Ultra Low Power Boost Converter with Battery Management for Energy Harvester Applications
Check for Samples: bq25504

FEATURES

- Ultra Low Power With High Efficiency DC/DC Boost Converter/Charger
 - Continuous Energy Harvesting From Low Input Sources: $V_{IN} \geq 80 \text{ mV}(\text{Typical})$
 - Ultra Low Quiescent Current: $I_Q < 330 \text{ nA}(\text{Typical})$
 - Cold-Start Voltage: $V_{IN} \geq 330 \text{ mV} (\text{Typical})$
- Programmable Dynamic Maximum Power Point Tracking (MPPT)
 - Integrated Dynamic Maximum Power Point Tracking for Optimal Energy Extraction From a Variety of Energy Generation Sources
 - Input Voltage Regulation Prevents Collapsing Input Source
- Energy Storage
 - Energy can be Stored to Re-Chargeable Li-ion Batteries, Thin-film Batteries, Super-Capacitors, or Conventional Capacitors
- Battery Charging and Protection
 - User Programmable Undervoltage / Overvoltage Levels
 - On-Chip Temperature Sensor with Programmable Overtemperature Shutoff
- Battery Status Output
 - Battery Good Output Pin
 - Programmable Threshold and Hysteresis
 - Warn Attached Microcontrollers of Pending Loss of Power
 - Can be Used to Enable/Disable System Loads

APPLICATIONS

- Energy Harvesting
- Solar Charger
- Thermal Electric Generator (TEG) Harvesting
- Wireless Sensor Networks (WSN)
- Industrial Monitoring
- Environmental Monitoring
- Bridge / Structural Health Monitoring (SHM)
- Smart Building Controls
- Portable and Wearable Health Devices
- Entertainment System Remote Controls

DESCRIPTION

The bq25504 is the first of a new family of intelligent integrated energy harvesting Nano-Power management solutions that are well suited for meeting the special needs of ultra low power applications. The product is specifically designed to efficiently acquire and manage the microwatts (μW) to milliwatts (mW) of power generated from a variety of DC sources like photovoltaic (solar) or thermal electric generators. The bq25504 is the first device of its kind to implement a highly efficient boost converter/charger targeted toward products and systems, such as wireless sensor networks (WSN) which have stringent power and operational demands. The design of the bq25504 starts with a DCDC boost converter/charger that requires only microwatts of power to begin operating.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductors and disclaimers thereto appears at the end of this data sheet.
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

DESCRIPTION CONTINUED

Once started, the boost converter/charger can effectively extract power from low voltage output harvesters such as thermoelectric generators (TEGs) or single or dual cell solar panels. The boost converter can be started with VIN as low as 330 mV, and once started, can continue to harvest energy down to $V_{IN} = 80$ mV.

The bq25504 also implements a programmable maximum power point tracking sampling network to optimize the transfer of power into the device. Sampling the VIN_DC open circuit voltage is programmed using external resistors, and held with an external capacitor (CREF).

For example solar cells that operate at maximum power point (MPP) of 80% of their open circuit voltage, the resistor divider can be set to 80% of the VIN_DC voltage and the network will control the VIN_DC to operate near that sampled reference voltage. Alternatively, an external reference voltage can be provide by a MCU to produce a more complex MPPT algorithm.

The bq25504 was designed with the flexibility to support a variety of energy storage elements. The availability of the sources from which harvesters extract their energy can often be sporadic or time-varying. Systems will typically need some type of energy storage element, such as a re-chargeable battery, super capacitor, or conventional capacitor. The storage element will make certain constant power is available when needed for the systems. The storage element also allows the system to handle any peak currents that can not directly come from the input source.

To prevent damage to a customer’s storage element, both maximum and minimum voltages are monitored against the user programmed undervoltage (UV) and overvoltage (OV) levels.

To further assist users in the strict management of their energy budgets, the bq25504 toggles the battery good flag to signal an attached microprocessor when the voltage on an energy storage battery or capacitor has dropped below a pre-set critical level. This should trigger the shedding of load currents to prevent the system from entering an undervoltage condition. The OV, UV and battery good thresholds are programmed independently.

All the capabilities of bq25504 are packed into a small foot-print 16-lead 3 mm x 3 mm QFN package.

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>PACKAGE</th>
<th>ORDERING NUMBER (TAPE AND REEL)(1)</th>
<th>PACKAGE MARKING</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>bq25504</td>
<td>QFN 16 pin 3 mm x 3 mm</td>
<td>BQ25504RGTR BQ25504RGTT</td>
<td>B5504 B5504</td>
<td>3000 250</td>
</tr>
</tbody>
</table>

(1) The RGW package is available in tape on reel. Add R suffix to order quantities of 3000 parts per reel, T suffix for 250 parts per reel.

