Preliminary Technical Data

FEATURES

Wideband Channel Up/Down Converter

Power Conversion Gain of 1.5 dB
Wideband RF, LO, and IF ports
SSB Noise Figure of 10dB
Exceptional Blocking SSB NF
Input IP3 of $\mathbf{2 7 d B m}$
Input $P_{1 \mathrm{~dB}}$ of 12 dBm
Typical LO Drive of 0 dBm
-40dBm LO Leakage at RF
Single Supply Operation: 5 V @ 80 mA
Adjustable Bias for Low Power Operation
Exposed Paddle 4×4 mm, 24 Lead LFCSP Package

APPLICATIONS

Cellular Base Station Receivers
 Radio Link Downconverters
 Broadband Block Conversion Instrumentation

GENERAL DESCRIPTION

The ADL5801 utilizes a high linearity doubly balanced active mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz . The mixer benefits from a proprietary linearization architecture which provides enhanced IP3 performance when subject to high input levels. A bias adjust feature allows the input linearity, SSB Noise Figure, and DC current to be optimized using a single control pin. An optional input power detector is provided for adaptive bias control. The high input linearity allows the device to be used in demanding cellular applications where in-band blocking signals may otherwise result in degradation in dynamic performance. Employing the adaptive bias feature allows the part to provide high IP3 performance when presented with large blocking signals. When blockers are removed the ADL5801 can automatically bias down to provide low noise figure and low power consumption.

REV. PrA
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

Figure 1. Functional Block Diagram

The balanced active mixer arrangement provides superb LO to RF and LO to IF leakage, typically better than -40 dBm . The IF outputs are internally terminated to a $200-\Omega$ source impedance and provide a typical voltage conversion gain of 7.5 dB when loaded into a $200-\Omega$ load. The broad frequency range of the open-collector IF outputs allows the ADL5801 to be applied as an up-converter for various transmit applications.

The ADL5801 is fabricated using a SiGe high performance IC process. The device is available in a compact $4 \mathrm{~mm} \times 4 \mathrm{~mm} 24-$ lead LFCSP package and operates over a $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. An evaluation board is also available.

[^0]
ADL5801-Specifications

Table 1. $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{RF}}=900 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=703 \mathrm{MHz}$, LO power $=0 \mathrm{dBm}, \mathrm{Zo}=50 \Omega$, ADJ $=3.8 \mathrm{~V}$, unless otherwise noted

Parameter	Conditions	Min	Typ	Max	Unit
RF INPUT INTERFACE Return Loss Input Impedance RF Frequency Range	Tunable to >20dB over a limited bandwidth	10	$\begin{aligned} & 23 \\ & 50 \end{aligned}$	6000	dB Ω MHz
OUTPUT INTERFACE Output Impedance IF Frequency Range without external matching DC Bias Voltage ${ }^{1}$	Differential impedance, $\mathrm{f}=200 \mathrm{MHz}$ Can be matched externally to 3000 MHz	LF	200 V_{s}	600	Ω MHz V
LO INTERFACE LO Power Return Loss Input Impedance LO Frequency Range		-6 25	$\begin{aligned} & 0 \\ & 20 \\ & 50 \end{aligned}$	$+6$ 6000	dBm dB Ω MHz
DYNAMIC PERFORMANCE Power Conversion Gain Voltage Conversion Gain	Excluding Transformer and PCB Losses $Z_{\text {source }}=50 \Omega$, Differential $Z_{\text {LOAD }}=200 \Omega$ Differential		$\begin{aligned} & 1.5 \\ & 7.8 \end{aligned}$		dB dB
SSB Noise Figure SSB Noise Figure Under-Blocking	+10 dBm Blocker present $+/-3 \mathrm{MHz}$ from wanted RF input, LO source filtered		$\begin{aligned} & 12 \\ & 20 \end{aligned}$		dB dB
Input Third Order Intercept	$\begin{aligned} & f_{R F 1}=900 \mathrm{MHz}, f_{R F 2}=901 \mathrm{MHz}, f_{\mathrm{LO}}=703 \mathrm{MHz}, \\ & \text { each RF tone at }-10 \mathrm{dBm} \end{aligned}$		28		dBm
Input Second Order Intercept	$f_{\mathrm{RF} 1}=900 \mathrm{MHz}, \mathrm{f}_{\mathrm{RF} 2}=950 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=703 \mathrm{MHz},$ $\text { each RF tone at }-10 \mathrm{dBm}$		66		dBm
Input 1 dB Compression Point			12.5		dBm
LO to IF Output Leakage LO to RF Input Leakage	Unfiltered IF Output		$\begin{aligned} & -31 \\ & -31 \end{aligned}$		dBm dBm
RF to IF Output Isolation IF/2 Spurious	Unfiltered IF Output -10 dBm Input Power		$\begin{aligned} & -36 \\ & -65 \end{aligned}$		dB dBc
POWER INTERFACE Supply Voltage Quiescent Current	Resistor Programmable	4.5	$\begin{gathered} 5 \\ 135 \end{gathered}$	5.5	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$

