# Application Specific Solution from ON Semiconductor

**ON Semiconductor®** 

# NCP1840

# High Current, 8-Output LED Driver

The NCP1840 is a general purpose LED driver with the ability to drive up to eight LEDs. Each of the eight driver currents is fully programmable, each utilizing a 5-bit current DAC. The current can be turned on or off using a programmable 6-bit counter. The full-scale current of all eight current DACs is set by an external resistor on the R\_IDAC pin. The quad mode charge pump allows the use of higher forward voltage LEDs while maintaining a low  $\sim 3.4$  V operating battery voltage.

#### Features

- Programmable, Individual Output PWM Control with 6–Bit Counter
- (8) 30 mA Universal Current Sources with 5–Bit Programmable Logarithmic Brightness Control
- Serial Interface for Convenient Programming
- Small 20-Lead, 4 mm x 4 mm QFN Package
- Single External Resistor Used to Set Full-Scale Range on All 8 Outputs
- Quad Mode (1X, 1.33X, 1.5X and 2X) Charge Pump for Higher Forward–Voltage LEDs (e.g. 4.1 V)
- Power–On–Reset (POR)
- These are Pb-Free Devices

#### **Typical Applications**

- Notebook Battery LED Indicator
- "True Green" LED Applications



(\*Note: Microdot may be in either location)

#### **ORDERING INFORMATION**

| NCP1840 Device   | Package            | Shipping <sup>†</sup> |
|------------------|--------------------|-----------------------|
| NCP1840Q8A6MNG   | QFN20<br>(Pb-Free) | TBD Units / Rail      |
| NCP1840Q8A6MNTWG | QFN20<br>(Pb-Free) | TBD / Tape & Reel     |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

1



Figure 1. Block Diagram and Typical Application

#### **PIN FUNCTION DESCRIPTION**

| Pin No.          | Pin Name                  | Description                                                                                                                                                                                               |
|------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                | CP0                       | Charge pump output used as power supply to the LEDs. Should have a 2.2 $\mu F$ ceramic capacitor (X5R or X7R) connected to ground.                                                                        |
| 2 to 5; 11 to 14 | ULED1 to<br>ULED8         | Sink current output. Current value, PWM, blinking and gradation programmable through the serial interface                                                                                                 |
| 6                | GND                       | Ground connection. Should be connected along with the "ground pad" to the board ground plane.                                                                                                             |
| 7                | DV <sub>CC</sub>          | Supply input for the digital circuitry. Should have a 1 $\mu\text{F}$ ceramic capacitor (X5R or X7R) connected to ground.                                                                                 |
| 8                | SCL                       | Serial interface clock input. Logic levels referenced to $DV_CC$                                                                                                                                          |
| 9                | SDA                       | Serial interface data input/output. Logic levels referenced to $DV_CC$                                                                                                                                    |
| 10               | R_IDAC                    | An external 10.25 k $\Omega$ resistor connected to ground defines the reference current used to set the current DACs connected to the ULED outputs.                                                       |
| 15, (21)         | GND                       | Ground connection. Should be connected along with the "ground pad" to the board ground plane.                                                                                                             |
| 16, 17, 19, 20   | C2M, C1M, C2P,<br>and C1P | Charge pump flying capacitor connections. A 1 $\mu F$ ceramic capacitor (X5R or X7R) should be connected from C1P to C1M. A 1 $\mu F$ ceramic capacitor (X5R or X7R) should be connected from C2P to C2M. |
| 18               | V <sub>BAT</sub>          | Supply for the charge pump and analog circuitry. Should have a 2.2 $\mu\text{F}$ low ESR ceramic capacitor connected to ground.                                                                           |

#### **ABSOLUTE MAXIMUM RATINGS**

| Rating                                                                            | Symbol              | Value                          | Unit |
|-----------------------------------------------------------------------------------|---------------------|--------------------------------|------|
| Input Voltage Range (Note 3)                                                      | V <sub>in</sub>     | –0.3 to DV <sub>CC</sub> + 0.3 | V    |
| Output Voltage Range (Note 3)                                                     | V <sub>out</sub>    | –0.3 to DV <sub>CC</sub> + 0.3 | V    |
| Maximum Junction Temperature                                                      | T <sub>J(max)</sub> | 150                            | °C   |
| Storage Temperature Range                                                         | T <sub>STG</sub>    | –40 to 150                     | °C   |
| ESD Capability, Human Body Model (Note 1)                                         | ESD <sub>HBM</sub>  | 2                              | kV   |
| ESD Capability, Machine Model (Note 1)                                            | ESD <sub>MM</sub>   | 175                            | V    |
| Lead Temperature Soldering<br>Reflow (SMD Styles Only), Pb-Free Versions (Note 2) | T <sub>SLD</sub>    | 260                            | °C   |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per AEC–Q100–002 (EIA/JESD22–A114)

