmonic heat heat heat heat heat heat heat heat	A _V Large Signal Voltage Gain	R _L = 100Ω (No	(<i>Note 9</i>)	65		dB	1
			(<i>Note 9</i>)	60		dB	2, 3
				3.1	-3.1	V	1
V	Output Swing	$H_{L} = 1KS2$		3.0	-3.0	V	2, 3
v o		D = 1000		2.5	-2.4	V	1
		$n_{L} = 100s_{2}$		2.4	-2.3	V	2, 3
		Sourcing D = 1000	(Note 13)	25		mA	1
	Output Current (Open Leen)	Sourcing $n_L = 100s_2$	(Note 13)	24		mA	2, 3
Ľ		Sinking P = 1000	(Note 13)		-24	mA	1
		Sinking $R_L = 100\Omega$	(Note 13)		-23	mA	2, 3
	Supply Current	Both Amplificro			6.0	mA	1
IS					7.0	mA	2, 3

DC Drift Parameters (Note 14)

The following conditions apply, unless otherwise specified. $T_J = 25^{\circ}C$, $V^+ = +5V$, $V^- = -5V$, $V_{CM} = 0V \& R_L > 1M\Omega$ Delta calculations performed on QMLV devices at group B, subgroup 5.

Symbol	Parameter	Conditions	Notes	Min	Мах	Units	Sub- groups
V _{IO}	Input Offset Voltage			-0.25	0.25	mV	1
I _{IB}	Input Bias Current			-0.50	0.50	μA	1
I _{IO}	Input Ofset Current			-0.25	0.25	μA	1

4

LM6172 (±15V) Electrical Characteristics

DC Parameters (Note 14)

The following conditions apply, unless otherwise specified. $T_J = 25^{\circ}C$, $V^+ = +15V$, $V^- = -15V$, $V_{CM} = 0V$, & $R_L = 1M\Omega$

Symbol	Parameter	Conditions	Notes	Min	Мах	Units	Sub- groups
V	Innut Offeet Vieltege				1.5	mV	1
v _{IO}	Input Offset Voltage				3.5	mV	2, 3
1	Input Pige Current				3.0	μA	1
IΒ	Input bias Current				4.0	μA	2, 3
1	Input Offect Current				2.0	μA	1
10	Input Onset Current				3.0	μA	2, 3
CMPP	CMRR Common Mode Rejection Ratio	V_{-+10V}		70		dB	1
		V _{CM} - ±10V		65		dB	2, 3
DCDD	DCDD Dewer Supply Dejection Datio	V _S = ±15V to ±5V		75		dB	1
Power Supply Rejection	rower Supply Rejection Ratio			70		dB	2, 3
		$R_{L} = 1K\Omega $ (No.	(<i>Note 9</i>)	75		dB	1
	Larga Signal Voltaga Gain		(<i>Note 9</i>)	70		dB	2, 3
nγ	Large Signal Voltage Gain	R _L = 100Ω (No.	(<i>Note 9</i>)	65		dB	1
			(<i>Note 9</i>)	60		dB	2, 3
		P = 1KO		12.5	-12.5	V	1
V	Output Swing	$H_{L} = 1K\Omega$		12	-12	V	2, 3
v 0		P - 1000		6.0	-6.0	V	1
		$n_{\rm L} = 100s_2$		5.0	-5.0	V	2, 3
		Sourcing D = 1000	(Note 13)	60		mA	1
	Output Current (Open Leen)	Sourcing $n_L = 10022$	(Note 13)	50		mA	2, 3
Ľ		Sinking D = 1000	(Note 13)		-60	mA	1
		Sinking $R_L = 100\Omega$	(Note 13)		-50	mA	2, 3
	Supply Current	Dath Amalifian			8.0	mA	1
IS	Supply Current	Both Amplitiers			9.0	mA	2.3

AC Parameters (Note 14)

The following conditions apply, unless otherwise specified. $T_J = 25^{\circ}C$, V⁺ = +15V, V⁻ = -15V, V_{CM} = 0V

