NCP5372

Specification Document

Revision 0.3 Mar 19th, 2008

Indy Ho ON Semiconductor

Abstract

This document contains the technical specifications for an IMVP-6.5 compliant power controller.

ON Semiconductor CONFIDENTIAL Copyright 2008

This document and information contained in it is CONFIDENTIAL INFORMATION of ON Semiconductor, and shall not be used, published, disclosed, or disseminated outside of ON Semiconductor in whole or in part without ON Semiconductor's consent. This document contains trade secrets of ON Semiconductor. Reverse engineering of any or all of the information in this document is prohibited. This copyright notice does not imply publication of this document.

Revision History

Rev	Description	Date
0.0	Initial specification	6/21/2007
0.1	 Detailed block diagram: changed IMON gain from 2 to 4 (follow Paul's suggestion). Electrical table, a. IMON section: 	7/25/2007
0.2	 1. VDROOP AMPLIFIER section in Electrical table, a. Added Input Offset Voltage parameters: -1.5mV min, +1.5mV max b. Deleted CS1 to Voltage of DRPGain. c. Deleted CD2 to Voltage of DRPGain. 2. Added a new CSSUM AMPLIFIER section in Electrical table with the following parameter: a. Current Sense Input to CSSUM Gain: -6.06V/V min, -6.0V/V typ, -5.94V/V max b. 3dB Bandwidth: 20MHz typ c. Slew Rate: ± 2.0 V/µs typ d. CSSUM Output Offset Voltage: -6mV min, 6mV max e. Maximum CSSUM Output Voltage: 0.3V max g. Source Current: 1.0mA min h. Sink Current: 4.0mA min i. CS Amp Common Mode Input Voltage Range: -0.3V min, 2.0V max j. CS Amp Common Mode Input Voltage Range: -120V min, 120mV max 3. IMON section in Electrical table, a. Added Input Offset Voltage parameters: -1.5mV min, 1.5mV max b. Added "reference to VS-" condition below the IMON Output Voltage. c. Added VIMONMIN parameter: 50mV max d. Added Maximum Clamp Voltage parameters: 1.15V max e. Changed IMON Amp. Gain parameters from 3.98V/V min & 4.02V/V max to 3.96V/V min & 4.04V/V max. f. Added -3dB Bandwidth: 20MHz typ g. Added Slew Rate: ± 0.5 V/µs typ 4. PWRGD and PROTECTION MONITOR section in Electrical table, Remove the "Note" to the test condition of the Tpwrdown1. 5. CLK_EN# section in Electrical table, a. Added a 'Note" to the test condition of Delay from Vboot to indicate guaranteed by design. b. Changed Delay from Vboot parameters from 20ns min and 100ns max to 70ns typ. 6. Changed wording "0V Shutdown" to "Shutdown" in the State Diagram. 	8/30/2007
0.3	 CSSUM AMPLIFIER section in Electrical Characteristics table, Sink Current spec is changed from 4.0mA min to 1.0mA min with test condition changed from VCSSUM = 0.3V to VCSSUM = 1.2V. Remote Sense Amplifier section in Electrical Characteristics table, Due to no test mode for measuring the parameters of the Remote Sense Amplifier, a "(Note)" is added to the test condition of the following items to denote guaranteed by design: Max Output Voltage Swing, Min Output Voltage Swing, Input Signal Range, -3dB Bandwidth, Source Current, Sink Current. 	3/19/2008

Distribution

Group Function	Name(s)
Design Engineering	Bernard Fung / Toby Kan
Applications Engineering	Indy Ho
Test Engineering	Lhon Leano / Ren Lucena
New Product Development Engineering	John Lau
Quality and Reliability Engineering	Nicky Siu
Marketing	David Chu / Rebecca Chen
Project Management	Daniel Ng

ON Semiconductor®

NCP5372

Product Specification High Efficiency Two-Phase Step-Down Power Controller for IMVP-6.5 Mobile CPU Core Power Supplies

Description

This controller is specifically designed to support the INTEL notebook RS – IMVP-6.5 Mobile Processor power delivery requirements. The current mode variable frequency architecture provides ultra fast dynamic response with virtually no overshoot for dynamic loads and dynamic VID changes. The feed-forward on time control virtually eliminates the effects of input voltage variations. The gate drivers are optimized to drive large Qg low-side trench devices for maximum overall system efficiency.

Features

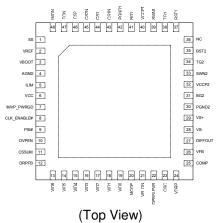
- Automatic Variable Frequency Operation for Light Load Power Savings
- 2-Phase Control
- 7-bit VID Input
- Differential Remote Die Voltage Sensing
- Active Voltage Positioning
- Differential Lossless Inductor current sensing
- Programmable Switching Frequency
- Under-Voltage Lockout
- Output Overvoltage Protection
- Output Undervoltage Protection
- Overcurrent Protection
- Programmable Soft-Start
- Power Good Indication
- Current Monitor Output with Adjustable Gain
- Drives Large Synchronous-Rectifier FETs
- Thermal Shutdown Protection

Application

- IMVP6.5 CPU Core Supply
- Notebook/Desktop Computers

Rev0.3

Voltage-Positioned Step-Down Converters


ON Semiconductor

http://onsemi.com

PIN CONNECTIONS

ORDERING INFORMATION

Device	Package	Shipping
NCP5372MNR2G	QFN-48 7x7 (Pb-Free)	3000 Tape & Reel
		1.01 1

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

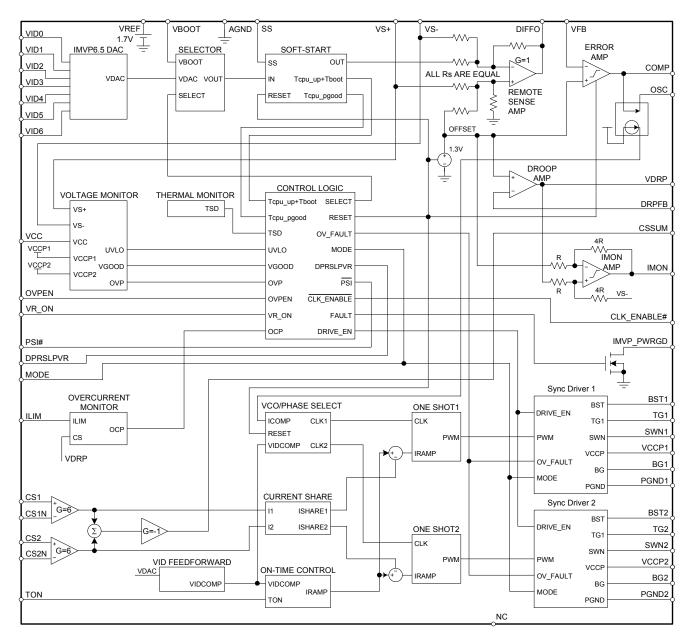
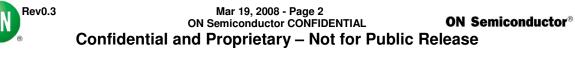
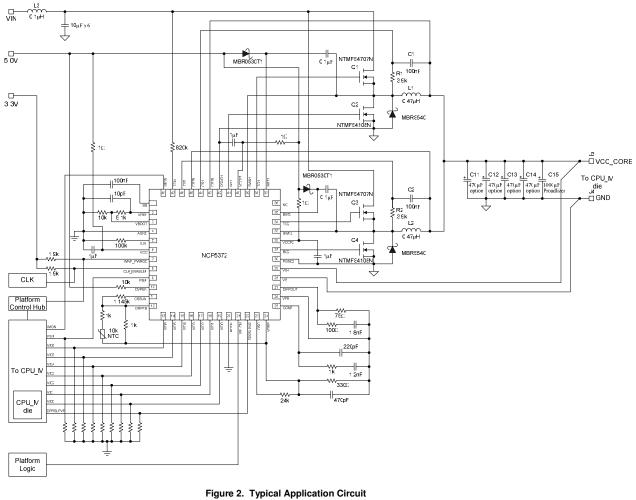