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage, VIN_DC, VOC_SAMP, VREF_SAMP, VBAT_OV, VBAT_UV, VRDIV, OK_HYST, OK_PROG, VBAT_OK, VBAT, VSTOR, LBST(2)</td>
<td>–0.3</td>
<td>5.5 V</td>
</tr>
<tr>
<td>Peak Input Power, $P_{IN,PK}$</td>
<td>400</td>
<td>mW</td>
</tr>
<tr>
<td>Operating junction temperature range, T_J</td>
<td>–40</td>
<td>125 °C</td>
</tr>
<tr>
<td>Storage temperature range, T_{STG}</td>
<td>–65</td>
<td>150 °C</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to V_{SS}/ground terminal.
THERMAL INFORMATION

<table>
<thead>
<tr>
<th>THERMAL METRIC(1)(2)</th>
<th>bq25504</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>θJA</td>
<td>Junction-to-ambient thermal resistance</td>
<td>48.5</td>
</tr>
<tr>
<td>θJCtop</td>
<td>Junction-to-case (top) thermal resistance</td>
<td>63.9</td>
</tr>
<tr>
<td>θJB</td>
<td>Junction-to-board thermal resistance</td>
<td>22</td>
</tr>
<tr>
<td>ψJT</td>
<td>Junction-to-top characterization parameter</td>
<td>1.8</td>
</tr>
<tr>
<td>ψJB</td>
<td>Junction-to-board characterization parameter</td>
<td>22</td>
</tr>
<tr>
<td>θJCbot</td>
<td>Junction-to-case (bottom) thermal resistance</td>
<td>6.5</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
(2) For thermal estimates of this device based on PCB copper area, see the TI PCB Thermal Calculator.

RECOMMENDED OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN (DC)</td>
<td>DC input voltage into VIN_DC(1)</td>
<td>0.13</td>
<td>3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VBAT</td>
<td>Battery voltage range(2)</td>
<td>2.5</td>
<td>5.25</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>C_HVR</td>
<td>Input capacitance</td>
<td>4.23</td>
<td>4.7</td>
<td>5.17</td>
<td>µF</td>
</tr>
<tr>
<td>C_STOR</td>
<td>Storage capacitance</td>
<td>4.23</td>
<td>4.7</td>
<td>5.17</td>
<td>µF</td>
</tr>
<tr>
<td>C_BAT</td>
<td>Battery pin capacitance or equivalent battery capacity</td>
<td>100</td>
<td></td>
<td></td>
<td>µF</td>
</tr>
<tr>
<td>C_REF</td>
<td>Sampled reference storage capacitance</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>nF</td>
</tr>
<tr>
<td>R_OC1 + R_OC2</td>
<td>Total resistance for setting for MPPT reference.</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>MΩ</td>
</tr>
<tr>
<td>R_OK1 + R_OK2 + R_OK3</td>
<td>Total resistance for setting reference voltage.</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>MΩ</td>
</tr>
<tr>
<td>R_UV1 + R_UV2</td>
<td>Total resistance for setting reference voltage.</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>MΩ</td>
</tr>
<tr>
<td>L_BST</td>
<td>Input inductance</td>
<td>19.8</td>
<td>22</td>
<td>24.2</td>
<td>µH</td>
</tr>
<tr>
<td>T_A</td>
<td>Operating free air ambient temperature</td>
<td>–40</td>
<td>85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>T_J</td>
<td>Operating junction temperature</td>
<td>–40</td>
<td>105</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

(1) Maximum input power ≤ 300 mW. Cold start has been completed
(2) VBAT_OV setting must be higher than VIN_DC

ELECTRICAL CHARACTERISTICS

Over recommended temperature range, typical values are at T_A = 25°C. Unless otherwise noted, specifications apply for conditions of VIN_DC = 1.2V, VBAT = VSTOR = 3V. External components L_BST = 22 µH, C_HVR = 4.7 µF C_STOR = 4.7 µF.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOOST CONVERTER / CHARGER STAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIN (DC)</td>
<td>DC input voltage into VIN_DC</td>
<td>Cold-start completed</td>
<td>130</td>
<td>3000</td>
<td>mV</td>
</tr>
<tr>
<td>I_IN (DC)</td>
<td>Peak Current flowing from VIN into VIN_DC input</td>
<td>0.5V < VIN < 3V; VSTOR = 4.2V</td>
<td>200</td>
<td>300</td>
<td>mA</td>
</tr>
<tr>
<td>P_IN</td>
<td>Input power range for normal charging</td>
<td>VIN > VIN_DC; VIN_DC = 0.5V</td>
<td>0.01</td>
<td></td>
<td>mW</td>
</tr>
<tr>
<td>V_IN_CS</td>
<td>Cold-start Voltage. Input voltage that will start charging of VSTOR</td>
<td>VIN < 0V; 0°C < T_A < 85°C</td>
<td>330</td>
<td>450</td>
<td>mV</td>
</tr>
<tr>
<td>P_IN_CS</td>
<td>Minimum cold-start input power to start normal charging</td>
<td>VIN < 0V; Input source impedance 0Ω</td>
<td>10</td>
<td>50</td>
<td>µW</td>
</tr>
<tr>
<td>VSTOR, CHGEN</td>
<td>Voltage on VSTOR when cold start operation ends and normal charger operation begins</td>
<td>1.6</td>
<td>1.77</td>
<td>1.95</td>
<td>V</td>
</tr>
<tr>
<td>R_BAT(on)</td>
<td>Resistance of switch between VBAT and VSTOR when turned on.</td>
<td>VBAT = 4.2V; VSTOR load = 50mA</td>
<td>2</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>R_CSOV</td>
<td>Charger Low Side switch ON resistance</td>
<td>VBAT = 2.1V</td>
<td>2</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>R_CSOH</td>
<td>Charger rectifier High Side switch ON resistance</td>
<td>VBAT = 4.2V</td>
<td>2</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>f_SW_BST</td>
<td>Boost converter mode switching frequency</td>
<td></td>
<td></td>
<td>1</td>
<td>MHz</td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS (continued)