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
SR	Slew Rate	$A_V = 2$, $V_I = \pm 2.5V$ 3nS Rise & Fall time	(Note 10), (Note 11)	1700		V/µS	4
GBW	Unity-Gain Bandwidth		(Note 12)	80		MHz	4

DC Drift Parameters (Note 14)

The following conditions apply, unless otherwise specified. $T_J = 25^{\circ}C$, $V^+ = +15V$, $V^- = -15V$, $V_{CM} = 0V$ Delta calculations performed on QMLV devices at group B, subgroup 5.

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
V _{IO}	Input Offset Voltage			-0.25	0.25	mV	1
I _{IB}	Input Bias Current			-0.50	0.50	μA	1
I _{IO}	Input Offset Current			-0.25	0.25	μA	1

Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{Jmax} (maximum junction temperature), θ_{JA} (package junction to ambient thermal resistance), and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is $P_{Dmax} = (T_{Jmax} - T_A)/\theta_{JA}$ or the number given in the Absolute Maximum Ratings, whichever is lower.

Note 4: The package material for these devices allows much improved heat transfer over our standard ceramic packages. In order to take full advantage of this improved heat transfer, heat sinking must be provided between the package base (directly beneath the die), and either metal traces on, or thermal vias through, the printed circuit board. Without this additional heat sinking, device power dissipation must be calculated using θ_{JA} , rather than θ_{JC} , thermal resistance. It must not be assumed that the device leads will provide substantial heat transfer out the package, since the thermal resistance of the leadframe material is very poor, relative to the material of the package base. The stated θ_{JC} thermal resistance is for the package material only, and does not account for the additional thermal resistance between the package, to calculate the total allowed power dissipation for the device.

Note 5: Human body model, $1.5 \text{ k}\Omega$ in series with 100 pF.

Note 6: Continuous short circuit operation can result in exceeding the maximum allowed junction temperature of 150°C

Note 7: Differential Input Voltage is measured at $V_S = \pm 15V$.

Note 8: All numbers apply for packages soldered directly into a PC board.

Note 9: Large signal voltage gain is the total output swing divided by the input signal required to produce that swing. For $V_S = \pm 15V$, $V_{OUT} = \pm 5V$. For $V_S = \pm 5V$, $V_{OUT} = \pm 1V$.

Note 10: See AN0009 for SR test circuit.

Note 11: Slew Rate measured between ±4V.

Note 12: See AN0009 for GBW test circuit.

Note 13: The open loop output current is guaranteed by measurement of the open loop output voltage swing using 100Ω output load.

Note 14: Pre and post irradiation limits are identical to those listed under AC and DC electrical characteristics except as listed in the Post Radiation Limits Table. These parts may be dose rate sensitive in a space environment and demonstrate enhanced low dose rate effect. Radiation end point limits for the noted parameters are guaranteed only for the conditions as specified in Mil-Std-883, Method 1019.5, Condition A.

Typical Performance Characteristics Unless otherwise noted, $T_A = 25^{\circ}C$

Input Offset Voltage vs. Temperature

Short Circuit Current vs. Temperature (Sourcing)

Supply Current vs. Temperature

Input Bias Current vs. Temperature

35

10M

Phase Margin (°)

90

60

30

0

20159421

Gain-Bandwidth Product vs. Supply Voltage at Different Temperature

Large Signal Voltage Gain vs. Load

8 9 10

5 6 7

Input Voltage (V_{P-P})

4

2 3

0 1

20159403

www.national.com

Harmonic Distortion vs. Frequency $(V_S = \pm 5V)$

Maximum Power Dissipation vs. Ambient Temperature

Application Notes

LM6172 PERFORMANCE DISCUSSION

The LM6172 is a dual high-speed, low power, voltage feedback amplifier. It is unity-gain stable and offers outstanding performance with only 2.3mA of supply current per channel. The combination of 100MHz unity-gain bandwidth, 3000V/µs LM6172 CIRCUIT OPERATION

The class AB input stage in LM6172 is fully symmetrical and has a similar slewing characteristic to the current feedback amplifiers. In the LM6172 Simplified Schematic (Page 2), Q1 through Q4 form the equivalent of the current feedback input buffer, R_E the equivalent of the feedback resistor, and stage A buffers the inverting input. The triple-buffered output stage isolates the gain stage from the load to provide low output impedance.

