Preliminary Technical Datasheet

FEATURES

RF frequency range of $\mathbf{7 0 0} \mathbf{~ M H z}$ to $\mathbf{2 8 0 0} \mathbf{~ M H z}$
LO frequency range of 450 MHz to 2760 MHz
IF frequncy rnage of $\mathbf{4 0} \mathbf{~ M H z}$ to $\mathbf{4 5 0} \mathbf{~ M H z}$
Power conversion gain of 7dB
SSB noise figure of 11 dB
Input IP3 of 24dBm over the full RF bandwidth
Input P1dB of 11 dBm over the full RF bandwidth
Typical LO drive of 0 dBm
Single-ended, 50Ω RF Port
Single-ended or Balanced LO Input Port
Single-supply operation: 3.6 to 5.0 V
Serial port interface control on all functions
Exposed paddle $6 \times 6 \mathrm{~mm}, 40$ Lead LFCSP

APPLICATIONS

Multi-band/ multi-standard cellular base station diversity receivers
Wideband radio link diversity downconverters Multi-mode cellular extenders and picocells

GENERAL DESCRIPTION

The ADL5812 uses revolutionary new broadband square wave limiting LO amplifiers to achieve an unprecedented RF bandwidth of 700 to 2800 MHz . Unlike conventional narrowband sine wave LO amplifier solutions, this permits the LO to be applied either above or below the RF input over an extremely wide bandwidth. Since energy storage elements are not utilized, the DC current consumption also decreases with decreasing LO frequency.

The ADL5812 utilizes highly linear doubly balanced passive mixer cores along with integrated RF and LO balancing circuits to allow for single-ended operation. The ADL5812 incorporates programmable RF baluns allowing for optimal performance over a 700 to 2800 MHz RF input frequency. The balanced passive mixer arrangement provides outstanding LO to RF and LO to IF leakages, excellent RF to IF isolation, and excellent intermodulation performance over the full RF bandwidth.

REV. PrA
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

Figure 1. Functional Block Diagram
The balanced mixer cores also provide extremely high input linearity allowing the device to be used in demanding wideband applications where in-band blocking signals may otherwise result in the degradation of dynamic range. Blocker Noise Figure performance is comparable to narrowband passive mixer designs. High linearity IF buffer amplifiers follow the passive mixer cores, yielding typical power conversion gains of 7 dB , and can be utilized with a wide range of output impedances. For low voltage applications, the ADL5812 is capable of operation at voltages down to 3.6 V with substantially reduced current. Two logic pins are provided to individually power down $(<100 \mathrm{uA})$ the 2 channels as desired.

All features of the ADL5812 are controlled via a 3-wire serial port interface resulting in optimum performance and minimum external components.

The ADL5812 is fabricated using a BiCMOS high performance IC process. The device will be available in a $6 \mathrm{~mm} \times 6 \mathrm{~mm} 40-$ lead LFCSP package and operates over a $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. An evaluation board is also available.

[^0]
ADL5812-Specifications

Table 1. $\mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{RF}}=1900 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=1697 \mathrm{MHz}$, LO power $=0 \mathrm{dBm}, \mathrm{Zo}=50 \Omega$, unless otherwise noted

[^1]TIMING CHARACTERISTICS
Table 2. Serial Interface Timing, $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 5 \%$

Parameter	Limit	Unit	Test Conditions/Comments
t_{1}	20	ns minimum	LE setup time
t_{2}	10	ns minimum	DATA to CLK setup time
t_{3}	10	ns minimum	DATA to CLK hold time
t_{4}	25	ns minimum	CLK high duration
t_{5}	25	ns minimum	CLK low duration
t_{6}	10	ns minimum	CLK to LE setup time
t_{7}	20	LE pulse width	

Figure 2. Timing Diagram

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
Supply Voltage, VPos	5.5 V
CLK, DATA, LE	5.5 V
IF Output Bias	6.0 V
RF Input Power	20 dBm
LO Input Power	13 dBm
Internal Power Dissipation	TBD
$\theta_{\text {JA }}$ (Exposed Paddle Soldered Down)	TBD
$\theta_{\text {JC }}$ (At Exposed Paddle)	TBD
Maximum Junction Temperature	TBD
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NOTES