Figure 1. Detailed Block Diagram

ABSOLUTE MAXIMUM RATINGS

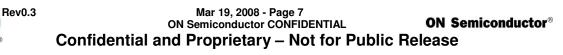
Rating	Symbol	Value	Unit
VCC to PGND	V _{CC}	-0.3, 7.0	V
VCCP1, VCCP2 to PGND	V _{CCP}	-0.3, 7.0	V
TON to AGND	V _{TON}	-0.3, 30	V
BST1 to SWN1, BST2 to SWN2	V_{BST} - V_{SWN}	-0.3, 7.0	V
SWN1, SWN2 to PGND	V_{SWN}	-5.0(<100ns), -0.3(DC), 30	V
TG1 to SWN1, TG2 to SWN2	V_{TG} - V_{SWN}	-4.0(<100ns), -0.3(DC), 7.0	V
BG1 to PGND1, BG2 to PGND2	V_{BG}	-2.0(<100ns), -0.3(DC), 7.0	V
VS+, VS- to PGND	Vs	-0.3, 7.0	V
CS1, CS1N, CS2, CS2N to PGND	V _{cs}	-0.3, 7.0	V
VID0-VID6, MODE, VR_ON to PGND	V _{VID}	-0.3, 7.0	V
SS, IMVP_PWRGD, CLK_ENABLE#, IMON, DPRSLPVR, PSI#, OVPEN, OSC, VDRP, DRPFB, CSSUM, DIFFO, VFB, COMP to PGND	V _{IO}	-0.3, 7.0	V
PGND1, PGND2 to AGND	V_{GND}	-0.3, 0.3	V
VREF to PGND	V _{REF}	-0.3, 7.0	V
VBOOT to PGND	V _{BOOT}	-0.3, 7.0	V
ILIM to PGND	V _{ILIM}	-0.3, 7.0	V
THERMAL CHARACTERISTICS QFN-32 Thermal Resistance Junction-to-Ambient (Note 3)	R _{θJA}	35	°C/W
Operating Junction Temperature Range	ТJ	0 to + 150	°C
Operating Ambient Temperature Range	ТА	-40 to + 85	°C
Storage Temperature Range	T _{stg}	- 65 to +150	°C
Lead Temperature, Reflow (Soldering 10s)	-	260 Peak	°C
Moisture Sensitivity Level	MSL	1	-

 $\begin{array}{ll} \mbox{1.} & \mbox{This device series incorporates ESD protection and exceeds the following ratings:} \\ & \mbox{Human Body Model (HBM)} \leq 2.0 \ \mbox{kV per JEDEC standard: JESD22-A114.} \\ & \mbox{Machine Model (MM)} \leq 200 \ \mbox{V per JEDEC standard: JESD22-A115.} \\ \end{array}$

2. Latch–up Current Maximum Rating: ≤ 150 mA per JEDEC standard: JESD78.

3. R_{θJA} is measured in free air by mounting the device on a high effective thermal conductivity test board with direct thermal attachment mechanisms.

PIN DESCRIPTIONS


Pin No.	Symbol	Description
1	SS	Soft Start control pin with 40uA (typical) current pulling out
2	VREF	1.7V Reference for VBOOT
3	VBOOT	Boot Voltage Input
4	AGND	Analog ground connection and remote ground sense
5	ILIM	Current limit adjustment pin (pull to VCC to disable ILIM)
6	VCC	Power for the analog and control sections of the IC
7	IMVP_PWRGD	IMVP6.5 Power good signal open-drain output
8	CLK_ENABLE#	Clock Enable Signal open-drain output
9	PSI#	Power Status Indicator II low load input from CPU
10	OVPEN	Over Voltage Protection enable pin
11	CSSUM	Current sense summation output
12	DRPFB	Droop amplifier non-inverting input
13	VID6	DAC BIT
14	VID5	DAC BIT
15	VID4	DAC BIT
16	VID3	DAC BIT
17	VID2	DAC BIT
18	VID1	DAC BIT
19	VID0	DAC BIT
20	MODE	Mode selection pin. Pulls High to enable negative current detection and select Auto Power-saving, and pulls Low to allow DPRSLPVR and PSI# to control for power-saving.
21	VR_ON	Logic Input that enables, disables, and resets the controller
22	DPRSLPVR	Deeper Sleep Mode control signal input
23	OSC	Voltage control oscillator (VCO) gain control pin
24	VDRP	Total inductor current signal output for droop compensation
25	COMP	Error amplifier output for feedback compensation
26	VFB	Error amplifier inverting input for feedback compensation
27	DIFFOUT	Differential amplifier output
28	VS-	Output voltage remote ground sense
29	VS+	Output voltage remote sense
30	PGND2	Ground return for the high current in phase 2
31	BG2	Phase 2 bottom gate drive output
32	VCCP2	Phase 2 bottom gate driver power input
33	SWN2	Phase 2 top gate floating switch node return

ON Rev0.3

34	TG2	Phase 2 top gate drive output
35	BST2	Phase 2 top gate driver power input
36	NC	No connection
37	BST1	Phase 1 top gate driver power input
38	TG1	Phase 1 top gate drive output
39	SWN1	Phase 1 top gate floating switch node return
40	VCCP1	Phase 1 bottom gate driver power input
41	BG1	Phase 1 bottom gate drive output
42	PGND1	Ground return for the high current in phase 1
43	CS1N	Negative differential current sense pin for phase 1
44	CS1	Positive differential current sense pin for phase 1
45	CS2N	Negative differential current sense pin for phase 2
46	CS2	Positive differential current sense pin for phase 2
47	TON	On time control pin (Provides VIN Feed Forward and Frequency Control)
48	IMON	Current Monitor output

Characteristic	Symbol	Test Conditions	Min	Тур	Мах	Unit
CONTROLLER	•			•		-
Input Voltage Range	VBAT	Battery Voltage (Feedforward Voltage from VBAT to TON connected by a 1M Ω Resistor)	7	12	28	V
	VCC, VCCP1, VCCP2	-	4.5	5.0	5.5	V
DC Output Voltage Accuracy	V(VS+, VS-)	VID codes for 1.5V to 0.7625V, 52A Maximum Load	-	-	± 1.5	%
		VID codes for 0.75V to 0.5V, 52A Maximum Load	-	-	± 11.5	mV
		VID codes for 0.4875V to 0.3V, 3.0A Maximum Load	-	-	± 25	mV
VCC POWER SUPPLY						
Supply Current, Normal Operating	Ivcc	Fsw = 400kHz	-	10	20	mA
Supply Current, Shutdown	I _{VCC_SD}	-	-	10	40	μA
VCCP1 POWER SUPPLY						
Supply Current, Normal Operating	I _{VCCP1}	Fsw = 400kHz (3.3nF capacitor in BG)	-	10	-	mA
Supply Current, Shutdown	IVCCP1_SD	-	-	10	20	μA
VCCP2 POWER SUPPLY						
Supply Current, Normal Operating	I _{VCCP2}	Fsw = 400kHz (3.3nF capacitor in BG)	-	10	-	mA
Supply Current, Shutdown	I _{VCCP2_SD}	-	-	10	20	μA
BST1 POWER SUPPLY						
Supply Current, Shutdown	I _{BST1_SD}	-	-	10	20	μA
BST2 POWER SUPPLY						
Supply Current, Shutdown	I _{BST2_SD}	-	-	10	20	μA
THERMAL SHUTDOWN						
Over Temperature Trip Point	TSD	-	-	150	-	°C
Hysteresis	TSD _{hys}	-	-	30	-	°C
Under-Voltage Lockout	·	·				•
V _{cc} Start Threshold	VCC _{th}	-	4.05	4.25	4.48	V
Hysteresis	VCC _{hys}	-	-	275	-	mV
V _{CCP} Start Threshold	VCCP _{th}	-	4.05	4.25	4.48	V
Hysteresis	VCCP _{hys}	-	-	275	-	mV
VDAC OUTPUT		•		•		
Slew Rate	SRvs	-	8.75	-	-	mV/μs
SOFT-START		•		•		
SS Soft-start Current	Iss	-	32	40	48	μA
VREF	ł					
Output Voltage	VREF	-	-	1.7V	-	V
Tolerance	VREFtol	No load	-	-	±1.0	%
Source Current	IREFout	-	100	-	-	μA