LM6172 SLEW RATE CHARACTERISTIC

The slew rate of LM6172 is determined by the current available to charge and discharge an internal high impedance node capacitor. This current is the differential input voltage divided by the total degeneration resistor R_E . Therefore, the slew rate is proportional to the input voltage level, and the higher slew rates are achievable in the lower gain configurations.

slew rate, 50mA per channel output current and other attractive features makes it easy to implement the LM6172 in various applications. Quiescent power of the LM6172 is 138mW operating at ±15V supply and 46mW at ±5V supply. When a very fast large signal pulse is applied to the input of an amplifier, some overshoot or undershoot occurs. By placing an external series resistor such as 1k Ω to the input of LM6172, the slew rate is reduced to help lower the overshoot, which reduces settling time.

REDUCING SETTLING TIME

The LM6172 has a very fast slew rate that causes overshoot and undershoot. To reduce settling time on LM6172, a 1k Ω resistor can be placed in series with the input signal to decrease slew rate. A feedback capacitor can also be used to reduce overshoot and undershoot. This feedback capacitor serves as a zero to increase the stability of the amplifier circuit. A 2pF feedback capacitor is recommended for initial evaluation. When the LM6172 is configured as a buffer, a feedback resistor of 1k Ω must be added in parallel to the feedback capacitor. Another possible source of overshoot and undershoot comes from capacitive load at the output. Please see the section "Driving Capacitive Loads" for more detail.

DRIVING CAPACITIVE LOADS

Amplifiers driving capacitive loads can oscillate or have ringing at the output. To eliminate oscillation or reduce ringing, an isolation resistor can be placed as shown in *Figure 1*. The combination of the isolation resistor and the load capacitor forms a pole to increase stability by adding more phase margin to the overall system. The desired performance depends upon the value of the isolation resistor; the bigger the isolation resistor, the more damped (slow) the pulse response becomes. For LM6172, a 50 Ω isolation resistor is recommended for initial evaluation.

FIGURE 2. The LM6172 Driving a 510pF Load with a 30Ω Isolation Resistor

LAYOUT CONSIDERATION

Printed Circuit Boards And High Speed Op Amps

There are many things to consider when designing PC boards for high speed op amps. Without proper caution, it is very easy to have excessive ringing, oscillation and other degraded AC performance in high speed circuits. As a rule, the signal traces should be short and wide to provide low inductance and low impedance paths. Any unused board space needs to be grounded to reduce stray signal pickup. Critical components should also be grounded at a common point to eliminate voltage drop. Sockets add capacitance to the board and can affect frequency performance. It is better to solder the amplifier directly into the PC board without using any socket.

Using Probes

Active (FET) probes are ideal for taking high frequency measurements because they have wide bandwidth, high input impedance and low input capacitance. However, the probe ground leads provide a long ground loop that will produce errors in measurement. Instead, the probes can be grounded directly by removing the ground leads and probe jackets and using scope probe jacks.

Components Selection And Feedback Resistor

It is important in high speed applications to keep all component leads short because wires are inductive at high frequency. For discrete components, choose carbon compositiontype resistors and mica-type capacitors. Surface mount components are preferred over discrete components for minimum inductive effect.

Large values of feedback resistors can couple with parasitic capacitance and cause undesirable effects such as ringing or oscillation in high speed amplifiers. For LM6172, a feedback resistor less than $1k\Omega$ gives optimal performance.