ESD Machine Model tested per AEC–Q100–003 (EIA/JESD22–A115) Latchup Current Maximum Rating: ≤ 150 mA per JEDEC standard: JESD78 2. For information, please refer to our Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

3. These levels apply to pins SCL and SDA.

#### THERMAL CHARACTERISTICS

| Rating                                      | Symbol                | Value | Unit |
|---------------------------------------------|-----------------------|-------|------|
| Thermal Characteristics, 20L NQFP, 4 x 4 mm |                       |       | °C/W |
| Thermal Resistance, Junction-to-Air         | $R_{	extsf{	heta}JA}$ | 66.7  |      |

#### **OPERATING RANGES**

| Symbol                 | Parameter                               | Min  | Тур  | Max  | Units | Notes    |
|------------------------|-----------------------------------------|------|------|------|-------|----------|
| V <sub>f</sub>         | LED forward voltage                     |      |      | 4.1  | V     |          |
| V <sub>BAT</sub>       | Battery operating voltage               | 3.3  | 3.42 | 5.5  | V     |          |
| DV <sub>CC</sub>       | Digital Supply Voltage                  | 3.3  | 3.42 | 3.6  | V     |          |
| IDVCC                  | Digital Supply Current                  | 2.0  | 2.35 | 3.10 | mA    | (Note 4) |
| I <sub>DVCC-LOQ</sub>  | Digital Supply Current – Low Power Mode | 0.5  | < 1  | 2    | μΑ    | (Note 6) |
| I <sub>VBATT</sub>     | Battery Supply Current                  | 450  | 520  | 750  | μΑ    | (Note 4) |
| I <sub>VBATT-LOQ</sub> | Battery Supply Current – Low Power Mode | 0.4  | < 1  | 3.5  | μΑ    | (Note 6) |
| I <sub>LED</sub> (31)  | Full-Scale LED Current                  | 28   | 30   | 34.5 | mA    | (Note 5) |
| I <sub>LED</sub> (0)   | Minimum LED Current                     | 0.81 | 0.85 | 0.95 | mA    | (Note 5) |
|                        | LED-to-LED Matching                     |      | 4    | 6.9  | %     | (Note 7) |
| T <sub>A</sub>         | Ambient Temperature                     | -40  | 27   | 85   | °C    |          |

4. All LED outputs off, Charge Pump in 1X Mode, no I<sup>2</sup>C Communication.

5. With external R\_IDAC =  $10.25 \text{ k}\Omega$ .

6. Part enters Low Power Mode around 5 ms after all LED outputs are "off" and there is no I<sup>2</sup>C communication. Communication to the part resumes normal operation in less than 1 ms.

7. For T =  $-40^{\circ}$ C max LED-to-LED matching limit is 7.5%.

#### I<sup>2</sup>C INTERFACE

The NCP1840 is programmed through an I<sup>2</sup>C interface. The communication takes place with serial bytes sharing the same I<sup>2</sup>C frame. The NCP1840 is a slave only part, data can be written to or read from the part. The max speed clock for the serial interface is 400 kHz. I<sup>2</sup>C pins SCL and SDA require external pull-up resistors around 1.3 k $\Omega$ .

#### WRITE PROTOCOL USED BY NCP1840:

| 1 | 7            | 1 | 1 | 3            | 5                | 1 | 8                | 1 | 1 |
|---|--------------|---|---|--------------|------------------|---|------------------|---|---|
| S | Part Address | W | A | Control Bits | Register Address | A | Register<br>Data | A | Ρ |

S = Start Condition, W = Write, A = Acknowledge, P = Stop Condition



#### READ PROTOCOL USED BY NCP1840:

| 1 | 7            | 1 | 1 | 3            | 5                   | 1 | 8 | 7            | 1 | 1 | 8                    | 1 | 1 |
|---|--------------|---|---|--------------|---------------------|---|---|--------------|---|---|----------------------|---|---|
| S | Part Address | W | A | Control Bits | Register<br>Address | A | S | Part Address | R | A | Register<br>Data Out | Ā | Ρ |

S = Start Condition, W = Write, R = Read, A = Acknowledge, A = No Acknowledge, P = Stop Condition



Figure 3.