* Note: Guaranteed by design

UN

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
NEGATIVE CURRENT DETECTION		•	1	•		
Trip Threshold (SWN to GND)	NCUR _{th}	-	-	-1	-	mV
Blanking Delay	NCUR _{BDly}	-	-	100	-	ns
HIGH SIDE DRIVE	-	•	1	1		
Non-Overlap Time, TG Going High	tpdh _{TG}	BG 90% to TG 10%	-	40	-	ns
Output Resistance (Sourcing)	RHS _{source}	Force 5.0V-0.4V to TG	-	1.0	4.0	Ω
Output Resistance (Sinking)	RHS _{sink}	Force 0.4V to TG	-	1.0	4.0	Ω
Upper Gate Drive Pull Down Resistor	RHS _{PD}	Force 0.4V to TG	-	60k	-	Ω
LOW SIDE DRIVE						
Non-Overlap time, LG Going High	tpdh _{LG}	TG 90% to BG 10%	-	25	-	ns
Output Resistance (Sourcing)	RLS _{source}	Force 5.0V-0.4V to BG	-	1	4	Ω
Output Resistance (Sinking)	RLS _{sink}	Force 0.4V to BG	-	0.4	2	Ω
Lower Gate Drive Pull Down Resistor	RLSPD	Force 0.4V to BG	-	60 k	-	Ω
ERROR AMPLIFIER					•	
Input Offset Voltage	VOS _{EA}	(Note)	-1.5	-	1.5	mV
Output Voltage Swing	VOSwing _{EA}	-	1.0	-	3.0	V
Gain-Bandwidth Product	GBW _{EA}	Load = 100pF to GND	-	15	-	MHz
Phase Margin	PM _{EA}	Unity Gain with 100pF Load	-	40	-	deg
Gain	Gain _{EA(open)}	RL=10k Ω to GND, inputs at 1.0V	-	81	-	dB
Slew Rate	SR _{EA}	Capacitive Load of 100pF, ± 100mV Steps	-	±2.0	-	V/µs
Source Current	Isource _{EA}	COMP = 3.0V,	2.0	4.0	-	mA
Sink Current	Isink _{EA}	COMP = 3.0V,	2.0	4.0	-	mA
REMOTE SENSE AMPLIFIER						
Input Offset Voltage	VOS _{RSA}	(Note)	-1.5	-	1.5	mV
V(VS+, VS-) to DIFFOUT Gain	Gain _{RSA}	-	0.99	1	1.01	V/V
Max Output Voltage Swing	VOSwingmax _{RSA}	VS+ = 3V, Max RSA voltage, (Note)	3.0	-	-	V
Min Output Voltage Swing	VOSwingmin _{RSA}	VS+ = 0.1V, Min RSA voltage, (Note)	-	-	0.4	V
VS+ and VS- Input Signal Range	VIN _{RSA}	(Note)	0.1	-	3.0	V
-3dB Bandwidth	BW _{RSA}	(Note)	-	20	-	MHz
Source Current	Isource _{RSA}	(Note)	3.0	5.0	-	mA
Sink Current	Isink _{RSA}	(Note)	1.0	1.5	-	mA

Characteristic	Symbol	Test Conditions/ Notes	Min	Тур	Мах	Unit
VDROOP AMPLIFIER		•				
Input Offset Voltage	VOS _{DRP}	(Note)	-1.5	-	1.5	mV
Max Output Voltage Swing	VOmax _{Drp}	(Note)	3.0	-	-	V
Min Output Voltage Swing	VOmin _{Drp}	(Note)	-	-	1.0	V
Gain-Bandwidth Product	GBW _{Drp}	Load = 100pF to GND	-	15	-	MHz
Phase Margin	PM _{Drp}	Unity Gain	-	40	-	deg
Gain	Gain _{Drp(open)}	RL=10kΩ to GND	-	81	-	dB
Slew Rate	SR _{Drp}	Capacitive Load of 100pF, ± 100mV Steps	-	±2.0	-	V/µs
Source Current	Isource _{Drp}	$V_{RDOOP} = 3.0V, 0.2V$ of overdrive	1.0	4.0	-	mA
Sink Current	Isink _{Drp}	$V_{RDOOP} = 1.2V, 0.2V$ of overdrive	1.0	4.0	-	mA
CSSUM AMPLIFIER						
Current Sense Input to CSSUM Gain	Gain _{CSxCSSUM}	$0V < CSx-CSxN \le 0.1V$	-6.06	-6.0	-5.94	V/V
-3dB Bandwidth	BW _{CSSUM}	(Note)	-	20	-	MHz
Slew Rate	SRCSSUM	(Note)	-	±2.0	-	V/µs
CSSUM Output Offset Voltage	VOS _{CSSUM}	(Note)	-6.0	-	6.0	mV
Maximum CSSUM Output Voltage	V _{MAXCSSUM}		3.0	-	-	V
Minimum CSSUM Output Voltage	V _{MINCSSUM}		-	-	0.3	V
Source Current	Isource _{CSSUM}	VCSSUM = 3.0V	1.0	-	-	mA
Sink Current	Isink CSSUM	VCSSUM = 1.2V	1.0	-	-	mA
Current Sense Amplifiers Common Mode Input Voltage Range	VIN _{CSCM}		-0.3	-	2.0	V
Current Sense Amplifiers Differential Mode Input Voltage Range	VIN _{CSDM}		-120	-	120	mV
OSCILLATOR			1	1	r	1
Minimum Operating Frequency	Fosc _{min}	-	-	0	-	Hz
Maximum Operating Frequency	Foscmax	Each phase, ROSC = $30k\Omega$, V _{COMP} - V _{OSC} = $3.0V$	-	3.0	-	MHz
OSC Current to Frequency Gain	VCO _{Gain}	-	-	25	-	MHz/mA
ONE SHOT						
Minimum On Time Allowed	TONmin	(Note)	-	-	100	ns
Phase to Phase On Time Matching	Ph _{match}	CSx-CSxN = 0	-10	-	10	%
TON						
On Time for Each Phase	TON	RTON = 2.0M, VBAT = 12V, CSx-CSxN = 0	-	850	-	ns
		RTON = 1.0M, VBAT = 12V, CSx-CSxN = 0	400	500	600	ns
		RTON = 500k, VBAT = 12V, CSx-CSxN = 0	-	290	-	ns
Input Bias Current When Disabled	ITON _{SD}	VTON = 18V	-	-	10	μA

