BATTERY PROTECTION IC FOR 1-SERIAL TO 4-SERIAL-CELL PACK (SECONDARY PROTECTION)

S-8244 Series

The S-8244 Series is used for secondary protection of lithium-ion batteries with from one to four cells, and incorporates a high-precision voltage detector circuit and a delay circuit. Short-circuits between cells accommodate series connection of one to four cells.

■ Features

(1) Internal high-precision voltage detector circuit

• Overcharge detection voltage range: 3.70 V to 4.50 V: Accuracy of ± 25 mV (at +25°C)

(at a 5 mV/step) Accuracy of \pm 50 mV (at -40° C to $+85^{\circ}$ C)

• Hysteresis : 5 optional models available and selectable:

 $0.38 \pm 0.1 \; \text{V}, \, 0.25 \pm 0.07 \; \text{V}, \, 0.13 \pm 0.04 \; \text{V}, \, 0.045 \pm 0.02 \; \text{V}, \, \text{None}$

(2) High withstand voltage device : Absolute maximum rating : 26 V

(3) Wide operating voltage range: 3.6 V to 24 V (refers to the range in which the delay circuit can operate

normally after overvoltage is detected)

(4) Delay time during detection : Can be set by an external capacitor.

(5) Low current consumption : At 3.5 V for each cell : $3.0 \mu A \text{ max.} (+25^{\circ}\text{C})$

At 2.3 V for each cell: 2.4 μA max. (+25°C)

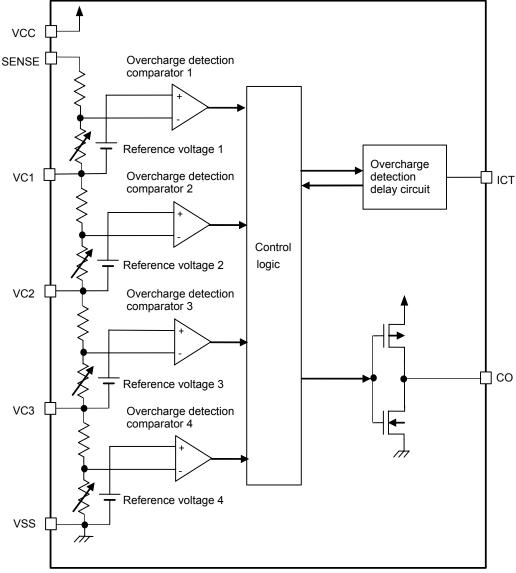
(6) Output logic and form: 4 types

CMOS output active "H" CMOS output active "L"

Pch open drain output active "L" Nch open drain output active "H"

(only CMOS output for 0.045 V hysteresis models)

(7) Lead-free products

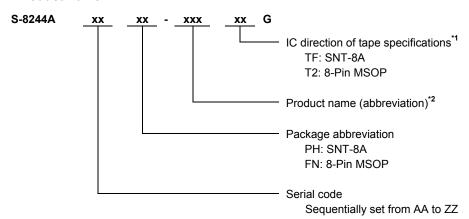

■ Applications

• Lithium ion rechargeable battery packs (secondary protection)

■ Packages

Dookaga nama	Drawing code				
Package name	Package	Tape	Reel	Land	
SNT-8A	PH008-A	PH008-A	PH008-A	PH008-A	
8-Pin MSOP	FN008-A	FN008-A	FN008-A	_	

■ Block Diagram



Remark In the case of Nch open-drain output, only the Nch transistor will be connected to the CO pin. In the case of Pch open-drain output, only the Pch transistor will be connected to the CO pin.

Figure 1

■ Product Name Structure

1. Product Name

- ***1.** Refer to the tape specifications at the end of this book.
- *2. Refer to the Product Name List.

2. Product Name List

(1) SNT-8A

Table 1

Product name/Item	Overcharge detection voltage	Overcharge hysteresis voltage	Output form
	[V _{CU}]	[V _{CD}]	
S-8244AAAPH-CEATFG	4.45 ± 0.025 V	0.38 ± 0.1 V	CMOS output active "H"
S-8244AABPH-CEBTFG	$4.20 \pm 0.025 \text{ V}$	0 V	Nch open drain active "H"
S-8244AAFPH-CEFTFG	$4.35 \pm 0.025 \text{ V}$	$0.045 \pm 0.02 \text{ V}$	CMOS output active "H"
S-8244AAGPH-CEGTFG	$4.45 \pm 0.025 V$	$0.045 \pm 0.02 \text{ V}$	CMOS output active "H"
S-8244AAVPH-CEVTFG	$4.275 \pm 0.025 \text{ V}$	$0.045 \pm 0.02 \text{ V}$	CMOS output active "H"
S-8244AAYPH-CEYTFG	$4.300 \pm 0.025 \text{ V}$	$0.25 \pm 0.07 \text{ V}$	CMOS output active "H"
S-8244AAZPH-CEZTFG	4.280 ± 0.025 V	0.25 ± 0.07 V	CMOS output active "H"

Remark Please contact our sales office for the products with the detection voltage value other than those specified above.