#### CONTROL BITS: A

| CB2 | CB1 | CB0 | Function                                                                                      |
|-----|-----|-----|-----------------------------------------------------------------------------------------------|
| 0   | 0   | 0   | Turn ULEDx ON/OFF according to data programmed to ULED1-8 OUTPUT CONTROL REG                  |
| 0   | 0   | 1   | Programming registers. There will be a third byte with data for the address defined by A[4:0] |
| 0   | 1   | 0   | Programming registers. Turn the outputs active at the end of the third byte.                  |
| 0   | 1   | 1   | Program ALL Current Level Registers with third byte data value                                |
| 1   | 0   | 0   | Program ALL PWM Registers with third byte data value                                          |
| 1   | 0   | 1   | Reserved                                                                                      |
| 1   | 1   | 0   | Reserved                                                                                      |
| 1   | 1   | 1   | Reserved                                                                                      |

# **REGISTER ADDRESS:**

| A4 | A3 | A2 | A1 | A0 | ADD-Dec | ADD-Hex | Function                                 |
|----|----|----|----|----|---------|---------|------------------------------------------|
| 0  | 0  | 0  | 0  | 0  | 0       | 0       | ULED1 - current level register address   |
| 0  | 0  | 0  | 0  | 1  | 1       | 1       | ULED2 - current level register address   |
| 0  | 0  | 0  | 1  | 0  | 2       | 2       | ULED3 - current level register address   |
| 0  | 0  | 0  | 1  | 1  | 3       | 3       | ULED4 - current level register address   |
| 0  | 0  | 1  | 0  | 0  | 4       | 4       | ULED5 - current level register address   |
| 0  | 0  | 1  | 0  | 1  | 5       | 5       | ULED6 - current level register address   |
| 0  | 0  | 1  | 1  | 0  | 6       | 6       | ULED7 - current level register address   |
| 0  | 0  | 1  | 1  | 1  | 7       | 7       | ULED8 - current level register address   |
| 0  | 1  | 0  | 0  | 0  | 8       | 8       | ULED1 – PWM register address             |
| 0  | 1  | 0  | 0  | 1  | 9       | 9       | ULED2 – PWM register address             |
| 0  | 1  | 0  | 1  | 0  | 10      | А       | ULED3 – PWM register address             |
| 0  | 1  | 0  | 1  | 1  | 11      | В       | ULED4 – PWM register address             |
| 0  | 1  | 1  | 0  | 0  | 12      | С       | ULED5 – PWM register address             |
| 0  | 1  | 1  | 0  | 1  | 13      | D       | ULED6 – PWM register address             |
| 0  | 1  | 1  | 1  | 0  | 14      | E       | ULED7 – PWM register address             |
| 0  | 1  | 1  | 1  | 1  | 15      | F       | ULED8 – PWM register address             |
| 1  | 0  | 0  | 0  | 0  | 16      | 10      | ULED 1-8 output control register address |
| 1  | 0  | 0  | 0  | 1  | 17      | 11      | Main Status register                     |