1. NC = NO CONNECT.
2. EXPOSED PAD MUST BE CONNECTED TO GROUND.

Figure 3. Pin Configuration
Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Function
$3,4,5,6,7,8,13,16$,	NC	No Connect. Can be grounded.
$27,28,29,35,36,38$		
1,10	RF1,RF2	RF Input. Must be ac-coupled.
3,8	RFCT1,2	RF Balun Center Tap (AC Ground).
$18,19,20,21$,	V1LO1,V1LO2,V1LO3,V1LO4,	Positive Supply Voltages for LO Amplifiers.
$30,31,32,33$	V2LO1,V2LO2,V2LO3,V2LO4	
$22,23,24$	CLK,DATA,LE	Serial Port Interface Control.
25	LOIN	Ground Return for LO Input, must be ac coupled.
26	LOIP	LO Input. Must be ac-coupled.
17,34	IFGD1, IFGD2	Supply Return for IF Amplifier. Must be grounded.
$14,15,36,37$	IFOP1,IFOP2, IFON1,IFON2	Differential Open-Collector IF Outputs. Should be pulled-up to VCC via external
12,39	IFGM1, FIGM2	inductors.
11,40	VFIP1, VFIP2	IF amplifier bias control.
Paddle	EPAD	Expply Voltage for IF amplifier.

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, as measured using typical circuit schematic with low-side LO unless otherwise noted.

Figure 4. Conversion Gain versus RF Frequency

Figure 5. IIP3 versus RF Frequency

Figure 6. IP1dB versus RF Frequency

Figure 7. Single-Sideband NF versus RF Frequency

Figure 8. Single-Sideband NF versus Blocker Level

Figure 9. IIP2 versus RF Frequency

Figure 10. LO to RF Leakage versus RF Frequency

Figure 11. LO to IF Leakage versus RF Frequency

Figure 12. RF to IF Isolation versus RF Frequency

Figure 13. IF/2 Spurious versus RF Frequency

Figure 14. IF/3 Spurious versus RF Frequency

Figure 15. Channel-to-Channel Isolation versus RF Frequency

Figure 16. $2 \times$ LO to IF Leakage versus RF Frequency

Figure 17. $2 \times$ LO to RF Leakage versus RF Frequency

Figure 18. $3 \times$ LO to IF Leakage versus RF Frequency

Figure 19. $3 \times$ LO to RF Leakage versus RF Frequency

Figure 20. Supply Current versus RF Frequency

Figure 21. Input IP3 versus LO Power Level

SPUR TABLES

All spur tables are $\left(N \times f_{R F}\right)-\left(M \times f_{L O}\right)$ and were measured using the standard evaluation board. Mixer spurious products are measured in dBc from the IF output power level. Data was measured only for frequencies less than 6 GHz . Typical noise floor of the measurement system $=-100 \mathrm{dBm}$. N.M. indicates that the spurs were below the noise floor of the measurement system.

5 V PERFORMANCE

$\mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}, \mathrm{I} \mathrm{I}_{\mathrm{S}}=350 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{RF}}=1910 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=1700 \mathrm{MHz}$, RF power $=-10 \mathrm{dBm}$, LO power $=0 \mathrm{dBm}$, optimum settings, and $\mathrm{Z}_{\mathrm{O}}=$ 50Ω, unless otherwise noted.

		M														
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	0		-17.4	-12.2	-46.6	N.M.										
	1	-24.7	8.8	-40.1	-46.9	-69.8	N.M.									
	2	-62.2	-61.6	-69.1	-61.1	-71.9	-88.7	N.M.								
	3	-101.7	-77.7	-89.4	-68.9	-87.3	-100.3	-101.4	N.M.							
	4	N.M.	-101.7	-101.2	-103.2	-95.9	-107.4	-103.1	-101.2	-102.2	N.M.	N.M.	N.M.	N.M.	N.M.	N.M.
	5	N.M.	N.M.	N.M.	-101.5	-102.9	-103.3	-104.1	-102.4	-102.4	-100.5	N.M.	N.M.	N.M.	N.M.	N.M.
	6	N.M.	N.M.	N.M.	N.M.	-99.9	-103.5	-104.7	-107.3	-103.8	-97.4	-99.5	N.M.	N.M.	N.M.	N.M.
N	7	N.M.	N.M.	N.M.	N.M.	N.M.	-100.5	-100.2	-103.2	-105.2	-101.9	-101.2	-99.0	N.M.	N.M.	N.M.
N	8	N.M.	N.M.	N.M.	N.M.	N.M.	N.M.	-101.0	-101.2	-105.0	-108.2	-104.6	-100.4	-98.7	N.M.	N.M.
	9	N.M.	-100.7	-100.8	-104.4	-105.3	-105.6	-101.6	-101.1	N.M.						
	10	N.M.	-99.3	-99.6	-105.2	-105.3	-103.9	-102.8	-100.3							
	11	N.M.	-99.4	-101.7	-102.5	-105.2	-105.3	-104.0								
	12	N.M.	-101.1	-102.0	-105.9	-105.9	-106.5									
	13	N.M.	-100.5	-102.2	-103.2											
	14	N.M.	-98.8	-102.9												
	15	N.M.	-99.3													