(2) 8-Pin MSOP

Table 2

	Overcharge	Overcharge hysteresis	
Product name/Item	detection voltage	voltage	Output form
	[V _{CU}]	[V _{CD}]	·
S-8244AAAFN-CEAT2G	$4.45 \pm 0.025 \text{V}$	$0.38 \pm 0.1 \text{ V}$	CMOS output active "H"
S-8244AABFN-CEBT2G	$4.20 \pm 0.025 V$	0 V	Nch open drain active "H"
S-8244AACFN-CECT2G	$4.115 \pm 0.025 \text{ V}$	0.13 ± 0.04 V	CMOS output active "H"
S-8244AADFN-CEDT2G	$4.20 \pm 0.025 V$	0 V	Pch open drain active "L"
S-8244AAEFN-CEET2G	$4.225 \pm 0.025 \text{ V}$	0 V	Nch open drain active "H"
S-8244AAFFN-CEFT2G	$4.35 \pm 0.025 V$	$0.045 \pm 0.02 \text{ V}$	CMOS output active "H"
S-8244AAGFN-CEGT2G	$4.45 \pm 0.025 V$	$0.045 \pm 0.02 \text{ V}$	CMOS output active "H"
S-8244AAHFN-CEHT2G	$4.30 \pm 0.025 V$	$0.25 \pm 0.07 \text{ V}$	CMOS output active "H"
S-8244AAIFN-CEIT2G	$4.40 \pm 0.025 V$	$0.045 \pm 0.02 \text{ V}$	CMOS output active "H"
S-8244AAJFN-CEJT2G	$4.50 \pm 0.025 V$	$0.38 \pm 0.1 \text{ V}$	CMOS output active "H"
S-8244AAKFN-CEKT2G	$4.475 \pm 0.025 \text{ V}$	$0.38 \pm 0.1 \text{ V}$	CMOS output active "H"
S-8244AALFN-CELT2G	$4.35 \pm 0.025 V$	$0.25 \pm 0.07 \text{ V}$	CMOS output active "H"
S-8244AAMFN-CEMT2G	$4.30 \pm 0.025 V$	$0.25 \pm 0.07 \text{ V}$	CMOS output active "L"
S-8244AANFN-CENT2G	$4.15 \pm 0.025 V$	$0.25 \pm 0.07 \text{ V}$	CMOS output active "H"
S-8244AAOFN-CEOT2G	$4.25 \pm 0.025 V$	$0.25 \pm 0.07 \text{ V}$	CMOS output active "H"
S-8244AAPFN-CEPT2G	$4.05 \pm 0.025 V$	$0.25 \pm 0.07 \text{ V}$	CMOS output active "H"
S-8244AAQFN-CEQT2G	$4.15 \pm 0.025 V$	0 V	Nch open drain active "H"
S-8244AARFN-CERT2G	$4.30 \pm 0.025 V$	$0.25 \pm 0.07 \text{ V}$	Nch open drain active "H"
S-8244AATFN-CETT2G	$4.20 \pm 0.025 V$	$0.25 \pm 0.07 \text{ V}$	CMOS output active "H"
S-8244AAUFN-CEUT2G	$3.825 \pm 0.025 \text{ V}$	$0.25 \pm 0.07 \text{ V}$	CMOS output active "H"
S-8244AAWFN-CEWT2G	4.50 ± 0.025 V	0.38 ± 0.1 V	CMOS output active "L"
S-8244AAXFN-CEXT2G	$4.025 \pm 0.025 \text{ V}$	$0.25 \pm 0.07 \text{ V}$	CMOS output active "H"
S-8244ABAFN-CFAT2G	$4.22 \pm 0.025 \text{ V}$	$0.045 \pm 0.02 \text{ V}$	CMOS output active "H"

Remark Please contact our sales office department for the products with the detection voltage value other than those specified above.

■ Pin Configurations

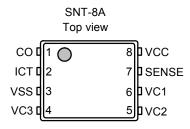


Table 3

Pin No.	Symbol	Description
1	CO	FET gate connection pin for charge control
2	ICT	Capacitor connection pin for overcharge detection delay
3	VSS	Input pin for negative power supply, Connection pin for battery 4's negative voltage
4	VC3	Connection pin for battery 3's negative voltage, Connection pin for battery 4's positive voltage
5	VC2	Connection pin for battery 2's negative voltage, Connection pin for battery 3's positive voltage
6	VC1	Connection pin for battery 1's negative voltage, Connection pin for battery 2's positive voltage
7	SENSE	Connection pin for battery 1's positive voltage
8	VCC	Input pin for positive power supply

Figure 2

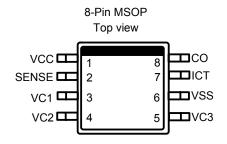


Table 4

Pin No.	Symbol	Description
1	VCC	Input pin for positive power supply
2	SENSE	Connection pin for battery 1's positive voltage
3	VC1	Connection pin for battery 1's negative voltage, Connection pin for battery 2's positive voltage
4	VC2	Connection pin for battery 2's negative voltage, Connection pin for battery 3's positive voltage
5	VC3	Connection pin for battery 3's negative voltage, Connection pin for battery 4's positive voltage
6	VSS	Input pin for negative power supply, Connection pin for battery 4's negative voltage
7	ICT	Capacitor connection pin for overcharge detection delay
8	CO	FET gate connection pin for charge control

Figure 3

■ Absolute Maximum Ratings

Table 5

(Ta = 25°C unless otherwise specified)

	Item	Symbol	Applied pin	Rating	Unit
Input voltage b	etween VCC and VSS	V_{DS}	VCC	V_{SS} –0.3 to V_{SS} +26	V
Delay capacito	r connection pin voltage	V _{ICT}	ICT	V_{SS} –0.3 to V_{CC} +0.3	V
Input pin voltag	e	V _{IN}	SENSE, VC1, VC2, VC3	V_{SS} –0.3 to V_{CC} +0.3	V
CO suitaut aia	(CMOS output)			V_{SS} –0.3 to V_{CC} +0.3	V
voltage	CO output pin (Nch open drain output)		CO	V_{SS} –0.3 to 26	V
voltage	(Pch open drain output)			V_{CC} –26 to V_{CC} +0.3	V
Dawar	SNT-8A			450 ^{*1}	mW
	Power		_	300 (When not mounted on board)	mW
dissipation 8-Pin MSOP				500 ^{*1}	mW
Operating ambient temperature		T _{opr}	_	-40 to +85	°C
Storage tempe	rature	T _{stq}	_	-40 to +125	°C

^{*1.} When mounted on board

[Mounted board]

(1) Board size : $114.3 \text{ mm} \times 76.2 \text{ mm} \times t1.6 \text{ mm}$ (2) Name : JEDEC STANDARD51-7

Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions.

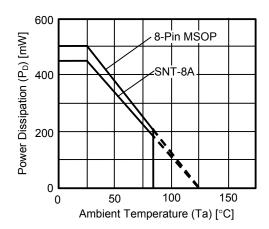


Figure 4 Power Dissipation of Package (When Mounted on Board)

■ Electrical Characteristics

Table 6

(Ta = 25 °C unless otherwise specified)