#### **REGISTER DESCRIPTION**

### 1. ULEDx – CURRENT LEVEL REGISTER

| DATA7 | DATA6 | DATA5 | DATA4 | DATA3 | DATA2 | DATA1 | DATA0 | CODE(DEC) | CURRENT LEVEL |
|-------|-------|-------|-------|-------|-------|-------|-------|-----------|---------------|
| Х     | Х     | Х     | 0     | 0     | 0     | 0     | 0     | 0         | 0.85 mA       |
| х     | х     | х     | 0     | 0     | 0     | 0     | 1     | 1         | 0.95 mA       |
| Х     | Х     | Х     | 0     | 0     | 0     | 1     | 0     | 2         | 1.06 mA       |
| Х     | Х     | Х     | 0     | 0     | 0     | 1     | 1     | 3         | 1.19 mA       |
| Х     | Х     | Х     | 0     | 0     | 1     | 0     | 0     | 4         | 1.34 mA       |
| Х     | Х     | Х     | 0     | 0     | 1     | 0     | 1     | 5         | 1.50 mA       |
| Х     | Х     | Х     | 0     | 0     | 1     | 1     | 0     | 6         | 1.69 mA       |
| Х     | Х     | Х     | 0     | 0     | 1     | 1     | 1     | 7         | 1.89 mA       |
| Х     | Х     | Х     | 0     | 1     | 0     | 0     | 0     | 8         | 2.12 mA       |
| Х     | Х     | Х     | 0     | 1     | 0     | 0     | 1     | 9         | 2.38 mA       |
| Х     | Х     | Х     | 0     | 1     | 0     | 1     | 0     | 10        | 2.67 mA       |
| Х     | Х     | Х     | 0     | 1     | 0     | 1     | 1     | 11        | 3.00 mA       |
| Х     | Х     | Х     | 0     | 1     | 1     | 0     | 0     | 12        | 3.37 mA       |
| х     | х     | х     | 0     | 1     | 1     | 0     | 1     | 13        | 3.78 mA       |
| Х     | Х     | Х     | 0     | 1     | 1     | 1     | 0     | 14        | 4.24 mA       |
| Х     | Х     | Х     | 0     | 1     | 1     | 1     | 1     | 15        | 4.76 mA       |
| Х     | Х     | Х     | 1     | 0     | 0     | 0     | 0     | 16        | 5.34 mA       |
| Х     | Х     | Х     | 1     | 0     | 0     | 0     | 1     | 17        | 5.99 mA       |
| Х     | Х     | Х     | 1     | 0     | 0     | 1     | 0     | 18        | 6.72 mA       |
| Х     | Х     | Х     | 1     | 0     | 0     | 1     | 1     | 19        | 7.54 mA       |
| Х     | Х     | Х     | 1     | 0     | 1     | 0     | 0     | 20        | 8.46 mA       |
| Х     | Х     | Х     | 1     | 0     | 1     | 0     | 1     | 21        | 9.49 mA       |
| Х     | Х     | Х     | 1     | 0     | 1     | 1     | 0     | 22        | 10.64 mA      |
| Х     | Х     | Х     | 1     | 0     | 1     | 1     | 1     | 23        | 11.94 mA      |
| Х     | Х     | Х     | 1     | 1     | 0     | 0     | 0     | 24        | 13.40 mA      |
| Х     | Х     | Х     | 1     | 1     | 0     | 0     | 1     | 25        | 15.07 mA      |
| Х     | Х     | Х     | 1     | 1     | 0     | 1     | 0     | 26        | 16.87 mA      |
| Х     | Х     | Х     | 1     | 1     | 0     | 1     | 1     | 27        | 18.93 mA      |
| Х     | Х     | Х     | 1     | 1     | 1     | 0     | 0     | 28        | 21.24 mA      |
| Х     | Х     | Х     | 1     | 1     | 1     | 0     | 1     | 29        | 23.83 mA      |
| Х     | Х     | Х     | 1     | 1     | 1     | 1     | 0     | 30        | 26.74 mA      |
| Х     | Х     | Х     | 1     | 1     | 1     | 1     | 1     | 31        | 30.00 mA      |

NOTE: The max 30 mA is for an external R\_IDAC =  $10.25 \text{ k}\Omega$ . The range of R\_IDAC is from  $10.25 \text{ k}\Omega$  to  $20.5 \text{ k}\Omega$ . If the external R\_IDAC =  $20.5 \text{ k}\Omega$ , the max current would be 15 mA.

#### X = Don't Care.

2. ULEDx – PWM REGISTER

| DATA7 | DATA6 | DATA5 | DATA4 | DATA3 | DATA2 | DATA1 | DATA0 | PWM                           |
|-------|-------|-------|-------|-------|-------|-------|-------|-------------------------------|
| Х     | Х     | T5    | T4    | Т3    | T2    | T1    | TO    | 6 bit programmable duty cycle |

The initial target for LED period is ~2 kHz – If this period is used, a PWM code  $1_{dec}$  would give an "ON" duty cycle of  $\sim 7.937 \,\mu s$  in a period of 500  $\mu s$ . Code  $62_{dec}$  would have an "ON" duty cycle equal to 492.0635  $\mu s$  for a period of 500  $\mu s$ . Finally a code  $63_{dec}$  would have an "ON" duty cycle equal to 500  $\mu s$  in a period of 500  $\mu s$  or continuously "ON". 3. ULED1–8 OUTPUT CONTROL REGISTER

|   | DATA7     | DATA6     | DATA5     | DATA4     | DATA3     | DATA2     | DATA1     | DATA0     |
|---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 0 | ULED8 off | ULED7 off | ULED6 off | ULED5 off | ULED4 off | ULED3 off | ULED2 off | ULED1 off |
| 1 | ULED8 on  | ULED7 on  | ULED6 on  | ULED5 on  | ULED4 on  | ULED3 on  | ULED2 on  | ULED1 on  |

3. ULEDI-8 OUTPUT CONTROL REGISTER

NOTE: Any unused ULED output should not be turned "ON".