Over recommended temperature range, typical values are at $T_A = 25^\circ C$. Unless otherwise noted, specifications apply for conditions of $VIN_{DC} = 1.2V$, $VBAT = VSTOR = 3V$. External components $L_{BST} = 22 \mu H$, $C_{HVR} = 4.7 \mu F$, $C_{STOR} = 4.7 \mu F$.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{VBAT} Leakage on VBAT pin</td>
<td>$VBAT = 2.1V; VBAT_{UV} = 2.3V; T_J = 25^\circ C$</td>
<td>1</td>
<td>5</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$VBAT = 2.1V; VBAT_{UV} = 2.3V; -40^\circ C < T_J < 65^\circ C; VSTOR = 0V$</td>
<td>80</td>
<td></td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>I_{VSTOR} VSTOR Quiescent current Charger Shutdown in UV Condition</td>
<td>$VIN_{DC} = 0V; VSTOR < VSTOR_{UV}$</td>
<td>330</td>
<td>750</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$VIN_{DC} = 0V; VBAT > VBAT_{OV}, VSTOR = 4.25, No load on VBAT$</td>
<td>570</td>
<td>1400</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>$V_{BAT, OV}$ Programmable voltage range for overvoltage threshold (Battery voltage is rising)</td>
<td>$VBAT$ increasing</td>
<td>2.5</td>
<td>5.25</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$V_{BAT, UV}$ Programmable voltage range for under voltage threshold (Battery voltage is falling)</td>
<td>$VBAT$ decreasing</td>
<td>18</td>
<td>35</td>
<td>89</td>
<td>mV</td>
</tr>
<tr>
<td>V_{BAT, UV_HYST} Battery under voltage threshold hysteresis, internal threshold</td>
<td>$VBAT$, $VSTOR$</td>
<td>40</td>
<td>80</td>
<td>125</td>
<td>mV</td>
</tr>
<tr>
<td>$V_{BAT, OK}$ Programmable voltage range for threshold voltage for high to low transition of digital signal indicating battery is OK.</td>
<td>$VBAT$ decreasing</td>
<td>$VBAT_{OV}$</td>
<td>$VBAT_{OV}$</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{BAT, OK_HYST} Programmable voltage range for threshold voltage for low to high transition of digital signal indicating battery is OK.</td>
<td>$VBAT$ increasing</td>
<td>50</td>
<td>$VBAT_{OV}$</td>
<td>$VBAT_{OV}$</td>
<td>mV</td>
</tr>
<tr>
<td>$V_{BAT, ACCURACY}$ Overall Accuracy for threshold values, UV, OV, $V_{BAT, OK}$</td>
<td>Selected resistors are 0.1% tolerance</td>
<td>–5%</td>
<td>5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{BAT, OH}$ $VBAT$ OK (High) threshold voltage</td>
<td>$VSTOR > 2.2V$, No load on VBAT</td>
<td>10</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$V_{BAT, OL}$ $VBAT$ OK (Low) threshold voltage</td>
<td>$VSTOR_{UV}$</td>
<td>100</td>
<td></td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>TSD_{PROT} The temperature at which the boost converter is disabled and the switch between VBAT and VSTOR is disconnected to protect the battery</td>
<td>$OT_{Prog} = LO$</td>
<td>65</td>
<td></td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>$TSD_{_PROTH}$ Voltage node which is used as reference for the programmable voltage thresholds</td>
<td>$OT_{Prog} = HI$</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OT_{Prog} The temperature at which the boost converter is disabled and the switch between VBAT and VSTOR is disconnected to protect the battery</td>
<td>$2V$</td>
<td></td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$VBIAS$ Voltage node which is used as reference for the programmable voltage thresholds</td>
<td>$VIN_{DC} > 0.5V$, $VSTOR > 1.8V$</td>
<td>1.21</td>
<td>1.25</td>
<td>1.27</td>
<td>V</td>
</tr>
</tbody>
</table>
DEVICE INFORMATION

RGT PACKAGE
(TOP VIEW)

![Package Diagram](image)

Figure 1. bq25504 3mm x 3mm QFN-16 Package

PIN FUNCTIONS

<table>
<thead>
<tr>
<th>PIN NO.</th>
<th>NAME</th>
<th>I/O TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VSS</td>
<td>Input</td>
<td>General ground connection for the device</td>
</tr>
<tr>
<td>2</td>
<td>VIN_DC</td>
<td>Input</td>
<td>DC voltage input from energy harvesters</td>
</tr>
<tr>
<td>3</td>
<td>VOC_SAMP</td>
<td>Input</td>
<td>Sampling pin for MPPT network. To disable MPPT, connect to VSTOR</td>
</tr>
<tr>
<td>4</td>
<td>VREF_SAMP</td>
<td>Input</td>
<td>Switched node for holding the reference set by resistors on VOC_SAMP for MPPT. When MPPT is disabled, input for reference voltage</td>
</tr>
<tr>
<td>5</td>
<td>OT_PROG</td>
<td>Input</td>
<td>Digital Programming input for overtemperature threshold</td>
</tr>
<tr>
<td>6</td>
<td>VBAT_OV</td>
<td>Input</td>
<td>Resistor divider input for over voltage threshold</td>
</tr>
<tr>
<td>7</td>
<td>VRDIV</td>
<td>Output</td>
<td>Resistor divider biasing voltage.</td>
</tr>
<tr>
<td>8</td>
<td>VBAT_UV</td>
<td>Input</td>
<td>Resistor divider input for under voltage threshold</td>
</tr>
<tr>
<td>9</td>
<td>OK_HYST</td>
<td>Input</td>
<td>Resistor divider input for VBAT_OK hysteresis threshold</td>
</tr>
<tr>
<td>10</td>
<td>OK_PROG</td>
<td>Input</td>
<td>Resistor divider input for VBAT_OK threshold</td>
</tr>
<tr>
<td>11</td>
<td>VBAT_OK</td>
<td>Output</td>
<td>Digital battery good indicator referenced to VSTOR pin</td>
</tr>
<tr>
<td>12</td>
<td>AVSS</td>
<td>Supply</td>
<td>Signal ground connection for the device</td>
</tr>
<tr>
<td>13</td>
<td>VSS</td>
<td>Supply</td>
<td>General ground connection for the device</td>
</tr>
<tr>
<td>14</td>
<td>VBAT</td>
<td>I/O</td>
<td>Connection for storage elements</td>
</tr>
<tr>
<td>15</td>
<td>VSTOR</td>
<td>Output</td>
<td>Connection for the system load, output of the boost converter</td>
</tr>
<tr>
<td>16</td>
<td>LBST</td>
<td>Input</td>
<td>Inductor connection for the boost converter switching node</td>
</tr>
</tbody>
</table>
TYPICAL APPLICATION CIRCUITS

VIN_DC = 1.2 V, C_STOR = 4.7 \mu F, L_BST = 22 \mu H, C_HVR = 4.7 \mu F, C_REF = 10 nF, TSD_PROTL (65°C),

MPPT (V_OC) = 80% VBAT_OV = 3.1 V, VBAT_UV = 2.2 V, VBAT_OK = 2.4 V, VBAT_OK_HYST = 2.8 V,

R_OK1 = 4.42 M\Omega, R_OK2 = 4.22 M\Omega, R_OK3 = 1.43 M\Omega, R_OV1 = 5.9 M\Omega, R_OV2 = 4.02 M\Omega,

R_UV1 = 5.6 M\Omega, R_UV2 = 4.42 M\Omega, R_OC1 = 15.62 M\Omega, R_OC2 = 4.42 M\Omega

Figure 2. Typical Solar Application Circuit
VIN_DC = 0.5 V, C_STOR = 4.7 µF, L_BST = 22 µH, C_HVR = 4.7 µF, C_REF = 10 nF, TSD_PROTH (120°C), MPPT (V_OC) = 50% VBAT_OV = 4.2 V, VBAT_UV = 3.2 V, VBAT_OK = 3.5 V, VBAT_OK_HYST = 3.7 V, R_OK1 = 3.32 MΩ, R_OK2 = 6.12 MΩ, R_OK3 = 0.542 MΩ, R_OV1 = 4.42 MΩ, R_OV2 = 5.62 MΩ, R_UV1 = 3.83 MΩ, R_UV2 = 6.12 MΩ, R_OC1 = 10 MΩ, R_OC2 = 10 MΩ

Figure 3. Typical TEG Application Circuit
VIN_DC = 1.2 V, C_STOR = 4.7 µF, L_BST = 22 µH, C_HVR = 4.7 µF, TSD_PROTL (65°C),
MPPT (VOC) = Disabled, VBAT_OV = 3.3 V, VBAT_UV = 2.2 V, VBAT_OK = 2.8 V, VBAT_OK_HYST = 3.1 V,
R_OK1 = 3.97 MΩ, R_OK2 = 5.05 MΩ, R_OK3 = 0.976 MΩ, R_OV1 = 5.56 MΩ,
R_OV2 = 4.48 MΩ, R_UV1 = 5.56 MΩ, R_UV2 = 4.42 MΩ

Figure 4. Typical MPPT Disabled Application Circuit
Figure 5. High-level Functional Diagram
TYPICAL CHARACTERISTICS

Figure 6. Efficiency vs Input Voltage

Figure 7. Efficiency vs Input Voltage

Figure 8. Efficiency vs Input Voltage

Figure 9. Efficiency vs Input Current

Figure 10. Efficiency vs Input Current

Figure 11. Efficiency vs Input Current
Figure 12. Efficiency vs Input Current

Figure 13. VSTOR Quiescent Current vs Temperature

Figure 14. Sample Period vs Temperature

Figure 15. Settling Period vs Temperature

Figure 16. Example of Startup with no Battery and 10 KΩ Load

Figure 17. Example of VBAT_OK Operation, Ramping Battery From 0 V to 3.1 V
TYPICAL CHARACTERISTICS (continued)

Figure 18. Example of PFM Switching Converter Waveform

VIN = 1 V, RIN = 20 Ω, VBAT = 2.5 V, RBAT = 100 mΩ

Figure 19. Example of Output Ripple Voltage During Operation at 0 V Setting

VIN = 1 V, RIN = 20 Ω, VBAT = 3.1 V, RBAT = 100 mΩ

Figure 20. Example of Startup When VBAT is Held Below UV Setting

VIN = 1 V, RIN = 20 Ω, VBAT = 1.9 V, RBAT = 100 mΩ

Figure 21. Example of Sampling Time for MPPT Operation

VIN = 1 V, RIN = 20 Ω, VBAT = 3 V, RBAT = 100 mΩ
DETAILED PRINCIPLE OF OPERATION

OPERATION

The bq25504 is an ultra low quiescent current, efficient synchronous boost converter/charger. The boost converter is based on a switching regulator architecture which maximizes efficient operation while minimizing start-up and operation power. The bq25504 uses pulse frequency mode (PFM) modulation to maintain efficiency, even under light load conditions. In addition, bq25504 also implements battery protection features so that either rechargeable batteries or capacitors can be used as energy storage elements. Figure 5 is a high-level functional block diagram which highlights most of the major functional blocks inside the bq25504.

Boost Converter / Charger

Operation of the boost converter / charger begins when there is sufficient power available at the input pin (VIN_DC) or available from an attached battery (VBAT) to raise the voltage at pin VSTOR above 1.8 V. The start-up below 1.8 V on VSTOR of the boost-converter begins with the Cold-Start sub-system. If the VIN_DC is greater than VSTOR or VBAT then current may flow until the voltage at the input is reduced or the voltage at VSTOR and VBAT rise. This is considered an abnormal condition and the boost converter/charger does not operate.

Cold -Start

The cold-start subsystem is used to turn on the device when the voltage present on pin VSTOR is < 1.8 V. Inside the IC there is a switch (PMOS) between the energy storage capacitor VSTOR and the battery. If a battery is initially attached to pin VBAT, the PMOS switch is momentary closed and any available charge from the battery can be dumped onto VSTOR. If the resulting voltage is greater than about 1.8 V, then the bq25504’s biasing and oscillator circuits can be turned on, and start up of the boost converter will be initiated. However, if there is insufficient energy available in a connected battery, then the PMOS circuit is opened after ~20 ms, and the cold-start sequence is initiated via power provided by power at the VIN_DC input pin.

When the voltage at pin VIN_DC exceeds the minimum input voltage with sufficient power, the cold start subsystem turns on. When the storage capacitor voltage reaches 1.8 V the main boost regulator starts up. The cold-start circuitry is then turned off after the voltage condition of VSTOR >1.8V and ~32 ms after input power was applied. The output of the main boost regulator is now compared against battery undervoltage threshold (VBAT_UV). When the VBAT_UVLO threshold is reached, the PMOS switch is turned on, which allows the energy storage element attached to VBAT to charge up. Figure 22 shows the key threshold voltages. The battery management thresholds are explained later in this section. Cold start is not as efficient as the main boost regulator. If there is not sufficient power available it is possible that the cold start continuously runs and the VSTOR output does not increase to 1.8 V and start the main boost regulator.

Boost Converter/Charger Operation

The boost converter in bq25504 is used to charge the storage element attached at VBAT with the energy available from the DC input source. It employs pulse frequency modulation (PFM) mode of control to regulate the input voltage (VIN_DC) close to the desired reference voltage. The reference voltage is set by the MPPT control scheme as described in the next section. Input voltage regulation is obtained by transferring charge from the input to VSTOR only when the input voltage is higher than the voltage on pin VREF_SAMP. The current through the inductor is controlled through internal current sense circuitry. The peak current in the inductor is dithered internally to set levels to maintain high efficiency of the converter across a wide input current range. The converter nominally transfers up to a typical peak of 200 mA of input current. The boost converter is disabled when the voltage on VSTOR reaches the OV condition to protect the battery connected at VBAT from overcharging.

Maximum Power Point Tracking

Maximum power point tracking (MPPT) is implemented in bq25504 in order to maximize the power extracted from an energy harvester source. MPPT is performed by periodically sampling a ratio of the open-circuit voltage of the energy harvester and using that as the reference voltage (VREF_SAMP) to the boost converter. The sampling ratio can be externally programmed using the resistors R_OC1 and R_OC2. For solar harvesters, the resistive division ratio can be typically set between 0.7-0.8 and for thermoelectric harvesters; a resistive division ratio of 0.5 is typically used. The exact ratio for MPPT can be optimized to meet the needs of the input source being used.
Internally, the boost converter modulates the effective impedance of the energy transfer circuitry to regulate the input voltage (VIN_DC) to the sampled reference voltage (VREF_SAMP). A new reference voltage is obtained every 16s by periodically disabling the charger for 256ms and sampling a ratio of the open-circuit voltage. The reference voltage is set by the following expression:

\[
\text{VREF}_\text{SAMP} = \text{VIN}_\text{DC}(\text{OpenCircuit}) \left(\frac{R_{\text{OC1}}}{R_{\text{OC1}} + R_{\text{OC2}}} \right)
\]

(1)

The internal MPPT circuitry and the periodic sampling of VIN_DC can be disabled by tying the VOC_SAMP pin to VSTOR. When disabled an external reference voltage can be fed to the VREF_SAMP pin. The boost converter will then regulate VIN_DC to the externally provided reference. If input regulation is not desired, VREF_SAMP can be tied to GND.

Storage Element

The storage elements should be connected to VBAT pin. Many types of elements can be used, such as capacitors, super capacitors or various battery chemistries. If a capacitor is selected it needs to meet the minimum capacitance of 100 µF. If a battery is used it should be selected to have a minimum capacity equivalent to 100 µF capacitance. To take full advantage of the battery management, the load is normally tied to the VSTOR pin. Also, if there is large load transients or the storage element has impedance then it is necessary to add a low ESR by-pass capacitor to prevent a droop in voltage.

Battery Management

In this section the battery management functionality of the bq25504 integrated circuit (IC) is presented. The IC has internal circuitry to manage the voltage across the storage element and to optimize the charging of the storage element. For successfully extracting energy from the source, three different threshold voltages must be programmed using external resistors, namely the under voltage (UV) threshold, battery good threshold (VBAT_OK) and over voltage (OV) threshold. The three threshold voltages determine the region of operation of the IC. Figure 22 shows a plot of the voltage at the VSTOR pin and the various threshold voltages. For the best operation of the system, the VBAT_OK should be used to determine when a load can be applied or removed. A detailed description of the three voltage thresholds and the procedure for designing the external resistors for setting the three voltage thresholds are described next.

![Figure 22. Figure Shows the Relative Position of Various Threshold Voltages (Threshold Voltages are From Typical Solar Application Circuit in Figure 2)](image-url)
Battery Undervoltage Protection

To prevent rechargeable batteries from being deeply discharged and damaged, and to prevent completely depleting charge from a capacitive storage element, the undervoltage (VBAT_UV) threshold must be set using external resistors. The VBAT_UV threshold voltage when the battery voltage is decreasing is given by Equation 2:

\[
\text{VBAT}_{-}\text{UV} = \text{VBIAS} \left(1 + \frac{R_{\text{UV2}}}{R_{\text{UV1}}} \right)
\]

(2)

The sum of the resistors must be 10 MΩ i.e., \(R_{\text{UV1}} + R_{\text{UV2}} = 10 \text{ MΩ} \). The undervoltage threshold when battery voltage is increasing is given by UV_HYST. It is internal set to the under voltage threshold plus an internal hysteresis voltage denoted by VBAT_UV_HYST. For proper functioning of the IC and the overall system, the load must be connected to the VSTOR pin while the storage element must be connected to the VBAT pin. Once the VSTOR pin voltage goes above the UV_HYST threshold, the VSTOR pin and the VBAT pins are shorted. The switch remains closed until the VSTOR pin voltage falls below the under voltage threshold. The VBAT_UV threshold should be considered a fail safe to the system and the system load should be removed or reduced based on the VBAT_OK signal.

Battery Overvoltage Protection

To prevent rechargeable batteries from being exposed to excessive charging voltages and to prevent over charging a capacitive storage element, the over-voltage (VBAT_OV) threshold level must be set using external resistors. This is also the voltage value to which the charger will regulate the VSTOR/VBAT pin when the input has sufficient power. The VBAT_OV threshold when the battery voltage is rising is given by Equation 3:

\[
\text{VBAT}_{-}\text{OV} = \frac{3}{2} \text{VBIAS} \left(1 + \frac{R_{\text{OV2}}}{R_{\text{OV1}}} \right)
\]

(3)

The sum of the resistors must be 10 MΩ i.e., \(R_{\text{OV1}} + R_{\text{OV2}} = 10 \text{ MΩ} \). The overvoltage threshold when battery voltage is decreasing is given by OV_HYST. It is internal set to the over voltage threshold minus an internal hysteresis voltage denoted by VBAT_OV_HYST. Once the voltage at the battery exceeds VBAT_OV threshold, the boost converter is disabled. The charger will start again once the battery voltage falls below the VBAT_OV_HYST level. When there is excessive input energy, the VBAT pin voltage will ripple between the VBAT_OV and the VBAT_OV_HYST levels.

CAUTION

It should also be noted that if VIN_DC is higher than VSTOR and VSTOR is higher than VBAT_OV, the input VIN_DC is shorted to ground to stop further charging of the attached battery or capacitor. It is critical that if this case is expected, the source impedance on VIN_DC is made higher than 20 Ω, it must not be a low impedance source.

Battery Voltage in Operating Range (VBAT_OK Output)

The IC allows the user to set a programmable voltage independent of the overvoltage and undervoltage settings to indicate whether the battery voltage is at an acceptable level. When the battery voltage is decreasing the threshold is by Equation 4

\[
\text{VBAT}_{-}\text{OK}_{-}\text{PROG} = \text{VBIAS} \left(1 + \frac{R_{\text{OK2}}}{R_{\text{OK1}}} \right)
\]

(4)

When the battery voltage is increasing, the threshold is by Equation 5

\[
\text{VBAT}_{-}\text{OK}_{-}\text{HYST} = \text{VBIAS} \left(1 + \frac{R_{\text{OK2}} + R_{\text{OK3}}}{R_{\text{OK1}}} \right)
\]

(5)
The sum of the resistors must be 10 MΩ i.e., \(R_{OK1} + R_{OK2} + R_{OK3} = 10\ MΩ\). The logic high level of this signal is equal to the VSTOR voltage and the logic low level is ground. The logic high level has ~20 KΩ internally in series to limit the available current to prevent MCU damage until it is fully powered. The VBAT_OK_PROG threshold must be greater than or equal to the UV threshold. For the best operation of the system, the VBAT_OK should be setup to determine when a load can be applied or removed to optimize the storage element capacity.

Thermal Shutdown

Rechargeable Li-ion batteries need protection from damage due to operation at elevated temperatures. The application should provide this battery protection and ensure that the ambient temperature is never elevated greater than the expected operational range of 85°C.

The bq25504 uses an integrated temperature sensor to monitor the junction temperature of the device. If the OT_PROG pin is tied low then the temperature threshold for thermal protection is set to TSD_ProtL which is 65°C typically. If the OT_PROG is tied high, then the temperature is set to TSD_ProtH which is 120°C typically. Once the temperature threshold is exceeded, the boost converter/charger is disabled and charging ceases. Once the temperature of the device drops below this threshold, the boost converter/charger can resume operation. In order to avoid unstable operation near the overtemp threshold, a built-in hysteresis of approximately 5°C has been implemented. Care should be taken to not over discharge the battery in this condition since the boost converter/charger is disabled. However, if the supply voltage drops to the VBAT_UV setting, then the switch between VBAT and VSTOR will open and protect the battery even if the device is in thermal shutdown.

APPLICATION INFORMATION

INDUCTOR SELECTION

For the bq25504 to operate properly, an inductor of appropriate value must be connected between Pin # 16 (LBST) and Pin #2 (VIN_DC) for the boost converter.

For the boost converter / charger, the inductor must have an inductance = 22 µH and have a peak current capability of ≥250 mA with the minimum series resistance to keep high efficiency.

CAPACITOR SELECTION

In general, all the capacitors need to be low leakage. Any leakage the capacitors have will reduce efficiency, increase the quiescent current and diminish the effectiveness of the IC for energy harvesting.

Sampled Reference Storage Capacitance:

The MPPT operation depends on the sampled value of the open circuit voltage and the input regulation follows the voltage stored on the CREF capacitor. This capacitor is very sensitive to leakage since the holding period is around 16 seconds. As the capacitor voltage drops due to any leakage, the input regulation voltage will also drop and this can prevent proper operation from extraction the maximum power from the input source. Therefore, it is recommended that the leakage be less than 2 nA at 3 V bias.

Input capacitor:

Operation of the BQ25504 requires a capacitor to be connected between Pin 15 (VSTOR) and ground. A capacitor of 4.7 µF should be connected between Pin 15 and ground to assure stability of the boost converter, especially when the battery is fully charged and the converter in output voltage limiting mode.

Energy from the energy harvester input source is initially stored on a capacitor CHVR tied to Pin 2 (VIN_DC) and ground (VSS, Pin 1). For energy harvesters which have a source impedance which is dominated by a capacitive behavior, the value of the harvester capacitor should scaled according to the value of the output capacitance of the energy source , but an initial value of 4.7 µF is recommended.
Storage capacitor:
An additional storage capacitor CBAT, either stand-alone, or in parallel with the battery should be attached between Pin 14 (VBAT) and GND. The value of this capacitor should be selected to meet the needs of any load attached to the battery. For instance, some Li-ion batteries or thin-film batteries may not have the current capacity to meet the surge current requirements of an attached low power radio. Therefore, adding a capacitor may help buffer this load and provide the brief current surge needs.

Additionally, when the system load has large transients, adding a small high frequency capacitor in parallel to C_STOR may help buffer this load and provide the brief current surge needs.

For a recommend list of standard components, please see the EVM User’s guide.

LAYOUT CONSIDERATIONS
As for all switching power supplies, the layout is an important step in the design, especially at high peak currents and high switching frequencies. If the layout is not carefully done, the boost converter/charger could show stability problems as well as EMI problems. Therefore, use wide and short traces for the main current path and for the power ground paths. The input and output capacitor, as well as the inductor should be placed as close as possible to the IC.

The resistors that program the thresholds should be placed as close as possible to the input pins of the IC to minimize parasitic capacitance to less than 2 pF.

To layout the ground, it is recommended to use short traces as well, separated from the power ground traces. This avoids ground shift problems, which can occur due to superimposition of power ground current and control ground current. Assure that the ground traces are connected close to the device GND pin.

THERMAL CONSIDERATIONS
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added heat sinks and convection surfaces, and the presence of other heat-generating components affect the power-dissipation limits of a given component.

Three basic approaches for enhancing thermal performance are listed below.

- Improving the power-dissipation capability of the PCB design
- Improving the thermal coupling of the component to the PCB
- Introducing airflow in the system

For more details on how to use the thermal parameters in the Thermal Table, check the Thermal Characteristics Application Note (SZZA017) and the IC Package Thermal Metrics Application Note (SPRA953).
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/ Ball Finish</th>
<th>MSL Peak Temp (3)</th>
<th>Samples (Requires Login)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BQ25504RGTR</td>
<td>ACTIVE</td>
<td>QFN</td>
<td>RGT</td>
<td>16</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td></td>
</tr>
<tr>
<td>BQ25504RGTT</td>
<td>ACTIVE</td>
<td>QFN</td>
<td>RGT</td>
<td>16</td>
<td>250</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) **Eco Plan**: The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br). - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

- **TBD**: The Pb-Free/Green conversion plan has not been defined.

- **Pb-Free (RoHS)**: TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
- **Pb-Free (RoHS Exempt)**: This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
- **Green (RoHS & no Sb/Br)**: TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

(3) **MSL, Peak Temp.** – The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer
The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties, TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

REEL DIMENSIONS

![Reel Diagram](image)

TAPE DIMENSIONS

<table>
<thead>
<tr>
<th>A0</th>
<th>Dimension designed to accommodate the component width</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0</td>
<td>Dimension designed to accommodate the component length</td>
</tr>
<tr>
<td>K0</td>
<td>Dimension designed to accommodate the component thickness</td>
</tr>
<tr>
<td>W</td>
<td>Overall width of the carrier tape</td>
</tr>
<tr>
<td>P1</td>
<td>Pitch between successive cavity centers</td>
</tr>
</tbody>
</table>

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>BQ25504RGTR</td>
<td>QFN</td>
<td>16</td>
<td>3000</td>
<td>330.0</td>
<td>12.4</td>
<td>3.3</td>
<td>3.3</td>
<td>1.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q2</td>
</tr>
<tr>
<td>BQ25504RGTT</td>
<td>QFN</td>
<td>16</td>
<td>250</td>
<td>180.0</td>
<td>12.4</td>
<td>3.3</td>
<td>3.3</td>
<td>1.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q2</td>
</tr>
</tbody>
</table>
TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BQ25504RGTR</td>
<td>QFN</td>
<td>RGT</td>
<td>16</td>
<td>3000</td>
<td>346.0</td>
<td>346.0</td>
<td>29.0</td>
</tr>
<tr>
<td>BQ25504RGTT</td>
<td>QFN</td>
<td>RGT</td>
<td>16</td>
<td>250</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>
RGT (S-PVQFN-N16) PLASTIC QUAD FLATPACK NO-LEAD

NOTES:
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Quad Flatpack, No-leads (QFN) package configuration.
D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
F. Falls within JEDEC MO-220.
THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

![Exposed Thermal Pad Dimensions](image)

NOTE: All linear dimensions are in millimeters
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com.<http://www.ti.com>.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

Elcodis.com electronic components distributor
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of Texas Instruments.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal and regulatory requirements concerning their products and any use of TI products in such safety-critical applications. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products
- Audio: www.ti.com/audio
- Amplifiers: amplifier.ti.com
- Data Converters: dataconverter.ti.com
- DLP® Products: www.dlp.com
- DSP: dsp.ti.com
- Clocks and Timers: www.ti.com/clocks
- Interface: interface.ti.com
- Logic: logic.ti.com
- Power Mgmt: power.ti.com
- Microcontrollers: microcontroller.ti.com
- RFID: www.ti-rfid.com
- OMAP Mobile Processors: www.ti.com/omap
- Wireless Connectivity: www.ti.com/wirelessconnectivity

Applications
- Communications and Telecom: www.ti.com/communications
- Energy and Lighting: www.ti.com/energy
- Industrial: www.ti.com/industrial
- Medical: www.ti.com/medical
- Transportation and Automotive: www.ti.com/automotive
- Video and Imaging: www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265

Copyright © 2011, Texas Instruments Incorporated