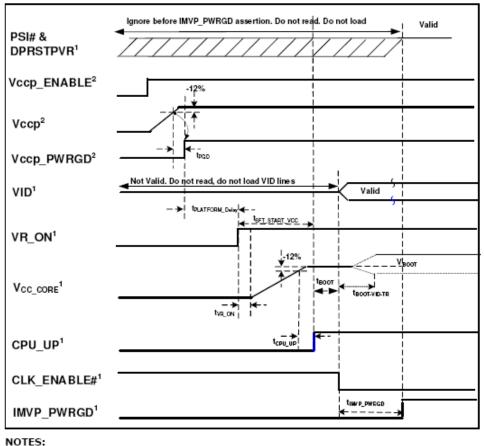
Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
IMON					•	•
Input Offset Voltage	VOSIMON	(Note)	-1.5	-	1.5	mV
IMON Output Voltage (reference to VS-)	VIMONMAX	100% ^I MAX, VCSSUM = 52mV , Gaindrp = 0.8, GainIMON = 4,	900	1000	1100	mV
, ,	VIMON50%MAX	^{50% I} MAX, VCSSUM = 26mV , Gaindrp = 0.8, GainIMON = 4	450	530	610	mV
	VIMON25%MAX	25% IMAX, VCSSUM = 13mV , Gaindrp = 0.8, GainIMON = 4	225	320	415	mV
	VIMONMIN	0% IMAX, VCSSUM = 0mV, Gaindrp = 0.8, GainIMON = 4	0	-	50	mV
Maximum Clamp Voltage	V _{MAXCLAMP}	VIMON – VS-	-	-	1.15	V
IMON Amplifier Gain	Gain _{IMON}		3.96	4.0	4.04	V/V
-3dB Bandwidth	BWIMON	(Note)	-	20	-	MHz
Slew Rate	SRIMON	(Note)	-	±0.5	-	V/µs
Source Current	Isource _{IMON}	VIMON = 1.0V	-	500	-	μA
Sink Current	lsink _{IMON}	VIMON = 0.3V	-	500	-	μA
PWRGD and PROTECTION MONITOR		· · · · · ·				
Delay from CLK_ENABLE#	TDIyCK _{PWRGD}	-	3.0	-	10	ms
Delay between VR_ON de-assertion and PWRGD deassertion	T _{PWRDOWN1}	-	-	-	100	ns
Delay between PWRGD de-assertion and VR output rail ramping down	T _{PWRDOWN2}	(Note)	-	-	100	ns
Logic Low	PWRGDL	500 Ω pull-up to 3.3V	-	-	0.3	V
OFF State Leakage Current		-	-	-	100	μA
Power Good Tolerance Positive Side	PWRGDTP	V(VS+,VS-) Rising Relative to VDAC for > 1ms	160	200	240	mV
Power Good Tolerance negative side	PWRGDTN	V(VS+,VS-) Falling Relative to VDAC for > 1ms	-360	-300	-240	mV
Power Not Good Indicate Blanking Time	TPWRNGD	From V(VS+,VS-) out of regulation window to PWRGD de-assertion	-	200	-	μs
Severe Output Overvoltage Threshold	SOVPth+	OVPEN = High, V(VS+,VS-) Relative to SOVPth+ for > 2μ s	1.535	1.550	1.565	V
	SOVPth-	OVPEN = High, V(VS+,VS-) Relative to SOVPth-	-	0.3	-	V
CURRENT LIMIT		· · · · · · · · · · · · · · · · · · ·		T		1
ILIM Bias Current	ILIM bias	-	9.0	10	11	μA
				1	1	1

ILIM Bias Current	ILIM _{bias}	-	9.0	10	11	μA
ILIM Threshold Accuracy,	Vth _{ILIM}	V(CSx, CSxN) = 25mV,	-	0	-	mV
V(CS1, CS1N) + V(CS2, CS2N) - VLIM		$Vth_{ILIM} = V_{LIM} - 25mV^*6$				
Current Limit Range	Range _{ILIM}	(Note)	0.3	-	2.0	V

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
VR_ON INPUT		•				
Logic High Threshold	VRON _H	-	600	-	-	mV
Logic Low Threshold	VRONL	-	-	-	400	mV
VR_ON Leakage Current	IRONL	-	-1.0	-	1.0	μA
CLK_ENABLE#	·			•	•	
Delay from Vboot	Tcpu_up + Tboot	(Note)	-	70	-	μS
Logic Low	CKENBL	1.9 k Ω pull-up to 3.3V	-	-	0.8	V
OFF State Leakage Current	IOFFL _{CKENB}	-	-	-	10	μA
VID INPUTS	·			•	•	
De Bounce / De Skew Time	TDeSkew _{VID}	(Note)	100	-	-	ns
Logic High Threshold	VH _{VID}	-	650	-	-	mV
Logic Low Threshold	VL _{VID}	-	-	-	350	mV
Input Leakage Current	ILEA _{VID}	VID0, VID1, VID2, VID3, VID4, VID5, VID6	-	-	10	μA
DPRSLPVR, PSI#, MODE INPUTS	; ;			•	•	
Logic High Threshold	VH _{Logic}	-	650	-	-	mV
Logic Low Threshold	VL _{Logic}	-	-	-	350	mV
Input Leakage Current		DPRSLPVR, PSI#, MODE, OVPEN	-	-	10	μA
OVPEN INPUTS		·				
Logic High Threshold	VH _{Logic}	-	650	-	-	mV
Logic Low Threshold	VL _{Logic}	-	-	-	350	mV
Input Leakage Current		OVPEN	-	-	10	μA

OPERATING DESCRIPTION General

The NCP5372 is a 2 phase PWM controller specifically designed to address the requirements of Intel IMVP6.5 specification. The variable frequency architecture is designed to provide high efficiency under light load conditions, excellent input rejection, fast dynamic VID response, and rapid recovery from transient load conditions.

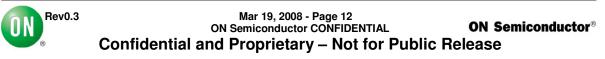

Under Voltage Lock Out

The device input supply voltages VCC, VCCP1 and VCCP2 are monitored by UVLO circuits. The controller is in UVLO mode when either one of its supply voltages has not ramped up above the upper threshold or has dropped below the lower threshold. When a UVLO occurs, the UVLO fault is set and the controller is disabled. The controller can be reset by cycling the VCC, VCCP1, and VCCP2.

Soft Start

During soft start, the output voltage must ramp up linearly in a slowly controlled manner to Vboot voltage. The Vboot voltage for IMVP6.5 is 1.1V. The SS pin will be loaded with a 0.1uF capacitor. The capacitor would be ensured discharge before charging. A 40uA bias current is applied to the SS pin to create the soft start ramp signal. The DAC voltage will be limited by the rising soft start voltage which creates a ramped reference for the controller to follow up in a controlled manner.

After the soft start operation, the capacitor will be discharged.



1. IMVP-6.5 compliant controller feature

Shown for reference only

2

VID Inputs

Once the output almost achieves Vboot, a 75uS (+/- 30uS) timer will be initialized and the VID code will not be valid until the CLK_ENABLE# pulled low when the timer expires. After the timer expires, the new DAC voltage will be applied to the controller to follow but the change will NOT be limited by the soft start ramp any more.

However, when the reference is switched from 0V to a DAC voltage, the soft start ramp control will be applied in order to limit the transient input current consumption from VBAT.