#### 4. MAIN STATUS REGISTER

| DATA7 | DATA6 | DATA5 | DATA4 | DATA3 | DATA2                | DATA1 | DATA0                |
|-------|-------|-------|-------|-------|----------------------|-------|----------------------|
| 0     | 0     | 0     | 0     | 0     | 0 = Normal Operation | 0     | 0 = Normal Operation |
| 0     | 0     | 0     | 0     | 0     | 1 = Low Power Mode   | 0     | 1 = Over Temperature |

#### SERIAL INTERFACE TIMING INFORMATION



#### Figure 4.

| Parameter                         | Symbol              | Min | Max | Unit |
|-----------------------------------|---------------------|-----|-----|------|
| SCL clock frequency               | f <sub>SCL</sub>    | -   | 400 | kHz  |
| Hold time for Start condition     | t <sub>HD;STA</sub> | 0.6 |     | μS   |
| LOW Period of SCL Clock           | t <sub>LOW</sub>    | 1.3 |     | μS   |
| High Period of SCL Clock          | tніgн               | 0.6 |     | μS   |
| Setup time for Start condition    | t <sub>SU;STA</sub> | 0.6 |     | μS   |
| Data hold time                    | t <sub>HD:DAT</sub> |     | 0.9 | μS   |
| Data setup time                   | t <sub>SU;DAT</sub> | 100 |     | μS   |
| Rise time                         | t <sub>r</sub>      | 10  | 300 | nS   |
| Fall time                         | t <sub>f</sub>      | 10  | 300 | nS   |
| Setup time for Stop condition     | t <sub>SU;STO</sub> | 0.6 |     | μS   |
| Time between Stop and Start       | t <sub>BUF</sub>    | 1.3 |     | μS   |
| Capacitive load for each bus line | CL                  |     | 200 | pF   |

#### **OVER TEMPERATURE SHUTDOWN**

The Over Temperature Shutdown circuit will detect an over temperature condition in the chip. Once the over temperature is detected, all LED outputs and the Charge Pump will be turned off and bit DATA0 on register  $17_{dec}$  will be set to logic one. This register can be read through the serial interface. If the over temperature condition goes away, the bit DATA0 on register  $17_{dec}$  will be automatically reset to a logic zero and the part will resume normal operation. The target trip point for the over temperature shutdown is  $130^{\circ}$ C to  $163^{\circ}$ C.

#### MAXIMUM PACKAGE POWER DISSIPATION

The power dissipation level is maximum allowed power dissipation for particular package or power dissipation at which the junction temperature reaches its maximum operating value, whichever is lower.

#### NCP1840 LAYOUT GUIDELINES

The NCP1840 requires a low-inductance ground.

Charge pump capacitors C0, C1 and C2 and decoupling capacitor CBAT should be as close to the part as possible.



Figure 5. NCP1840 Schematic

#### **GROUND CONNECTION:**

Connect pin 6 and pin 15 to the "ground pad" of the IC. (See Figure 6) Place vias, on the "ground pad", connecting the GND of the IC directly to the ground plane. (See Figure 6)



Figure 6. Ground Connection

# CHARGE PUMP CAPACITORS: C0, C1, C2, AND CBAT

- 1. Use good-quality X5R or X7R ceramic capacitors for C<sub>0</sub>, C<sub>1</sub>, C<sub>2</sub>, and C<sub>BAT</sub>.
- 2. Connect the positive end of  $C_0$ , the output of the charge pump, as close to the IC as possible to ensure charge pump regulation stability. Connect the negative end of the capacitor to GND pin 6, pin 15, or the GND pad. (See Figure 7)
- Place capacitors C<sub>1</sub> and C<sub>2</sub>, the charge pump flying capacitors, and C<sub>BAT</sub>, the supply voltage for the charge, as close to the IC as possible, minimizing the trace length. (See Figure 7)



Figure 7.  $C_0$ ,  $C_1$ ,  $C_2$ , and  $C_{BAT}$  layout

#### PACKAGE DIMENSIONS

#### QFN20, 4x4, 0.5P CASE 485E-01 ISSUE B



DIMENSIONS: MILLIMETERS

\*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application is unich the failure of the SCILLC product costs for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agosciated with such unintended or unauthorized use personal and such apelication for the part. SCILLC is an Equal Opportunit/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative