M51970L

MOTOR SPEED CONTROL

DESCRIPTION

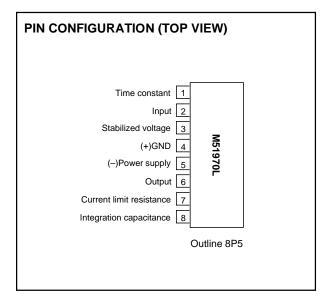
The M51970L is a semiconductor integrated circuit designed to control the motor rotating speed.

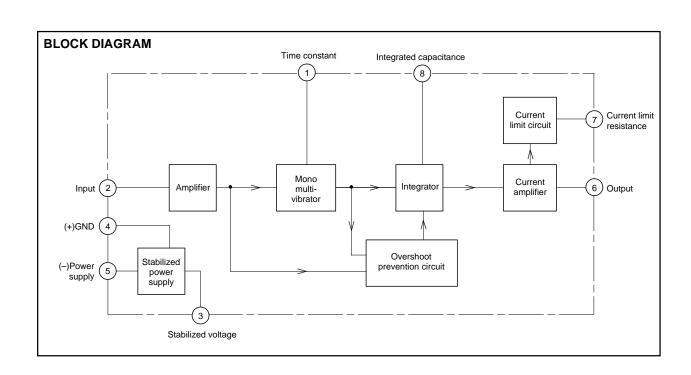
Connection of the rotating speed detector (F-G detector) to the input keeps the motor rotating speed constant with high precision. Connection of an appropriate power transistor to the output controls a wide range of DC motors.

FEATURES

- ullet Wide range of supply voltage $\cdots 2.5 18V (-20 +75^{\circ}C)$
- Variation coefficient of supply voltage
 - ±0.1% standard (4 15V)
- ●Load variation coefficient · · · · · ±0.1% standard
- ●Temperature coefficient of rotating speed

..... ±10 ppm/°C (standard) (-20 – +75°C)


- ●The built-in over-shoot prevention circuit keeps the over-shoot low.
- ●DC drive system with minimum RFI

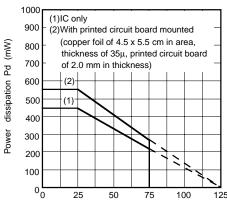

APPLICATION

Motor rotating control in the player, tape recorder, etc.

RECOMMENDED OPERATING CONDITIONS

Supply voltage range	I8V
Rated supply voltage ······	9V

ABSOLUTE MAXIMUM RATINGS (Ta=25°C unless otherwise noted)

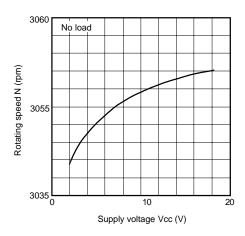

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		18	V
I6	Sink current into 6 pin		40	mA
l ₃	Source current from ③ pin		-3	mA
PdF	Power dissipation	With printed circuit board mounted (copper foil of 4.5 x 5.5 cm in area, thickness of 35μ , printed circuit board of 2.0 mm in thickness)	550	mW
KeF	Thermal derating		5.5	mW / °C
Topr	Operating temperature		-20 - +75	°C
Tstg	Storage temperature		-40 - +125	°C

ELECTRICAL CHARACTERISTICS (Ta=25°C, Vcc=9V unless otherwise noted)

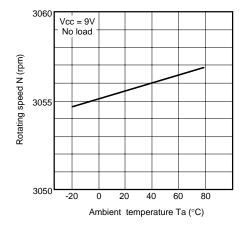
Symbol	Parameter	Test conditions	Limits			Llmit
			Min.	Тур.	Max.	Unit
Vcc	Supply voltage range	Ta = -20 - +75°C	2.5	_	18	V
Icc	Circuit current	Except for output drive current	3	4.5	8	mA
Vs	Stabilized output voltage		1.8	2.0	2.2	V
VTH@	Input threshold voltage		-50	0	50	mV
RIN	Input impedance		4.2	7.9	12	kΩ
Isc@	Output limit current	$Rsc = 27\Omega$	20	27	35	mA
Ττ	One-shot pulse width	$R\tau = 75k\Omega, C\tau = 22,000pF$	375	395	415	μs
Reg-vcc	Motor speed stability for Vcc	Vcc = 4 - 15V		±0.1		%
Reg-L	Motor speed stability for load			±0.1		%
TCN	Motor speed stability for temperature	Ta = -20 - +75°C		±10		ppm/°C

TYPICAL CHARACTERISTICS (Ta=25°C unless otherwise noted)

Thermal derating (Maximum rating)

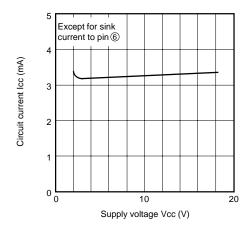

Ambient temperature Ta (°C)

The data on the next page was measured with the following constants in the "Application Circuit Example" given below.

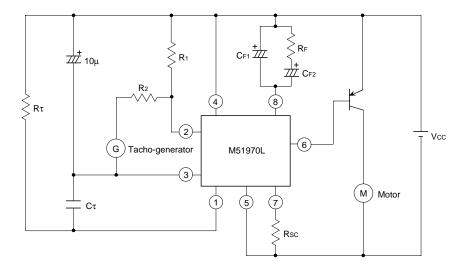

R1=100kΩ, R2=30kΩ, CF1=1μF, CF2=4.7μF, RF=4.7kΩ, Rτ=75kΩ, Cτ=22,000pF, Rsc=56Ω, number of tachogenerator poles; 10 poles. Motor speed - ambient temperature characteristics is measured with Rτ and Cτ put out of the temperature test chamber.

MOTOR SPEED CONTROL

Rotating speed-Supply voltage characteristics


Rotating speed–Ambient temperature characteristics

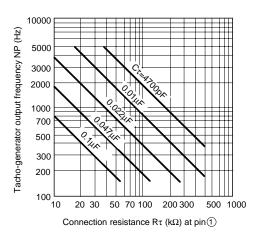
Rotating speed-Motor torque characteristics



Circuit current-Supply voltage characteristics

APPLICATION CIRCUIT EXAMPLE

Motor rotating speed control circuit

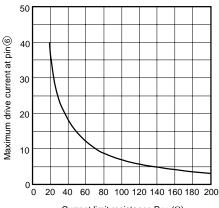

(Note 1) How to determine $R\tau$ and $C\tau$

This constant determines the motor rotating speed. If the motor rotating speed and the number of poles in the tacho-generator are assumed to be N and P, respectively, the following relational expression is generally established. Putting $R\tau$ in the range of $10k\Omega$ to $500k\Omega$, select the constant according to the required rotating speed.

$$NP \ \ = \ \frac{1}{1.17R\tau \, C\tau}$$

Tacho-generator output frequency-

Connection resistance characteristics of pin 1


(Note 2) How to determine RSC

According to the relation with maximum current ISC flowing to pin (6), the following relational expression is generally established. Set ISC in such a way that the value cannot exceed the maximum rated value of the power dissipation of the M51970L when the supply voltage and temperature arrive at their maximum values.

Isc
$$=$$
 $\frac{0.7(V)}{Rsc}$

Maximum drive current at pin 6 -

current limit resistance characteristics

Current limit resistance $Rsc(\Omega)$

(Note 3) How to determine CF1, CF2 RF

Select CF1 and CF2 RF according to the inertia of motor and required rising characteristics.