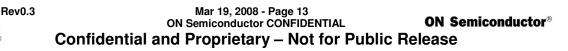
VID SELECTOR

The VID at startup will be externally programmed by a resistor divider from Vref. When Vcc_core almost reaches Vboot, the external VID code is selected and applied to controller after the timing of Tcpu+Tboot. See Soft Start Timing shown in figure 3.

OUTPUT TOLERANCE ANALYSIS

The DAC Tolerance minimum requirement was back calculated from the overall system regulation requirements. **The DAC regulation requirement is measured across VS+ and VS- pins.**

Requirements


-2.0mOhm Load Line

1.5V – 0.7625V	+/- 1.5% Total System Tolerance (Excludes Ripple)	52A Maximum Load
0.75V – 0.5V	+/- 11.5mV Total System Tolerance (Excludes Ripple)	52A Maximum Load
0.4875 – 0.3V	+/- 25mV Total System Tolerance (Excludes Ripple)	3A Maximum Load

Note: CODE 1111111 is a special OFF code condition. After receiving OFF code, the controller initiates power off sequencing. IMVP_PWRGD is de-asserted within $T_{PWRDOWN1}$ after power off sequencing initialization.

VID6	VID5	VID4	VID3	VID2	VID1	VID0	Vout
0	0	0	0	0	0	0	1.5000
0	0	0	0	0	0	1	1.4875
0	0	0	0	0	1	0	1.4750
0	0	0	0	0	1	1	1.4625
0	0	0	0	1	0	0	1.4500
0	0	0	0	1	0	1	1.4375
0	0	0	0	1	1	0	1.4250
0	0	0	0	1	1	1	1.4125
0	0	0	1	0	0	0	1.4000
0	0	0	1	0	0	1	1.3875
0	0	0	1	0	1	0	1.3750
0	0	0	1	0	1	1	1.3625
0	0	0	1	1	0	0	1.3500
0	0	0	1	1	0	1	1.3375
0	0	0	1	1	1	0	1.3250
0	0	0	1	1	1	1	1.3125
0	0	1	0	0	0	0	1.3000
0	0	1	0	0	0	1	1.2875
0	0	1	0	0	1	0	1.2750
0	0	1	0	0	1	1	1.2625
0	0	1	0	1	0	0	1.2500

Table 1. VID vs. Output Voltage Table (Only monotonicity can be guaranteed to decrement when Vout is lower than 0.25V)

0	0	1	0	1	0	1	1.2375
0	0	1	0	1	1	0	1.2250
0	0	1	0	1	1	1	1.2125
0	0	1	1	0	0	0	1.2000
0	0	1	1	0	0	1	1.1875
0	0	1	1	0	1	0	1.1750
0	0	1	1	0	1	1	1.1730
0	0	1	1	1	0	0	1.1500
0	0	1	1	1	0	1	1.1375
0	0	1	1	1	1	0	1.1250
0	0	1	1	1	1	1	1.1250
0	1	0	0	0	0	0	1.1000
0	1	0	0	0	0	1	1.0875
0		0	0	0		0	
	1				1		1.0750
0	1	0	0	0	1	1	1.0625
0	1	0	0	1	0	0	1.0500
0	1	0	0	1	0	1	1.0375
0	1	0	0	1	1	0	1.0250
0	1	0	0	1	1	1	1.0125
0	1	0	1	0	0	0	1.0000
0	1	0	1	0	0	1	0.9875
0	1	0	1	0	1	0	0.9750
0	1	0	1	0	1	1	0.9625
0	1	0	1	1	0	0	0.9500
0	1	0	1	1	0	1	0.9375
0	1	0	1	1	1	0	0.9250
0	1	0	1	1	1	1	0.9125
0	1	1	0	0	0	0	0.9000
0	1	1	0	0	0	1	0.8875
0	1	1	0	0	1	0	0.8750
0	1	1	0	0	1	1	0.8625
0	1	1	0	1	0	0	0.8500
0	1	1	0	1	0	1	0.8375
0	1	1	0	1	1	0	0.8250
0	1	1	0	1	1	1	0.8125
0	1	1	1	0	0	0	0.8000
0	1	1	1	0	0	1	0.7875
0	1	1	1	0	1	0	0.7750
0	1	1	1	0	1	1	0.7625
0	1	1	1	1	0	0	0.7500
0	1	1	1	1	0	1	0.7375
0	1	1	1	1	1	0	0.7250
0	1	1	1	1	1	1	0.7125
1	0	0	0	0	0	0	0.7000
1	0	0	0	0	0	1	0.6875
1	0	0	0	0	1	0	0.6750
1	0	0	0	0	1	1	0.6625
1	0	0	0	1	0	0	0.6500

ON

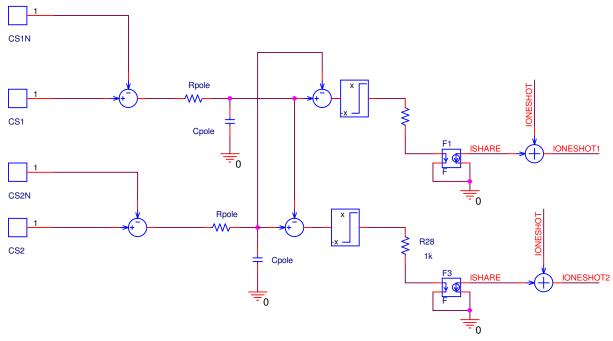
1 0 0 1 1 0 0.6250 1 0 0 1 1 1 1 0.6250 1 0 0 1 0 0 0.6000 1 0 0 1 0 0 1.0575 1 0 0 1 0 1 0.0550 1 0 0 1 1 0 0.550 1 0 0 1 1 0 0.550 1 0 0 1 1 1 0.5250 1 0 1 1 1 1 0.5251 1 0 1 0 0 0 1 0.4525 1 0 1 0 0 1 0.4525 1 0 1 0 1 0 0.4500 1 0 1 0 1 0	1	0	0	0	1	0	1	0.6375
1 0 0 1 1 1 1 1 0.6125 1 0 0 1 0 0 0.6000 1 0 0 1 0 0 1 0.5750 1 0 0 1 0 1 0 0.5500 1 0 0 1 1 0 0.5500 1 0 0 1 1 1 0.5500 1 0 0 1 1 1 0.5250 1 0 1 1 1 0.5250 1 0 1 0 1 0.5250 1 0 1 0 0 0 0 0.5500 1 0 1 0 0 0 0 0.4625 1 0 1 0 1 0 0 0.4625 1 0 1 <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td>	-						•	
1 0 0 1 0 0 0 0.6000 1 0 0 1 0 1 0.8875 1 0 0 1 0 1 0.5750 1 0 0 1 1 0 0.5500 1 0 0 1 1 0 0.5500 1 0 0 1 1 0 0.5250 1 0 0 1 1 1 0.5250 1 0 1 0 1 0.5250 1 0 1 0 0 0 0.5250 1 0 1 0 0 0 0.5250 1 0 1 0 0 0 0.4250 1 0 1 0 1 0 0 0.4250 1 0 1 0 1 0 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>							-	
1 0 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1							-	
1 0 0 1 0 1 0 0.5750 1 0 0 1 0 1 1 0.5625 1 0 0 1 1 0 0 0.5500 1 0 0 1 1 1 0 0.5550 1 0 0 1 1 1 0 0.5250 1 0 1 0 1 0 0.5250 1 0 1 0 0 0 0.5250 1 0 1 0 0 0 0 0.5450 1 0 1 0 0 1 0 0.4450 1 0 1 0 1 0 1 0.4450 1 0 1 0 1 1 0 0.4250 1 0 1 1 0 1 0.3375 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1 0 0 1 0 1 1 0.5605 1 0 0 1 1 0 0.5500 1 0 0 1 1 0 0.5520 1 0 0 1 1 1 0 0.5250 1 0 1 0 1 1 1 1 0.5250 1 0 1 0 0 0 0 0 0.5500 1 0 1 0 0 0 1 0.4875 1 0 1 0 1 0 1.4755 0 0.4450 1 0 1 0 1 0 0.4450 0 0.4450 1 0 1 0 1 1 0.4250 0 0.4450 0 0 0 0 0.4450 0 0.3750 0 0 0 0								
10011000.55001001100.53751001110.525010100000.550010100000.550010100010.487510100110.4875101010000.450010101010.4375101011000.450010101100.425010110110.437510110000.400010110001011000.387510111000.3825010111100.325010111100.28751100110011001100.282501100110011010100 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
1001100.53751001110.52501010000.55001010000.500010100010.4875101001000.47501010101000.4750101010100.4375101011000.450010101100.425010101100.425010110110.437510110000.400010110000.400010110000.400010110000101100001011000010111000101111001011100010111000 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
10011100.525010100000.500010100010.4875101001000.475010100110.487510101000.450010101010.435010101100.45001010110.43751010110.43751010110.43751011000.40001011000.40001011000.375010111000.37501011110.33751011110.332511000001100000.30001100010.22501100110.225511001000.225011010000.1375								
10011110.51251010000.50001010010.48751010010.47501010010.475010101000.450010101000.450010101010.42501010110.42551011000.44001011000.45001011000.42501011000101100010110001011000101110010111101011110101111010000001100110100110011001001101 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
10100000.50001010010.487510100110.475010101010.462510101010.437510101100.425010101110.437510101110.425010101100.425010110000.425010110000.42501011000010110000101100001011000010111100101111001100110011001100110011001100110011001100110								
1010010.487510100100.475010100110.462510101010.445010101010.44501010110.42501010110.42501010110.42501011000.42001011000.42501011000.42501011000.42501011000.42501011000.42501011000.337510111101011110101111011000001100010110011011001101100110110110011 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
10100100.47501010010.46251010100.450010101010.437510101100.42501011000.425010110000.400010110000.400010110000.375010110110.387510111100.350010111100.350010111100.325010111100.325011000000.30001111110.325511000100.22501100110.227511001100.225011011000.225011010110.13751101100011								
1 0 1 0 1 0 1 1 0.4625 1 0 1 0 1 0 0 0.4500 1 0 1 0 1 0 1 0 0.4375 1 0 1 0 1 1 0 0.4375 1 0 1 0 1 1 0.4250 1 0 1 1 0 0.4400 1 0 1 1 0.4250 1 0 1 1 0.43875 1 0 1 1 0 0.3375 1 0 1 1 1 0.3375 1 0 1 1 1 1 0.3375 1 0 1 1 1 1 0.3375 1 0 1 1 1 0.3375 1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
10101000.450010101010.437510101110.425010101110.425010101110.425010110110.425010110000.400010110000.387510111010.387510111100.350010111100.325010111110.325510111110.325511000000.300011000000.32501100010.287511000100.22501100110.225511010110.2255110101001101010011010100 <trr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></trr<>								
1010101010.4375101011100.4250101011100.425010110000.400010110000.425010110000.425010110000.425010110000.375010111000.350010111100101111001011111010111110101111101100000011000110110011001100110011001100110011001101101011011010 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>							-	
10101100.425010101110.412510111000.400010110000.400010110000.400010110000.400010110000.375010111000.350010111100.355010111100.325010111110.337510111110.325011011110.325011011110.325011000000.300011000000.300011000000.225011000100.225011010110.225511010110.125511010110.1255110110 <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>			-					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
1 0 1 1 0 0 0 0.4000 1 0 1 1 0 0 1 0.3875 1 0 1 1 0 1 0 0.3750 1 0 1 1 0 1 1 0.3375 1 0 1 1 1 0 0 0.3500 1 0 1 1 1 0 0 0.3375 1 0 1 1 1 1 0.3375 1 0 1 1 1 0.3375 1 0 1 1 1 0.33250 1 1 0 0 0 0 0.3000 1 1 0 0 0 1 0.2875 1 1 0 0 1 1 0.2250 1 1 0 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1 0 1 1 0 0 1 0.3875 1 0 1 1 0 1 0 0.3750 1 0 1 1 0 1 1 0 0.3500 1 0 1 1 1 0 0 0.3500 1 0 1 1 1 0 0 0.3500 1 0 1 1 1 1 0 0.3375 1 0 1 1 1 1 0 0.3250 1 0 1 1 1 1 0.3375 1 1 0 0 0 0 0 0.3000 1 1 0 0 0 1 0.2875 1 1 0 0 1 1 0.2875 1 1 0 0 1 1 0.2250								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1					0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1			1		0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	0	0	1	0	1	
1 1 0 1 0 0 0 0.2000 1 1 0 1 0 0 1 0.1875 1 1 0 1 0 1 0 1 0.1875 1 1 0 1 0 1 0 0.1750 1 1 0 1 0 1 1 0 0.1750 1 1 0 1 0 1 1 0 0.1625 1 1 0 1 1 0 0 0.1500 1 1 0 1 1 0 0 0.1250 1 1 0 1 1 1 0 0.1250 1 1 0 0 0 0 0.1250 1 1 1 0 0 0 0 0.1250 1 1 1							0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
1 1 0 1 1 0 0 0.1500 1 1 0 1 1 0 1 0.1375 1 1 0 1 1 1 0 1 0.1375 1 1 0 1 1 1 0 0.1250 1 1 0 1 1 1 1 0.1250 1 1 0 1 1 1 1 0.1125 1 1 1 0 0 0 0 0.1125 1 1 1 0 0 0 0 0.1000 1 1 1 0 0 0 1 0.0875 1 1 1 0 0 1 0 0.0750 1 1 1 0 0 1 1 0.0625	1	1					0	0.1750
1 1 0 1 1 0 1 0.1375 1 1 0 1 1 1 0 0.1250 1 1 0 1 1 1 0 0.1250 1 1 0 1 1 1 1 0.1125 1 1 1 0 0 0 0 0.1000 1 1 1 0 0 0 1 0.0875 1 1 1 0 0 1 0.00750 1 1 1 0 0 1 1 0.0625	1	1	0			1	1	0.1625
1 1 0 1 1 1 0 0.1250 1 1 0 1 1 1 1 0.1125 1 1 1 0 1 1 1 1 0.1125 1 1 1 0 0 0 0 0.1125 1 1 1 0 0 0 0 0.1125 1 1 1 0 0 0 0 0.1000 1 1 1 0 0 0 0 0.1000 1 1 1 0 0 0 1 0.0875 1 1 1 0 0 1 1 0.0625	1	1	0	1		0	0	0.1500
1 1 0 1 1 1 1 0.1125 1 1 1 0 0 0 0 0.1000 1 1 1 0 0 0 1 0.0875 1 1 1 0 0 1 0.0750 1 1 1 0 0 1 1 0.0625	1	1	0	1	1	0	1	0.1375
1 1 1 0 0 0 0 0.1000 1 1 1 0 0 0 1 0.0875 1 1 1 0 0 1 0.0750 1 1 1 0 0 1 1 0.0625	1	1	0	1	1	1	0	0.1250
1 1 1 0 0 0 1 0.0875 1 1 1 0 0 1 0 0.0750 1 1 1 0 0 1 1 0.0625	1	1	0	1	1	1	1	0.1125
1 1 1 0 0 1 0 0.0750 1 1 1 0 0 1 1 0.0625	1	1	1	0	0	0	0	0.1000
1 1 1 0 0 1 1 0.0625	1	1	1	0	0	0	1	0.0875
1 1 1 0 0 1 1 0.0625	1	1	1	0	0	1	0	
1 1 1 0 1 0 0 0.0500	1	1	1	0	0	1	1	
	1	1	1	0	1	0	0	0.0500