COMPENSATION FOR INPUT CAPACITANCE

The combination of an amplifier's input capacitance with the gain setting resistors adds a pole that can cause peaking or oscillation. To solve this problem, a feedback capacitor with a value

$$C_F > (R_G \times C_{IN})/R_F$$

can be used to cancel that pole. For LM6172, a feedback capacitor of 2pF is recommended. *Figure 4* illustrates the compensation circuit.

POWER SUPPLY BYPASSING

Bypassing the power supply is necessary to maintain low power supply impedance across frequency. Both positive and negative power supplies should be bypassed individually by

FIGURE 5. Power Supply Bypassing

20159447

placing 0.01µF ceramic capacitors directly to power supply

pins and 2.2µF tantalum capacitors close to the power supply

TERMINATION

pins.

In high frequency applications, reflections occur if signals are not properly terminated. *Figure 6* shows a properly terminated signal while *Figure 7* shows an improperly terminated signal.

20159453

FIGURE 6. Properly Terminated Signal

FIGURE 7. Improperly Terminated Signal

To minimize reflection, coaxial cable with matching characteristic impedance to the signal source should be used. The other end of the cable should be terminated with the same value terminator or resistor. For the commonly used cables, RG59 has 75 Ω characteristic impedance, and RG58 has 50 Ω characteristic impedance.

POWER DISSIPATION

The maximum power allowed to dissipate in a device is defined as:

$$P_{\rm D} = (T_{\rm J(max)} - T_{\rm A})/\theta_{\rm J}$$

Where \mathbf{P}_{D} is the power dissipation in a device

T_{J(max)} is the maximum junction temperature

T_A is the ambient temperature

 θ_{JA} is the thermal resistance of a particular package

For example, for the LM6172 in a SO-16 package, the maximum power dissipation at 25° C ambient temperature is 1000mW.

Thermal resistance, θ_{JA} , depends on parameters such as die size, package size and package material. The smaller the die size and package, the higher θ_{JA} becomes. The 8-pin DIP package has a lower thermal resistance (95°C/W) than that of 8-pin SO (160°C/W). Therefore, for higher dissipation capability, use an 8-pin DIP package.

The total power dissipated in a device can be calculated as:

$$P_D = P_Q + P_l$$

 $\rm P_Q$ is the quiescent power dissipated in a device with no load connected at the output. $\rm P_L$ is the power dissipated in the device with a load connected at the output; it is not the power dissipated by the load.

Furthermore,

P_Q: = supply current x total supply voltage with no load

P_L: = output current x (voltage difference between supply voltage and output voltage of the same supply)

For example, the total power dissipated by the LM6172 with V_S = ±15V and both channels swinging output voltage of 10V into 1k Ω is

$$P_D$$
: = $P_Q + P_L$

= 2[(2.3mA)(30V)] + 2[(10mA)(15V - 10V)]

- : = 138mW + 100mW
- : = 238mW

LM6172QML **Application Circuits** I- to -V Converters 1k I_{OUT} from DAC **Differential Line Driver** 1 kΩ Video o ₹75Ω ____ 1 kΩ 1 kΩ

www.national.com

V_{OUT}

20159448

Coaxial Cable

Coaxial Cable

20159449

37Ω

37Ω

Released	Revision	Section	Changes
12/08/2010	A	New Release, Corporate format	1 MDS data sheet converted into one Corp. data sheet format. MNLM6172AM-X-RH Rev 0A0 will be archived.

Notes

LM6172QML

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

Pro	oducts	Design Support			
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench		
Audio	www.national.com/audio	App Notes	www.national.com/appnotes		
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns		
Data Converters	www.national.com/adc	Samples	www.national.com/samples		
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards		
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging		
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green		
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts		
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality		
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback		
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy		
PowerWise® Solutions	www.national.com/powerwise	Applications & Markets	www.national.com/solutions		
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero		
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic		
PLL/VCO	www.national.com/wireless	PowerWise® Design University	www.national.com/training		

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2010 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959

National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com