3-in-1 Silicon Delay Line

General Description

The MXD1013 contains three independent, monolithic, logic-buffered delay lines with delays ranging from 10 ns to 200 ns. Nominal accuracy is ± 2 ns for a 10 ns to 60 ns delay, $\pm 3 \%$ for a 70 ns to 100 ns delay, and $\pm 5 \%$ for a 150 ns to 200 ns delay. Relative to hybrid solutions, these devices offer enhanced performance and higher reliability, and reduce overall cost. Each output can drive up to ten standard 74LS loads.
The MXD1013 is available in multiple versions, each offering a different combination of delay times. It comes in the space-saving 8 -pin $\mu \mathrm{MAX}$ package, as well as a standard 8-pin SO and DIP. It is also offered in indus-try-standard 16-pin SO and 14-pin DIP packaging, allowing full compatibility with the DS1013 and other delay-line products.

Applications
Clock Synchronization
Digital Systems

Pin Configurations

```
    TOP VIEW
```


Pin Configurations continued at end of data sheet.
Features
Improved Second Source to DS1013
Available in Space-Saving 8-Pin μ MAX Package
20mA Supply Current (vs. Dallas' 40mA)
Low Cost
Three Separate Buffered Delays

- Delay Tolerance of $\pm 2 \mathrm{~ns}$ for MXD1013__010
through MXD1013_060
TTL/CMOS-Compatible Logic
- Leading- and Trailing-Edge Accuracy
- Custom Delays Available Features through MXD1013 060
- TTL/CMOS-Compatible Logic
- Custom Delays Available
___ Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MXD1013C/D_	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MXD1013PA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MXD1013PD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Plastic DIP
MXD1013SA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MXD1013SE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO
MXD1013UA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$

*Dice are tested at $T_{A}=+25^{\circ} \mathrm{C}$.
Note: To complete the ordering information, fill in the blank with the part number extension from the Part Numbers and Delay Times table to indicate the desired delay per output.

Part Numbers and Delay Times

PART NUMBER EXTENSION (MXD1013___)	OUTPUT DELAY (ns)
010	10
012	12
015	15
020	20
025	25
030	30
035	35
040	40
045	45

PART NUMBER EXTENSION (MXD1013_-_)	OUTPUT DELAY (ns)
050	50
060	60
070	70
075	75
080	80
090	90
100	100
150	150
200	200

Functional Diagram appears at end of data sheet.

For free samples \& the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 408-737-7600 ext. 3468.

3-in-1 Silicon Delay Line

ABSOLUTE MAXIMUM RATINGS

Vcc to GND \qquad -0.5 V to +6 V
All Other Pins...-0.5V to (VCC + 0.5V)
Short-Circuit Output Current (1sec)................................... 50 mA
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
8-Pin Plastic DIP (derate $9.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 727 mW 14-Pin Plastic DIP (derate $10.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$). .800 mW

8 -Pin SO (derate $5.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).................... 471 mW 16 -Pin Narrow SO (derate $8.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 696 mW 8-Pin $\mu \mathrm{MAX}$ (derate $4.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 330 mW
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10sec) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{VCC}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)(Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	V_{CC}	(Note 2)	4.75	5.00	5.25	V
Input Voltage High	V_{IH}	(Note 2)	2.2		V	
Input Voltage Low	V_{IL}	$($ Note 2)		0.8	V	
Input Leakage Current	IL	$0 \mathrm{~V} \leq \mathrm{VIN} \leq \mathrm{VCC}$	-1	1	$\mu \mathrm{~A}$	
Active Current	ICC	$\mathrm{VCC}=5.25 \mathrm{~V}$, period $=$ minimum (Note 3)		20	70	mA
Output Current High	IOH	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{VOH}=4.0 \mathrm{~V}$		-1	mA	
Output Current Low	IOL	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{VOL}=0.5 \mathrm{~V}$	12		mA	
Input Capacitance	CIN	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}($ Note 4$)$	5	10	pF	

TIMING CHARACTERISTICS

($\mathrm{VCC}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP
Input Pulse Width	twI	(Note 5)	100% of tPLH	UNITS
Input-to-Output Delay (leading edge)	tPLH	(Notes 6, 7, 8)	See Part Number and Delay Times table	ns
Input-to-Output Delay (trailing edge)	tPHL	(Notes 6, 7, 8)	See Part Number and Delay Times table	ns
Power-Up Time	tpU			100
Period		(Note 5)	3(twi)	ms

Note 1: Specifications to $-40^{\circ} \mathrm{C}$ are guaranteed by design, not production tested.
Note 2: All voltages referenced to GND.
Note 3: Measured with outputs open.
Note 4: Guaranteed by design.
Note 5: Pulse width and/or period specifications may be exceeded, but accuracy is application sensitive (i.e., layout, decoupling, etc.).
Note 6: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ at $+25^{\circ} \mathrm{C}$. Typical delays are accurate on both rising and falling edges within $\pm 2 \mathrm{~ns}$ for delays from 10 ns to 60 ns , within $\pm 3 \%$ for delays from 70 ns to 100 ns, and within $\pm 5 \%$ for delays from 150 ns to 200 ns .
Note 7: The Part Number and Delay Times table provides typical delays at $+25^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$. The delays may shift with temperature and supply variations. The combination of temperature (from $+25^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$, or $+25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) and supply variation (from 5 V to 4.75 V , or 5 V to 5.25 V) could produce an additional typical delay of $\pm 1.5 \mathrm{~ns}$ or $\pm 3 \%$, whichever is greater.
Note 8: All output delays tend to vary unidirectionally with temperature or supply voltage variations (i.e., if OUT1 slows down, all other outputs also slow down).