				14 - 25 V	J uriless	Othici Wisc	specifica)
Symbol	Conditions	Min.	Тур.	Max.	Unit	Test conditions	Test circuit
V _{CU1}	3.7 V to 4.5 V Adjustment	V _{CU1} -0.025	V _{CU1}	V _{CU1} +0.025	V	1	1
V _{CU2}	3.7 V to 4.5 V Adjustment	V _{CU2} -0.025	V _{CU2}	V _{CU2} +0.025	V	2	1
V _{CU3}	3.7 V to 4.5 V Adjustment	V _{CU3} -0.025	V _{CU3}	V _{CU3} +0.025	V	3	1
V _{CU4}	3.7 V to 4.5 V Adjustment	V _{CU4} -0.025	V _{CU4}	V _{CU4} +0.025	V	4	1
V_{CD1}	_	0.28	0.38	0.48	V	1	1
V_{CD2}	_	0.28	0.38	0.48	V	2	1
V_{CD3}	_	0.28	0.38	0.48	V	3	1
V_{CD4}	_	0.28	0.38	0.48	V	4	1
T _{COE}	Ta = -40° C to $+85^{\circ}$ C ^{*4}	-0.4	0.0	+0.4	mV/°C	_	_
t _{CU}	C = 0.1 μF	1.0	1.5	2.0	S	5	2
V _{DSOP}	_	3.6	_	24	V	_	_
I _{OPE}	V1 = V2 = V3 = V4 = 3.5 V	_	1.5	3.0	μА	6	3
I _{PDN}	V1 = V2 = V3 = V4 = 2.3 V		1.2	2.4	μΑ	6	3
I _{VC1}	V1 = V2 = V3 = V4 = 3.5 V	-0.3	_	0.3	μΑ	6	3
I _{VC2}	V1 = V2 = V3 = V4 = 3.5 V	-0.3	_	0.3	μΑ	6	3
I _{VC3}	V1 = V2 = V3 = V4 = 3.5 V	-0.3		0.3	μA	6	3
V _{CO(H)}	at I _{OUT} = 10 μA	V _{CC} -0.05		_	V	7	4
V _{CO(L)}	at I _{OUT} = 10 μA	_	_	V _{SS} +0.05	V	7	4
	V _{CU1} V _{CU2} V _{CU3} V _{CU4} V _{CD1} V _{CD2} V _{CD3} V _{CD4} T _{COE} t _{CU} V _{DSOP} I _{OPE} I _{PDN} I _{VC1} I _{VC2} I _{VC3} V _{CO(H)}	V_{CU1} 3.7 V to 4.5 V Adjustment V_{CU2} 3.7 V to 4.5 V Adjustment V_{CU3} 3.7 V to 4.5 V Adjustment V_{CU4} 3.7 V to 4.5 V Adjustment V_{CD4}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Symbol Conditions Min. Typ. V _{CU1} 3.7 V to 4.5 V Adjustment V _{CU2} -0.025 V _{CU2} V _{CU2} 3.7 V to 4.5 V Adjustment V _{CU3} -0.025 V _{CU3} V _{CU3} 3.7 V to 4.5 V Adjustment V _{CU4} -0.025 V _{CU4} V _{CU4} 3.7 V to 4.5 V Adjustment V _{CU4} -0.025 V _{CU4} V _{CD1} — 0.28 0.38 V _{CD2} — 0.28 0.38 V _{CD3} — 0.28 0.38 V _{CD4} — 0.28 0.38 T _{COE} Ta = -40°C to +85°C*4 -0.4 0.0 t _{CU} C = 0.1 μF 1.0 1.5 V _{DSOP} — 3.6 — I _{PDN} V1 = V2 = V3 = V4 = 3.5 V — 1.5 I _{VC2} V1 = V2 = V3 = V4 = 3.5 V — 1.2 I _{VC3} V1 = V2 = V3 = V4 = 3.5 V — — I _{VC3} V1 = V2 = V3 = V4 = 3.5 V — — I _{VC3} V1 = V2 = V3 = V4 = 3.5 V — <	Symbol Conditions Min. Typ. Max. V _{CU1} 3.7 V to 4.5 V Adjustment V _{CU2} -0.025 V _{CU1} +0.025 V _{CU2} 3.7 V to 4.5 V Adjustment V _{CU2} -0.025 V _{CU2} +0.025 V _{CU3} 3.7 V to 4.5 V Adjustment V _{CU4} -0.025 V _{CU4} +0.025 V _{CU4} 3.7 V to 4.5 V Adjustment V _{CU4} -0.025 V _{CU4} +0.025 V _{CD1} — 0.28 0.38 0.48 V _{CD2} — 0.28 0.38 0.48 V _{CD3} — 0.28 0.38 0.48 V _{CD4} — 0.28 0.38 0.48 V _{CD4} — 0.28 0.38 0.48 V _{CD4} — 0.28 0.38 0.48 T _{COE} Ta = -40°C to +85°C*4 -0.4 0.0 +0.4 t _{CU} C = 0.1 μF 1.0 1.5 2.0 V _{DSOP} — 3.6 — 24 I _Q V _Q V _Q V _Q 0.3	Symbol Conditions Min. Typ. Max. Unit V _{CU1} 3.7 V to 4.5 V Adjustment V _{CU2} -0.025 V _{CU1} +0.025 V V _{CU2} 3.7 V to 4.5 V Adjustment V _{CU2} -0.025 V _{CU2} +0.025 V V _{CU3} 3.7 V to 4.5 V Adjustment V _{CU3} -0.025 V _{CU4} +0.025 V V _{CU4} 3.7 V to 4.5 V Adjustment V _{CU4} -0.025 V _{CU4} +0.025 V V _{CD4} — 0.28 0.38 0.48 V V V _{CD2} — 0.28 0.38 0.48 V V V _{CD3} — 0.28 0.38 0.48 V V V _{CD4} — 0.28 0.38 0.48 V V T _{COE} Ta = -40°C to +85°C*4 -0.4 0.0 +0.4 mV/°C V MV/°C t _{CU} C = 0.1 μF 1.0 1.5 2.0 s s V _{DSOP} — 3.6 — 24 V V I _{QC2} V1 = V2 = V3 = V4 = 3.5 V — 1.5 3.0 μA μA I _{QC2} V1 = V2 = V3 = V4 = 3.5 V -0.3 — 0.3 μA 0.3 μA I _{QC3} V1 = V2 = V3 = V4 = 3.5 V	Symbol Conditions Min. Typ. Max. Unit conditions V _{CU1} 3.7 V to 4.5 V Adjustment V _{CU2} -0.025 V _{CU2} +0.025 V 1 V _{CU2} 3.7 V to 4.5 V Adjustment V _{CU3} -0.025 V _{CU3} +0.025 V 2 V _{CU3} 3.7 V to 4.5 V Adjustment V _{CU3} -0.025 V _{CU3} +0.025 V 3 V _{CU4} -0.025 V _{CU4} +0.025 V 4 <

^{*1.} \pm 50 mV when Ta = -40°C to +85°C.

^{*2.} $0.25 \pm 0.07 \text{ V}$, $0.13 \pm 0.04 \text{ V}$, $0.045 \pm 0.02 \text{ V}$ except for 0.38 V hysteresis models.

^{*3.} Overcharge detection voltage or overcharge hysteresis voltage.

^{*4.} Since products are not screened at high and low temperature, the specification for this temperature range is guaranteed by design, not tested in production.

^{*5.} After detecting the overcharge, the delay circuit operates normally in the range of operating voltage.

^{*6.} Output logic and CMOS or open drain output can be selected.

■ Test Circuits

(1) Test Condition 1, Test Circuit 1

Conditions:

- Set switches 1 and 2 to OFF for CMOS output models.
- Set switch 1 to ON and switch 2 to OFF for Nch open drain models.
- Set switch 1 to OFF and switch 2 to ON for Pch open drain models.