ON

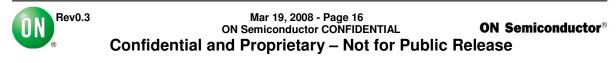
1	1	1	0	1	0	1	0.0375
1	1	1	0	1	1	0	0.0250
1	1	1	0	1	1	1	0.0125
1	1	1	1	0	0	0	0.0000
1	1	1	1	0	0	1	0.0000
1	1	1	1	0	1	0	0.0000
1	1	1	1	0	1	1	0.0000
1	1	1	1	1	0	0	0.0000
1	1	1	1	1	0	1	0.0000
1	1	1	1	1	1	0	0.0000
1	1	1	1	1	1	1	0.0000

DAC slew rate

The DAC output is slew rate limited to prevent overshoot of the system output voltage. If the DAC voltage rises significantly faster than that the control system can be achieved, the output voltage will overshoot. The DAC slew rate is limited between 10mV/uS and 15mV/us.


Voltage Controlled Oscillator

The VCO is critical to the transient response of the overall system. When the load is stepped, the clock will turn on the next phase's one shot as fast as possible.


Current Sharing Function

By default, the one shot on times for both phases will be determined by the external resistor connected to TON, which is used to ramp up the coil currents. Because of various reasons, the coil currents would not be match.

If V(CS1,CS1N) is larger than V(CS2,CS2N), the on time for Phase 1 and Phase 2 will be reduced and increased respectively. The amount of adjustment will be based on their difference proportionally. (The detail amount of the adjustment will be provided later.) The same operation would be applied when V(CS2,CS2N) is greater than V(CS1,CS1N).

Auto Skip Power-saving Mode, Forced-CCM Mode and DCM DIODE EMULATION MODE

When the MODE pin is pulled high, the negative current detector is enabled and the controller is selected to operate in auto power-saving mode. When the MODE pin is pulled low, the controller has two modes of operation which depends on the combination of the DPSLPVR and PSI# pins as shown in the Table 2. One is Forced-CCM and another one is diode emulation mode in DCM. The forced-CCM mode disables the zero-crossing comparator, allowing the inductor current to reverse at light loads. This causes the low-side gate-drive waveform to become the complement of the high-side gate-drive waveform. *Forced-CCM mode is required during downward output voltage transitions.* While in diode emulation mode, the zero-crossing comparator is enabled and this allows DCM operation at light-load. In diode emulation mode, the low-side MOSFET is turned off when the zero-crossing is detected and the switching frequency is reduced with load. The combination of inputs to the DPRSLPVR and PSI# pins determine the operation mode of the controller. The following table shows the logic combination of pin DPRSLPVR and PSI#.

MODE	DPRSLPVR	PSI#	OPERATION MODE
1	Х	Х	Auto Power-saving (Allow DCM)
0	0	0	Allow DCM at Light Load
0	0	1	Forced CCM
0	1	0	Allow DCM at Light Load
0	1	1	Allow DCM at Light Load

Table 2. Operation Mode

Current Sensing

The current sense amplifiers must provide enough bandwidth and slew rate to generate an accurate representation of the sensed current waveform at the maximum operating frequency. The current sensing has very low offset voltage so as to provide accurate droop control and current sharing. The sensed current voltage is gained by 6 and summed with the offset reference voltage from the droop amplifier. The individual current sense signals are reused in the current sharing function. The current sense signals for each phase is typically max. 100mV.

Current Sense to Droop Transfer Function and Amplifiers

The droop signal should be an accurate representation of the summed current sense waveforms and the amplifiers must be stable over a wide range of external loads.

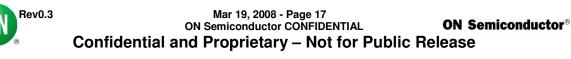
VR_ON

It is the enable for the controller. When the controller is disabled by VR_ON the internal state machines must be reset into a known starting state to prepare for Soft start. For the fault conditions of over-voltage or overcurrent, it is used to restart the power cycle.

Feed-forward

The controller provides both VIN and VOUT feed-forward. For the VIN feed-forward, TON depends on VIN change. When VIN increases, TON decreases accordingly to fix the time of period. Similarly, for the VOUT feed-forward, TON also depends on VOUT change. When VOUT increases, TON increases accordingly to fix the time of period. They give the equation.

Tperiod=VIN/VOUT*TON


(eq. 1)

TON Selection

With minimum VOUT and maximum VIN, the TON must be NOT LESS than 100nSec. Otherwise, if TON is smaller than 100nSec, the controller may cause problem.

Current Limit

The current limit is set by voltage developed across an external resistor on the ILIM pin. An accurate bias current flows out the ILIM pin to create a voltage across the resistor to ground. The voltage signal is heavily low

pass filtered internally to avoid switching noise issues. The current limit threshold voltage is compared to the total sensed inductor current. An over current condition for about 50us will cause a fault condition and shutdown the PWM controller. The controller must be reset by cycling VR_ON, VCC, VCCP1, VCCP2, or VIN.

IMVP Power Good Output

Once VR_ON is activated, Vcc_core ramps to about Vboot. Then, the first VID code is captured and a timer starts to wait for Tboot+Tcpu_up. At the end of the timing, CLK_ENABLE# is set low and Vcc_core is regulated to a DAC voltage determined by the VID code. When CLK_ENABLE# goes low, another timer starts and waits for Tcpu_pwrgd,

At the end of the timing, the output voltage will be monitored whether it is within the Power Good Window, about +200mV/-300mV of the expected voltage. If yes, IMVP_PWRGD is set high. If otherwise, there is a 200us blanking window to allow for undershoot/overshoot before IMVP_PWRGD is set low. Then, the controller must be reset by cycling VR_ON, VCC, VCCP1, VCCP2 or VIN.

When the controller is the DCM mode operation, the upper threshold will be disabled.

Severe Over Voltage Protection (Protection against a shorted high side MOSFET)

The output voltage is sensed via VS+ and VS- inputs and is compared to a fixed threshold of 1.55V. If the output voltage exceeds 1.55V, the severe OVP fault is tripped within 2μ s. The high side MOSFETs are shut off and the low side MOSFETs are turned on to discharge the excess voltage at the output. The low side MOSFETs will continue to turn on until the output falls below the release threshold of about 0.3V. The controller will continue monitor for the severe overvoltage condition. If the output voltage rises again and reaches the 1.55V, the low side MOSFETs will turn on again to discharge the over voltage. The low side MOSFETs will repeatedly switch on and off if the over voltage condition persists. This action provides greatest protection against severe over voltage fault and avoids the generation of large negative voltage at the output. The severe OVP fault can be reset by cycling VR_ON, VCC, VCCP1 or VCCP2.

Thermal Shutdown

The thermal shutdown is tripped when the device junction temperature reaches 150°C. When the thermal shutdown is triggered, the TG, BG, and PWRGD are latched low. The output voltage is then discharged through the 106 Ω internal MOSFET. The thermal shutdown can be reset and the controller can be re-started again by toggling the VR_ON, VCC, VCCP1, VCCP2 or VIN after the device junction temperature is dropped by 30°C.