REGISTER STRUCTURE

Figure 22 illustrates the register map of ADL5812. The ADL5812 uses only register 5. As such the Control Bits should be set to 5 in all cases. The Main ENB and Div ENB bits, DB7 and DB6 respectively, when set to 0 will enable the part. By setting one of these bits to 1 that channel will be powered down. Either channel can be powered down independently of the other. The CAP DAC RFB IN and Out bits are used to tune the RF Balun. In most cases they will be tuned together with the higher settings, 15 , tuning for low frequencies and lower settings, 0 , tuning for high frequencies. There are times where it becomes advantageous to tune the input and output of the RF
balun separately and that ability is provided for here. The LPF bits control the Low Pass Filter settings at the IF output. The ability to tune the low pass filter allows some tradeoff between Gain, Noise Figure and Input IP3 with higher settings, 7, providing higher Input IP3 at the cost of some Gain and Noise Figure while lower settings, 0, provide higher Gain and lower NF at the cost of lower Input IP3. The VGS bits control the VGS settings of the mixer core and will allow further tuning of the device.

Figure 23 illustrates the optimum settings characterized for each frequency band.

Figure 22. ADL5812 Register Maps

RF (MHz)	LO (MHz)	VGS			LPF			RFB OUT CAP DAC				RFB IN CAP DAC			
		DB21	DB20	DB19	DB18	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8
		VGS2	VGS1	VGSO	LPF2	LPF1	LPFO	CDO3	DCDO2	CDO1	CDOO	CDI3	CDI2	CDI1	CDIO
300	97	0	0	0	0	1	0	1	1	1	1	1	1	1	1
400	197	0	0	0	0	1	0	1	1	1	1	1	1	1	1
500	297	0	0	0	0	1	0	1	1	1	1	1	1	1	1
600	397	0	0	0	0	1	0	1	1	0	0	1	1	0	0
700	497	0	0	0	0	1	0	1	1	0	0	1	1	0	0
800	597	0	0	0	0	1	0	1	0	0	0	1	0	0	0
900	697	0	0	0	0	1	0	1	0	0	0	1	0	0	0
1000	797	0	0	0	0	1	0	1	0	0	0	1	0	0	0
1100	897	0	0	0	0	1	0	1	0	0	0	1	0	0	0
1200	997	0	0	0	1	0	0	1	0	0	0	1	0	0	0
1300	1097	0	0	0	1	0	0	0	1	1	0	0	1	1	0
1400	1197	0	0	0	1	0	0	0	1	1	0	0	1	1	0
1500	1297	0	0	0	1	0	0	0	1	1	0	0	1	1	0
1600	1397	0	0	0	1	0	0	0	1	1	0	0	1	1	0
1700	1497	0	0	0	1	0	0	0	1	1	0	0	1	1	0
1800	1597	0	0	0	1	0	0	0	1	1	0	0	1	1	0
1900	1697	0	0	0	1	0	0	0	1	1	0	0	1	1	0
2000	1797	0	0	0	1	0	0	0	1	1	0	0	1	1	0
2100	1897	0	0	0	1	0	0	0	1	1	0	0	1	1	0
2200	1997	0	0	0	1	0	0	0	1	1	0	0	1	1	0
2300	2097	0	0	0	1	0	0	0	0	1	0	0	1	0	0
2400	2197	0	0	0	1	0	0	0	0	0	0	0	1	0	0
2500	2297	0	0	0	0	1	0	0	0	0	0	0	1	0	0
2600	2397	0	0	0	0	1	0	0	0	0	0	0	1	0	0
2700	2497	0	0	0	0	1	0	0	0	0	0	0	1	0	0
2800	2597	0	0	0	0	1	0	0	0	0	0	0	1	0	0
2900	2697	0	0	0	0	1	0	0	0	0	0	0	1	0	0
3000	2797	0	0	0	0	1	0	0	0	0	0	0	1	0	0

Figure 23. ADL5812 Optimum Settings

EVALUATION BOARD

An evaluation board is available for the ADL5812. The standard evaluation board schematic is presented in Figure 24. The evaluation board is fabricated on a multilayer Rogers board. Table 4 details the various configuration options of the evaluation board.

Figure 24. Evaluation Board Schematic.

Preliminary Technical Datasheet

Table 4. Eval Board Configuration

Components	Function	Default Conditions
$\begin{aligned} & \mathrm{C} 1, \mathrm{C} 10, \mathrm{C} 21, \\ & \mathrm{C} 34-\mathrm{C} 43 \end{aligned}$	Power Supply Decoupling. Nominal supply decoupling consists a $10 \mu \mathrm{~F}$ capacitor to ground in parallel with 10 pF capacitors to ground positioned as close to the device as possible.	$\begin{aligned} & \mathrm{C} 10=10 \mu \mathrm{~F}(\text { size 0603) } \\ & \mathrm{C} 34-\mathrm{C} 43=10 \mathrm{pF} \text { (size 0402) } \\ & \mathrm{C} 1, \mathrm{C}, \mathrm{C} 12, \mathrm{C} 21=100 \mathrm{pF} \text { (size 0402) } \end{aligned}$
$\begin{aligned} & \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 6, \mathrm{C} 7, \mathrm{C} 9, \\ & \mathrm{C} 11 \end{aligned}$	RF Input Interface. The input channels are ac-coupled through C9, C11. C2,C3,C6,C7 provide bypassing for the center taps of the RF input baluns.	$\begin{aligned} & \hline C 9, C 11=22 \mathrm{pF} \text { (size 0402) } \\ & C 3, C 6=0.01 \mu \mathrm{~F} \text { (size 0402) } \\ & C 2, C 7=10 \mathrm{pF} \text { (size 0402) } \end{aligned}$
$\begin{aligned} & \text { T1, T2,C27, C28, } \\ & \text { C20, C29,L1-L4 } \end{aligned}$	IF Output Interface. The open collector IF output interfaces are biased through pull-up choke inductors L1-L4. T1, T2 are 4:1 impedance transformer used to provide a single ended IF output interface, with C27, C28 providing center-tap bypassing.	$\begin{aligned} & \text { C27, C28 = } 150 \mathrm{pF} \text { (size 0402) } \\ & \text { T1 = TC4-1W+ (MiniCircuits) } \\ & \text { L1-L4 }=470 \mathrm{nH} \text { (size 1008) } \end{aligned}$
$\begin{aligned} & \text { C25, C26,C44, } \\ & \text { C45 } \end{aligned}$	LO Interface. C44 and C45 provide ac-coupling for the LO1_IN and LO2_IN local oscillator inputs.	C44, C45 = 22pF (size 0402)
R20,R21	Bias Control. R20,21 sets the bias point for the internal IF amplifiers.	R20,R21 = 910Ω (size 0402)

OUTLINE DIMENSIONS

ANALOG DEVICES
 40-Lead Lead Frame Chip Scale Package [LFCSP_WQ] 6×6 mm Body, Very Very Thin Quad

(CP-40-14)
Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-220-WJJD.

Figure 25. 40-Lead Lead Frame Chip Scale Package [LFCSP_VQ] $6 \mathrm{~mm} \times 6 \mathrm{~mm}$ Body, Very Thin Quad (CP-40-14)) Dimensions shown in millimeters

ORDERING GUIDE

| Models | Temperature
 Range | Package Description | Package
 Option | Branding |
| :--- | :--- | :--- | :--- | :--- | | Transport |
| :--- |
| Media Quantity |

$Z=P b-$ free part.

[^0]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
 Tel: 781.329.4700
 www.analog.com
 Fax: 781.326.8703 © 2011 Analog Devices, Inc. All rights reserved.

[^1]: ${ }^{1}$ Supply voltage must be applied from external circuit through choke inductors