Definitions:

• Set V1, V2, V3 and V4 to 3.5 V and gradually increase V1:

Overcharge detection voltage 1 (V_{CU1}) is defined as V1 voltage when CO is turned to "H" (for CMOS output active "H" or Nch open drain) or "L" (for CMOS output active "L" or Pch open drain).

Next, gradually decrease V1:

Overcharge hysteresis voltage (V_{CD1}) is defined as a difference between V_{CU1} and V1 when CO is turned to "L" (for CMOS output active "H" or Nch open drain) or "H" (for CMOS output active "L" or Pch open drain)

(2) Test Condition 2, Test Circuit 1

Conditions:

- Set switches 1 and 2 to OFF for CMOS output models.
- Set switch 1 to ON and switch 2 to OFF for Nch open drain models.
- Set switch 1 to OFF and switch 2 to ON for Pch open drain models.

Definitions:

• Set V1, V2, V3 and V4 to 3.5 V and gradually increase V2.

Overcharge detection voltage 2 (V_{CU2}) is defined as V2 voltage when CO is turned to "H" (for CMOS output active "H" or Nch open drain) or "L" (for CMOS output active "L" or Pch open drain).

· Next, gradually decrease V2.

Overcharge hysteresis voltage (V_{CD2}) is defined as a difference between V_{CU2} and V2 when CO is turned to "L" (for CMOS output active "H" or Nch open drain) or "H" (for CMOS output active "L" or Pch open drain).

(3) Test Condition 3, Test Circuit 1

Conditions:

- Set switches 1 and 2 to OFF for CMOS output models.
- · Set switch 1 to ON and switch 2 to OFF for Nch open drain models.
- Set switch 1 to OFF and switch 2 to ON for Pch open drain models.

Definitions:

• Set V1, V2, V3 and V4 to 3.5 V and gradually increase V3.

Overcharge detection voltage 3 (V_{CU3}) is defined as V3 voltage when CO is turned to "H" (for CMOS output active "H" or Nch open drain) or "L" (for CMOS output active "L" or Pch open drain).

· Next gradually decrease V3.

Overcharge hysteresis voltage (V_{CD3}) is defined as a difference between V_{CU3} and V3 when CO is turned to "L" (for CMOS output active "H" or Nch open drain) or "H" (for CMOS output active "L" or Pch open drain).

(4) Test Condition 4, Test Circuit 1

Conditions:

- Set switches 1 and 2 to OFF for CMOS output models.
- Set switch 1 to ON and switch 2 to OFF for Nch open drain models.
- Set switch 1 to OFF and switch 2 to ON for Pch open drain models.

• Set V1, V2, V3 and V4 to 3.5 V and gradually increase V4.

Overcharge detection voltage 4 (V_{CU4}) is defined as V4 voltage when CO is turned to "H" (for CMOS output active "H" or Nch open drain) or "L" (for CMOS output active "L" or Pch open drain).

· Next, gradually decrease V4.

Overcharge hysteresis voltage (V_{CD4}) is defined as a difference between V_{CU4} and V4 when CO is turned to "L" (for CMOS output active "H" or Nch open drain) or "H" (for CMOS output active "L" or Pch open drain).

(5) Test Condition 5, Test Circuit 2

Conditions:

- Set switches 1 and 2 to OFF for CMOS output models.
- Set switch 1 to ON and switch 2 to OFF for Nch open drain models.
- Set switch 1 to OFF and switch 2 to ON for Pch open drain models.

Set V1, V2, V3 and V4 to 3.5 V and momentarily rise V1 to 4.7 V within 10 μs.

Overcharge detection delay time (t_{CU}) is the period from when V1 goes 4.7 V to when CO is turned to "H" (for CMOS output active "H" or Nch open drain) or "L" (for CMOS output active "L" or Pch open drain).

(6) Test Condition 6, Test Circuit 3

Conditions:

- Set V1, V2, V3 and V4 to 2.3 V.
- Measure current consumption (I1).

Definition:

The current consumption (I1) is defined as current consumption at power down (I_{PDN}).

Conditions:

- Set V1, V2, V3 and V4 to 3.5 V.
- Measure current consumption I1, I2, I3, and I4.

• The current consumption (I1) is defined as current consumption during normal operation (IOPE), the current consumption (I2) as VC1 sink current (I_{VC1}), the current consumption (I3) as VC2 sink current (I_{VC2}), and the current consumption (I4) as VC3 sink current (I_{VC3}), respectively.

(7) Test Condition 7, Test Circuit 4

Conditions:

• Set switch 1 to OFF and switch 2 to ON.

Definitions:

- Set V1, V2, V3 and V4 to 4.6 V and gradually decrease V6 from V_{CC} (for CMOS output active "H" models).
 V6 voltage is defined as V_{CO (H)} when I2 (= -10 μA) flows.
- Set V1, V2, V3 and V4 to 3.5 V and gradually decrease V6 from V_{CC} (for CMOS output active "L" or Pch open drain models).
 - V6 voltage is defined as $V_{\text{CO (H)}}$ when I2 (= –10 $\mu\text{A})$ flows.
- Set V1, V2, V3 and V4 to 4.6 V and gradually increase V6 from 0 V (for CMOS output active "L" models). V6 voltage is defined as $V_{CO\ (L)}$ when I2 (= 10 μ A) flows.
- Set V1, V2, V3 and V4 to 3.5 V and gradually increase V6 from 0 V (for CMOS output active "H" or Nch open drain models).

V6 voltage is defined as $V_{\text{CO}\,\text{(L)}}$ when I2 (= 10 $\mu\text{A})$ flows.

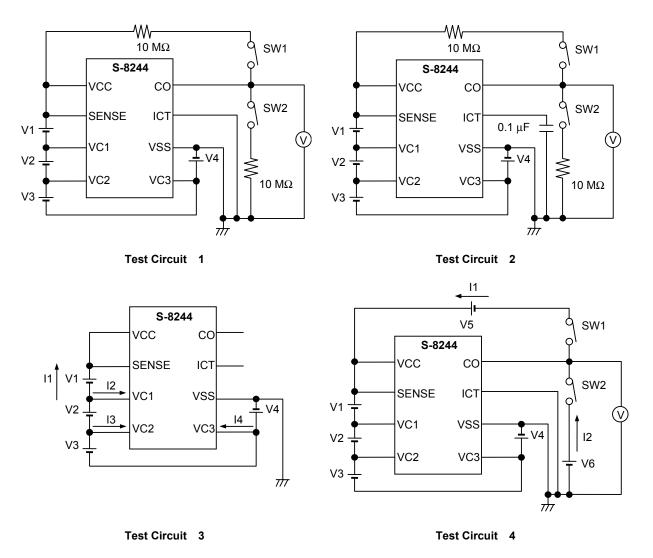


Figure 5

■ Operation

Overcharge Detection

CO is turned to "H" (for CMOS output active "H" or Nch open drain models) or "L" (for CMOS output active "L" or Pch open drain models) when the voltage of one of the batteries exceeds the overcharge detection voltage (V_{CU}) during charging under normal conditions beyond the overcharge detection delay time (t_{CU}). This state is called "overcharge." Attaching FET to the CO pin provides charge control and a second protection. At that time, the overcharge state is maintained until the voltage of all batteries decreases from the overcharge detection voltage (V_{CU}) by the equivalent to the overcharge hysteresis voltage (V_{CD}).