Current Monitor

The controller includes an IMON output voltage which is proportional to the core supply output current. The IMON proportional gain is external programmable. The IMON reference is internally connected to VS- and the IMON output can source/sink up to 500uA. Therefore, the current monitor output voltage can be given by the following equation:

$$V_{\rm IMON} = \sum V(CS_{N+}, CS_{N-}) \times 6 \times GAIN_{DRPAMP} \times GAIN_{IMON}$$
(eq. 2)

 $V_{IMON} = 900 \text{mV} \text{ at IOUT} = \text{Imax},$ $V_{IMON} = 0 \text{mV} \text{ at IOUT} = 0 \text{A}.$

The IMON output voltage maximum will be clamped at 1.15V.

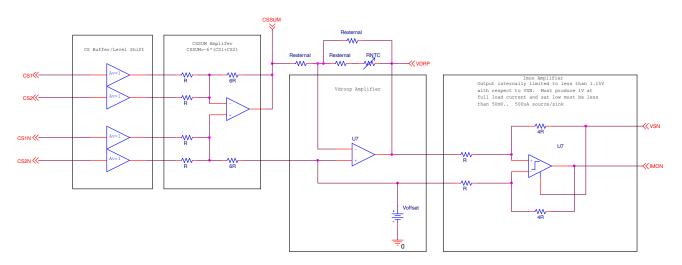


Figure 5. Thermally Compensated Vdroop and Imon Circuit Diagram

CONTROL LOGIC

The control logic will provide timing and sequencing for Startup, Soft start, and Power Down.

POWER DOWN

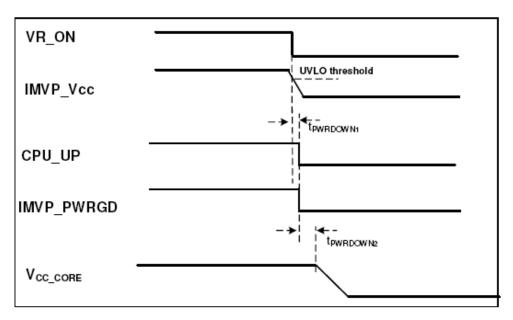


Figure 6. Power Off Sequencing Timing Diagram

Table 3. Fault Protection Summary

Fault	Duration Before Protection	Actions	Fault Reset
Overcurrent	50µs	TG, BG, and PWRGD latched low	Toggle VR_ON, VCC, VCCP1, VCCP2, or VIN
Overvoltage (+200mV)	200µs	TG, BG, and PWRGD latched low	Toggle VR_ON, VCC, VCCP1, VCCP2, or VIN
Severe Overvoltage (>1.55V)	2µs	TG and PWRGD latched low, BG switches ON when $V_{CC_CORE} > 1.55V$, BG switches OFF when $V_{CC_CORE} < 0.3V$, Continue monitor and response for OV condition according to the above thresholds	Toggle VR_ON, VCC, VCCP1, VCCP2
Undervoltage (-300mV)	200µs	TG, BG, and PWRGD latched low	Toggle VR_ON, VCC, VCCP1, VCCP2, or VIN
Thermal Shutdown (Tj >150°C)	-	Device disabled, TG, BG, and PWRGD latched low	Toggle VR_ON, VCC, VCCP1, VCCP2, or VIN after Tj falls by 30°C.
UVLO	-	Device disabled, TG, BG latched low	Raising VCC, VCCP1, or VCCP2 above their respective upper thresholds.

ON

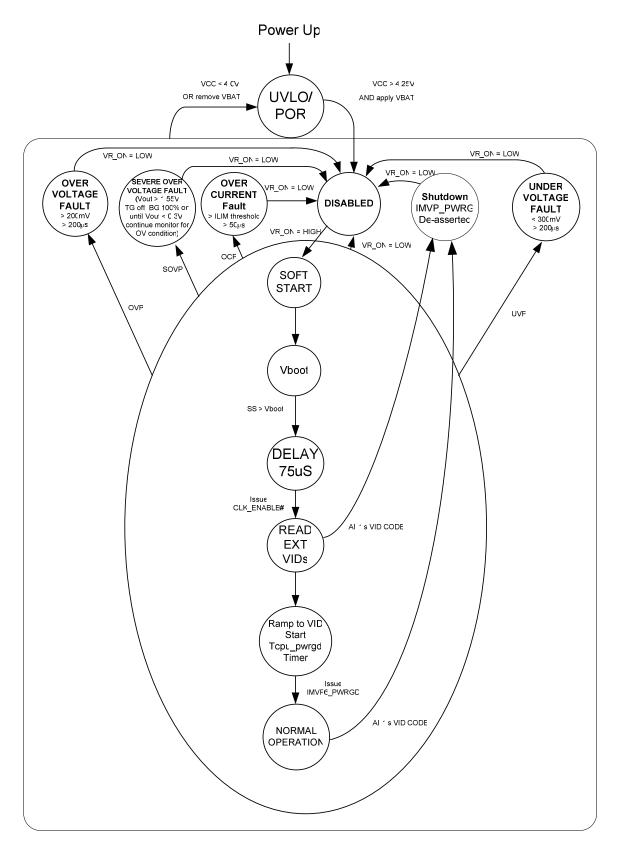
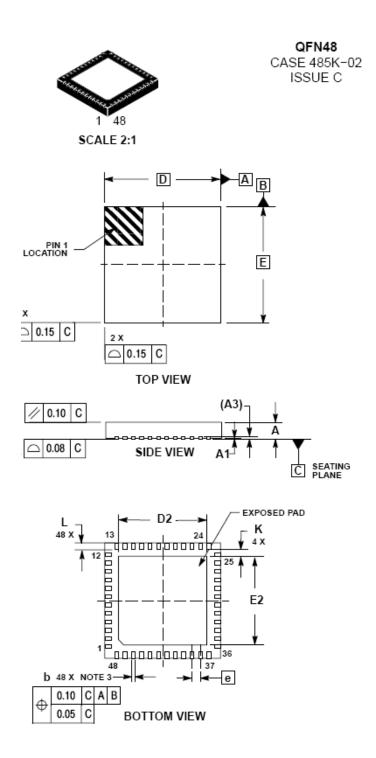
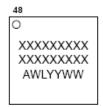



Figure 7. State Diagram

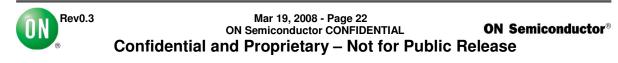

DATE 20 JUL 2004

NOTES:

- DIMENSIONS AND TOLERANCING PER ASME Y14.5M, 1994.
- DIMENSIONS IN MILLIMETERS.
 DIMENSION 5 APPLIES TO THE PLATED TERMINAL AND IS MEASURED ABETWEEN
- 0.25 AND 0.30 MM FROM TERMINAL 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS				
DIM	MIN	NOM	MAX		
Α	0.800	0.900	1.000		
A1	0.000	0.025	0.050		
A3	0.	200 RE	F		
b	0.180	0.250	0.300		
D	7.	000 BS	С		
D2	5.260	5.360	5.460		
Е	7.	000 BS	С		
E2	5.260	5.360	5.460		
е	0.500 BSC				
K	0.200				
L	0.300	0.400	0.500		

GENERIC MARKING DIAGRAM*


1

A = Assembly Location

- WL = Wafer Lot
- YY = Year
- WW = Work Week

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " •", may or may not be present.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or ther rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product are situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resal in any manner.