3-in-1 Silicon Delay Line

Typical Operating Characteristics

$\left(\mathrm{VCC}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$
MXD1013_100

PERCENT CHANGE IN DELAY
vs. TEMPERATURE (OUT1)

MXD1013 00 PERCENT CHANGE IN DELAY vs. TEM PERATURE (OUT3)

3-in-1 Silicon Delay Line

PIN			NAME	FUNCTION
$\begin{gathered} \text { 8-PIN } \\ \text { DIP/SO/ } / \text { MAX } \end{gathered}$	14-PIN DIP	16-PIN SO		
1	1	1	IN1	First Independent Input
2	3	4	IN2	Second Independent Input
3	5	6	IN3	Third Independent Input
4	7	8	GND	Device Ground
5	8	9	OUT3	Third Delayed Output
6	10	11	OUT2	Second Delayed Output
7	12	13	OUT1	First Delayed Output
8	14	16	VCC	Power-Supply Input
-	$\begin{gathered} 2,4,6,9,11 \\ 13 \end{gathered}$	$\begin{gathered} 2,3,5,7,10 \\ 12,14,15 \end{gathered}$	N.C.	Not Connected

Definitions of Terms

Period: The time elapsed between the first pulse's leading edge and the following pulse's leading edge.
Pulse Width (twi): The time elapsed on the pulse between the 1.5 V level on the leading edge and the 1.5 V level on the trailing edge, or vice versa.

Input Rise Time (tRISE): The elapsed time between the 20% and 80% points on the input pulse's leading edge.
Input Fall Time (trall): The time elapsed between the 80% and 20% points on the input pulse's trailing edge.
Time Delay, Rising (tplh): The time elapsed between the 1.5 V level on the input pulse's leading edge and the corresponding output pulse's leading edge.
Time Delay, Falling (tphl): The time elapsed between the 1.5 V level on the input pulse's trailing edge and the corresponding output pulse's trailing edge.

Test Conditions

Ambient Temperature:	$+25^{\circ} \mathrm{C}$
Supply Voltage $(\mathrm{VCC}):$	$5.0 \mathrm{~V} \pm 0.1 \mathrm{~V}$
Input Pulse:	High $=3.0 \mathrm{~V} \pm 0.1 \mathrm{~V}$
	$\mathrm{Low}=0.0 \mathrm{~V} \pm 0.1 \mathrm{~V}$
Source Impedance:	50Ω max
Rise and Fall Times:	3.0 ns max
Pulse Width:	500 ns max
Period:	$1 \mu \mathrm{~s}$

Each output is loaded with a 74F04 input gate. Delay is measured at the 1.5 V level on the rising and falling edges. The time delay due to the 74F04 is subtracted from the measured delay.

3-in-1 Silicon Delay Line

Figure 1. Timing Diagram

Applications Information

Supply and Temperature Effects on Delay

Over the specified range, the MXD1013's delays are typically 2% accurate. Variations in supply voltage may affect the MXD1013's fixed output delays. Supply voltages beyond the specified range may result with larger variations. Although there might be a slight variance in delays over temperature, the MXD1013 is internally compensated to maintain its nominal values.

Loading Effect on Delay Lines

Capacitive loads increase delay times as they increase the rise and fall times of the delay lines. Other logic devices increase the capacitance at the output of the delays, which can affect device performance.

EACH OUTPUT IS LOADED WITH THE EQUIVALENT OF ONE 74F04. THE DELAY OF THE 74F04 IS SUBTRACTED FROM THEMEASURED DELAY.

Figure 2. Test Circuit

Board Layout Considerations

Bypass the MXD1013 with a $0.1 \mu \mathrm{~F}$ capacitor to minimize the impact of high-speed switching on the power supply. The power supply must be able to deliver the required switching currents for proper operation.
It is advisable to minimize trace lengths in order to reduce board capacitance as well as the traveling distance between devices. Sockets and wire-wrapped boards increase capacitance and should be avoided.

Chip Information

TRANSISTOR COUNT: 824

3-in-1 Silicon Delay Line

TOP VIEW IN N.C. 4 N.C.		
	-	16 V CC
		15 N.C.
	MAXINI	14 N.C.
	MXD1013	13 OUT1
		12 N.C.
		11 OUT2
		10 N.C.
		9 OUT3
	SO	

Functional Diagram

Package Information

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

6 \qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 1997 Maxim Integrated Products
Printed USA
MAXINI is a registered trademark of Maxim Integrated Products.