Delay Circuit

The delay circuit rapidly charges the capacitor connected to the delay capacitor connection pin up to a specified voltage when the voltage of one of the batteries exceeds the overcharge detection voltage (V_{CU}). Then, the delay circuit gradually discharges the capacitor at 100 nA and inverts the CO output when the voltage at the delay capacitor connection pin goes below a specified level. Overcharge detection delay time (t_{CU}) varies depending upon the external capacitor.

Each delay time is calculated using the following equation.

$$\begin{aligned} & \text{Min.} & \text{Typ.} & \text{Max.} \\ & t_{\text{CU}}[s] = \text{Delay Coefficient (10,} & 15, & 20) \times C_{\text{ICT}} \left[\mu F \right] \end{aligned}$$

Because the delay capacitor is rapidly charged, the smaller the capacitance, the larger the difference between the maximum voltage and the specified value of delay capacitor pin (ICT pin). This will cause a deviation between the calculated delay time and the resultant delay time. Also, delay time is internally set in this IC to prevent the CO output from inverting until the charge to delay capacitor pin is reached to the specified voltage. If large capacitance is used, output may be enabled without delay time because charge is disabled within the internal delay time

Please note that the maximum capacitance connected to the delay capacitor pin (ICT pin) is 1 μ F.

■ Timing Chart

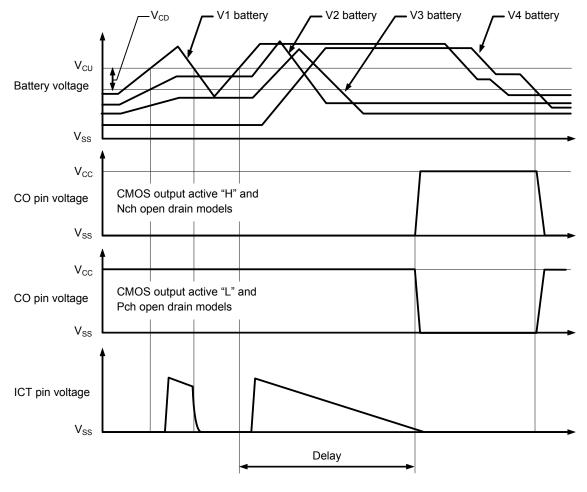


Figure 6

■ Battery Protection IC Connection Example

(1) Connection Example 1

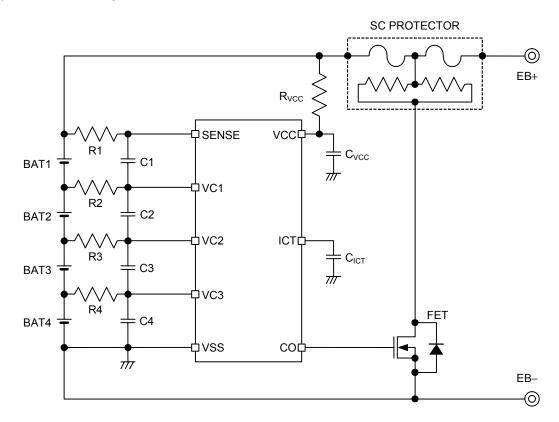


Figure 7

Table 7 Constants for External Components 1

Symbol	Min.	Тур.	Max.	Unit
R1 to R4	0	1 k	10 k	Ω
C1 to C4	0	0.1	1	μF
R_{VCC}	0	100	1 k	Ω
C_{VCC}	0	0.1	1	μF
C _{ICT}	0	0.1	1	μF

Caution1. The above constants may be changed without notice.

- 2. It has not been confirmed whether the operation is normal or not in circuits other than the above example of connection. In addition, the example of connection shown above and the constant do not guarantee proper operation. Perform through evaluation using the actual application to set the constant.
- 3. In the case of Nch open drain output, pull up CO pin by external resistor.

[For SC PROTECTOR, contact]

Sony Chemical & Information Device Corporation, Electronic Device Marketing & Sales Dept.

Gate City Osaki East Tower 8F, 1-11-2

Osaki, Shinagawa-ku, Tokyo, 141-0032 Japan

TEL +81-3-5435-3943

Contact Us: http://www.sonycid.jp/en/

(2) Connection Example 2

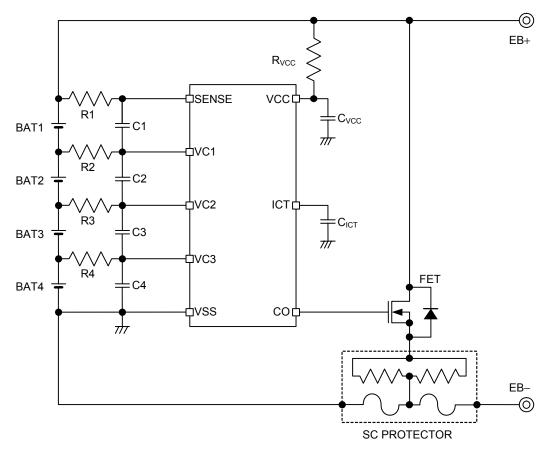


Figure 8

Table 8 Constants for External Components 2

Symbol	Min.	Тур.	Max.	Unit
R1 to R4	0	1 k	10 k	Ω
C1 to C4	0	0.1	1	μF
R_{VCC}	0	100	1 k	Ω
C_{VCC}	0	0.1	1	μF
C _{ICT}	0	0.1	1	μF

- 2. It has not been confirmed whether the operation is normal or not in circuits other than the above example of connection. In addition, the example of connection shown above and the constant do not guarantee proper operation. Perform through evaluation using the actual application to set the constant.
- 3. In the case of Nch open drain output, pull up CO pin by external resistor.

(3) Connection Example 3 (for 3-cells)



Figure 9

Table 9 Constants for External Components 3

Symbol	Min.	Тур.	Max.	Unit
R1 to R3	0	1 k	10 k	Ω
C1 to C3	0	0.1	1	μF
R_{VCC}	0	100	1 k	Ω
C_{VCC}	0	0.1	1	μF
C _{ICT}	0	0.1	1	μF

- It has not been confirmed whether the operation is normal or not in circuits other than the above example of connection. In addition, the example of connection shown above and the constant do not guarantee proper operation. Perform through evaluation using the actual application to set the constant.
- 3. In the case of Nch open drain output, pull up CO pin by external resistor.

(4) Connection Example 4 (for 2-cells)

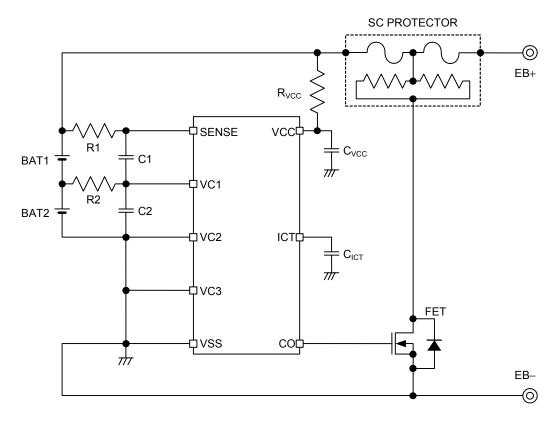


Figure 10

Table 10 Constants for External Components 4

Symbol	Min.	Тур.	Max.	Unit
R1, R2	0	1 k	10 k	Ω
C1, C2	0	0.1	1	μF
R _{VCC}	0	100	1 k	Ω
C_{VCC}	0	0.1	1	μF
C _{ICT}	0	0.1	1	μF

- It has not been confirmed whether the operation is normal or not in circuits other than the above example of connection. In addition, the example of connection shown above and the constant do not guarantee proper operation. Perform through evaluation using the actual application to set the constant.
- 3. In the case of Nch open drain output, pull up CO pin by external resistor.

(5) Connection Example 5 (for 1-cell)

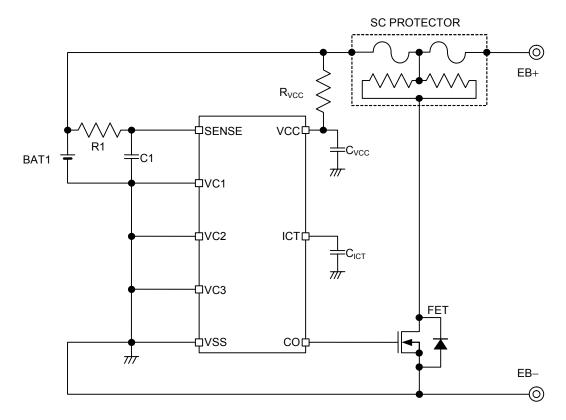
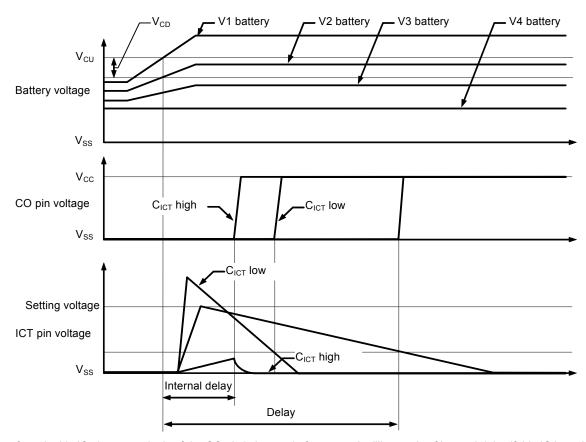


Figure 11

Table 11 Constants for External Components 5

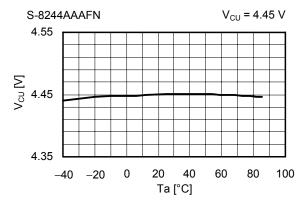

Symbol	Min.	Тур.	Max.	Unit
R1	0	1 k	10 k	Ω
C1	0	0.1	1	μF
R _{vcc}	0	100	1 k	Ω
C _{VCC}	0	0.1	1	μF
C _{ICT}	0	0.1	1	μF

- It has not been confirmed whether the operation is normal or not in circuits other than the above example of connection. In addition, the example of connection shown above and the constant do not guarantee proper operation. Perform through evaluation using the actual application to set the constant.
- 3. In the case of Nch open drain output, pull up CO pin by external resistor.

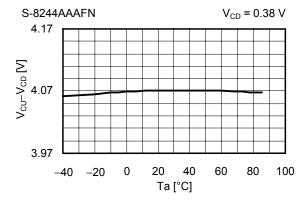
■ Precautions

- This IC charges the delay capacitor through the delay capacitor pin (ICT pin) immediately when the voltage of one of batteries V1 to V4 reaches the overcharge voltage. Therefore, setting the resistor connected to the VCC pin to any value greater than the recommended level causes a reduction in the IC power supply voltage because of charge current of the delay capacitor. This may lead to a malfunction. Set up the resistor NOT to exceed the typical value. If you change the resistance, please consult us.
- DO NOT connect any of overcharged batteries. Even if only one overcharged battery is connected to this IC, the IC detects overcharge, then charge current flows to the delay capacitor through the parasitic diode between pins where the battery is not connected yet. This may lead to a malfunction. Please perform sufficient evaluation in the case of use. Depending on an application circuit, even when the fault charge battery is not contained, the connection turn of a battery may be restricted in order to prevent the output of CO detection pulse at the time of battery connection.

CMOS output active "H" and Nch open drain models

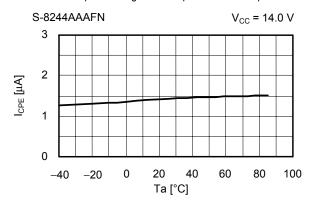


- In this IC, the output logic of the CO pin is inverted after several milliseconds of internal delay if this IC is under the overcharge condition even ICT pin is either "V_{SS}-short circuit," "V_{DD}-short circuit," or "Open" status.
- Any position from V1 to V4 can be used when applying this IC for a one to three-cell battery. However, be sure to short circuit between pins not in use (SENSE-VC1, VC1-VC2, VC2-VC3, or VC3-VSS).
- The application conditions for the input voltage, output voltage, and load current should not exceed the package power dissipation.
- Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic
 protection circuit.
- SII claims no responsibility for any and all disputes arising out of or in connection with any infringement of the
 products including this IC upon patents owned by a third party.

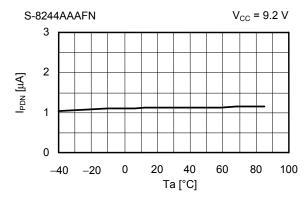

■ Characteristics (Typical Data)

1. Detection Voltage vs. Temperature

Overcharge Detection Voltage vs. Temperature

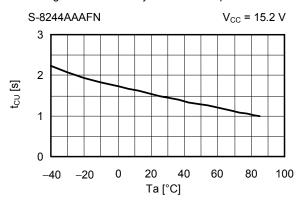


Overcharge Release Voltage vs. Temperature

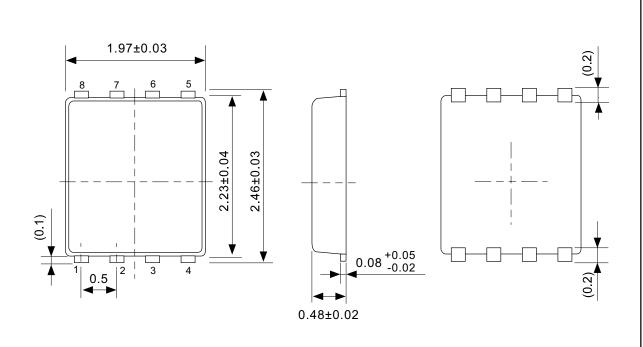


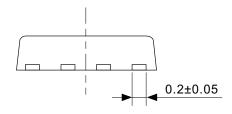
2. Current Consumption vs. Temperature

Current Consumption during Normal Operation vs. Temperature

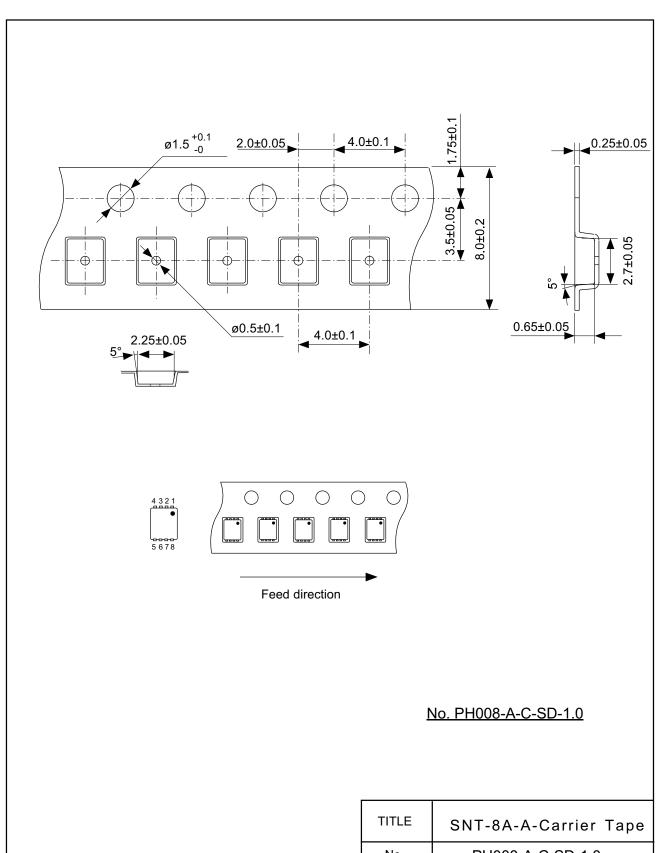


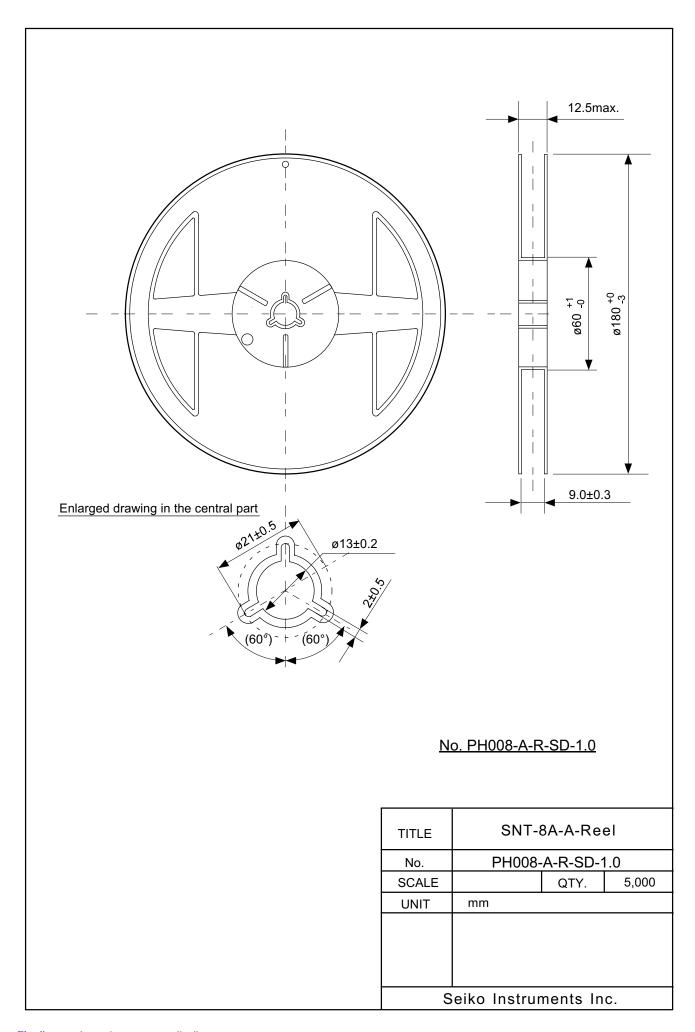
Current Consumption at Power Down vs. Temperature

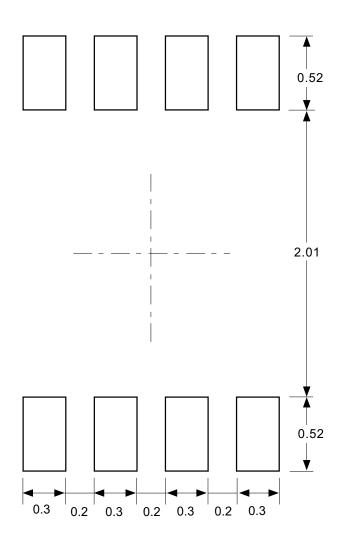



3. Delay Time vs. Temperature

Overcharge Detection Delay Time vs. Temperature

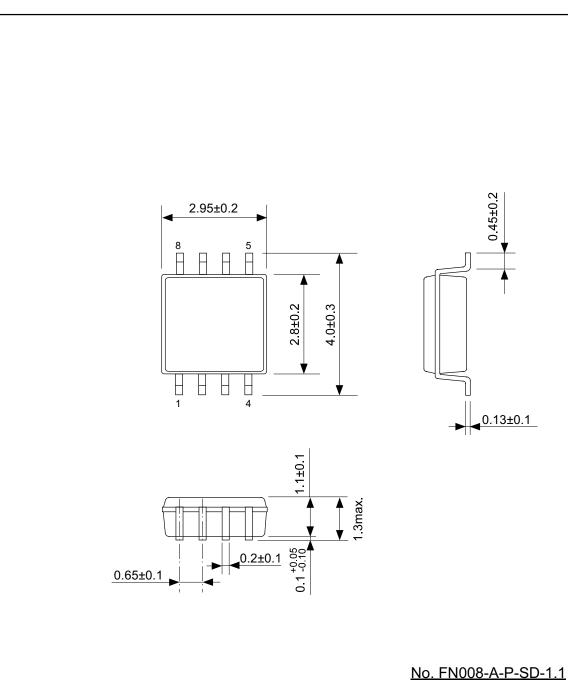

Caution Please design all applications of the S-8244 Series with safety in mind.



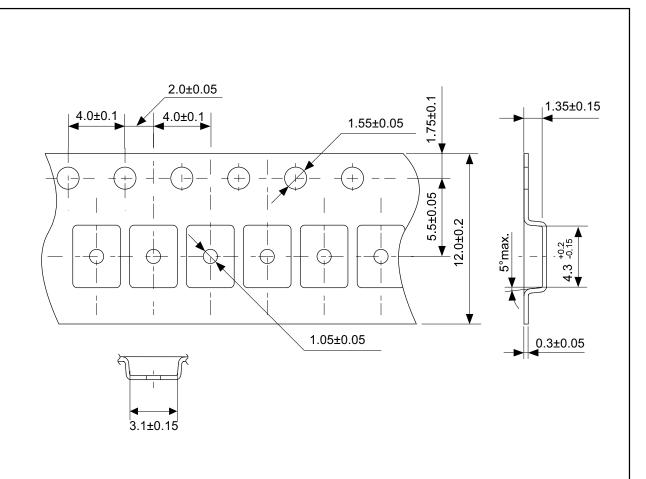

No. PH008-A-P-SD-2.0

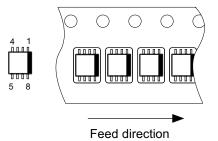
SNT-8A-A-PKG Dimensions		
PH008-A-P-SD-2.0		
mm		
Seiko Instruments Inc.		

No. PH008-A-C-SD-1.0		
	<u> </u>	
TITLE	SNT-8A-A-Carrier Tape	
No.	PH008-A-C-SD-1.0	
SCALE		
UNIT	mm	
Seiko Instruments Inc.		

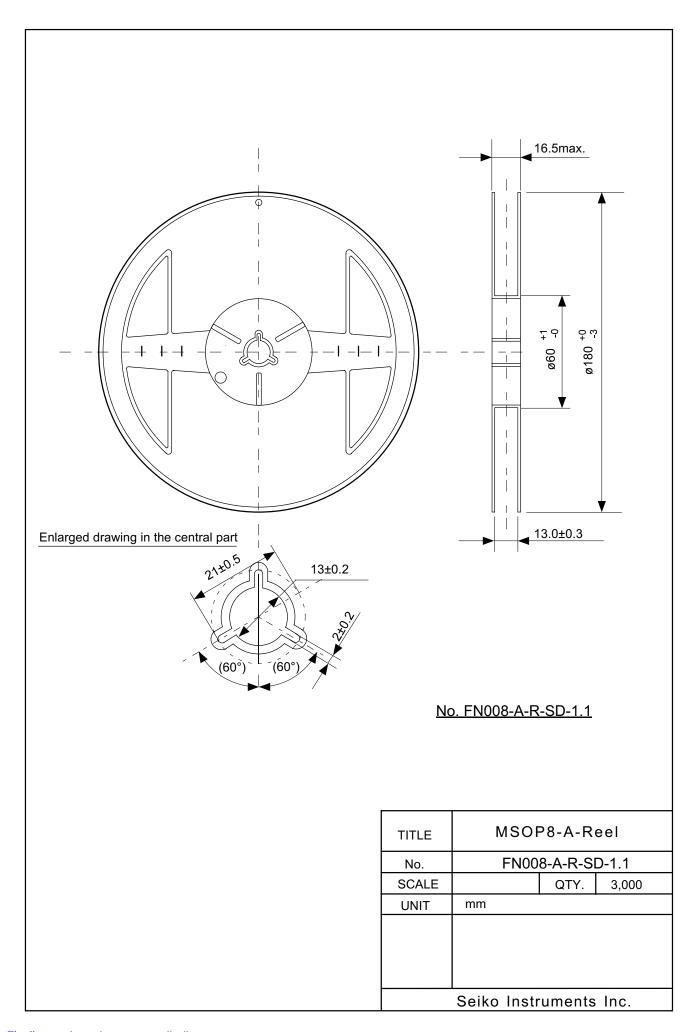


Caution Making the wire pattern under the package is possible. However, note that the package may be upraised due to the thickness made by the silk screen printing and of a solder resist on the pattern because this package does not have the standoff.


注意 パッケージ下への配線パターン形成は可能ですが、本パッケージはスタンドオフが無いので、パターン上のレジスト厚み、シルク印刷の厚みによってパッケージが持ち上がることがありますのでご配慮ください。


No. PH008-A-L-SD-3.0

TITLE	SNT-8A-A-Land Recommendation	
NI-	DH008 V I SD 3 0	
No.	PH008-A-L-SD-3.0	
SCALE		
UNIT	mm	
Seiko Instruments Inc.		


TITLE	MSOP8-A-PKG Dimensions
No.	FN008-A-P-SD-1.1
SCALE	
UNIT	mm
	Seiko Instruments Inc.

No. FN008-A-C-SD-1.1

TITLE	MSOP8-A-Carrier Tape
No.	FN008-A-C-SD-1.1
SCALE	
UNIT	mm
	Cailea Instrumenta Ins
	Seiko Instruments Inc.

- The information described herein is subject to change without notice.
- Seiko Instruments Inc. is not responsible for any problems caused by circuits or diagrams described herein
 whose related industrial properties, patents, or other rights belong to third parties. The application circuit
 examples explain typical applications of the products, and do not guarantee the success of any specific
 mass-production design.
- When the products described herein are regulated products subject to the Wassenaar Arrangement or other agreements, they may not be exported without authorization from the appropriate governmental authority.
- Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Seiko Instruments Inc. is strictly prohibited.
- The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Seiko Instruments Inc.
- Although Seiko Instruments Inc. exerts the greatest possible effort to ensure high quality and reliability, the
 failure or malfunction of semiconductor products may occur. The user of these products should therefore
 give thorough consideration to safety design, including redundancy, fire-prevention measures, and
 malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.