${ }^{1}$ Supply voltage should be applied from external circuit through choke inductors or IF Transformer center tap.

Preliminary Technical Data

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage VPRF, VPLO, VPDT	5.5 V
ENBL, ADJ, DETO	TBD
RF Input Power RFOP, RFON	TBD
Internal Power Dissipation	TBD
θ_{JA} (Exposed Paddle Soldered Down)	TBD
θ_{C} (At Exposed Paddle)	TBD
Maximum Junction Temperature	TBD
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pin Configuration

Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Function
$1,2,5,6$,	GND	Device Common (DC Ground).
$8,12,14$,		
$17,19,23$	LOIP, LOIN	Differential LO input terminals. Internally matched to 50Ω. Must be ac-coupled.
3,4		
7,24	VPLO	Positive Supply Voltage for LO system.
9	ENBL	Device Enable. Pull high to disable the device, pull low to enable. 10
IP3 Bias Adjustment. The voltage presented to the ADJ pin sets the internal bias of the mixer core and allows		
for adaptive control of the IIP3 and NF characteristics of the mixer core.		
11	DETO	Detector Output. DETO pin should be loaded with a capacitor to ground. The developed voltage is proportional to the RMS input level. By connecting the DETO output voltage to the ADJ input pin the part will auto bias and increase IP3 performance when presented with large signal input levels. Positive Supply Voltage for Detector.
13	VPDT	Differential RF input terminal. Internally matched to 50Ω differential input impedance. Must be ac-coupled. 15,16 18
RFIP, RFIN	VPRF	Positive Supply Voltage for RF Input system.
21,20	IFOP, IFON	Differential IF Output terminals. Need to apply bias through pull-up choke inductors or center tap of the IF transfomer.
22	NC	Not Connected.

Preliminary Technical Data

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{ADJ}=3.8 \mathrm{~V}$ as measured using typical circuit schematic unless otherwise noted.

Figure 3. Conversion Gain versus RF Frequency

Figure 4. IIP3 versus RF Frequency

Figure 5. IP1dB versus RF Frequency

Figure 6. Single-Sideband NF versus RF Frequency

Figure 8. LO to RF Leakage versus LO Frequency

Figure 9. Supply Current versus RF Power with
Detector Looped to ISET

EVALUATION BOARD SCHEMATIC

Figure 10. Evaluation Board Schematic.
Table 4. Eval Board Configuration

Components	Function	Default Conditions
$\begin{aligned} & \text { C2, C3, C6, C7, C10, C11, } \\ & \text { R5, R6 } \end{aligned}$	Power Supply Decoupling. Nominal supply decoupling consists a 0.1 $\mu \mathrm{F}$ capacitor to ground in parallel with 100pF capacitors to ground positioned as close to the device as possible. Series resistors are provided for enhanced supply decoupling using optional ferrite chip inductors.	$\begin{aligned} & \text { C2, C6, C10, C11 = } 0.1 \mu \mathrm{~F} \text { (size 0402) } \\ & \text { C3, C7 }=100 \mathrm{pF} \text { (size } 0402 \text {) } \\ & \text { R5, R6 }=0 \Omega \text { (size 0402) } \end{aligned}$
C8, C9, T3, T6, T9, RF	RF Input Interfaces. Input channels are ac-coupled through C18 and C9. R8 and R11 provide the options when additional matching is needed. T3 is a $1: 1$ balun used to interface to the $50-\Omega$ differential inputs. T6 and T9 provides the options when high frequency baluns are used and require smaller balun footprints.	$\begin{aligned} & \text { C8, C9 = } 100 \mathrm{pF} \text { (size 0402) } \\ & \text { T3 = TC1-1-13M+ (Mini-Circuits) } \end{aligned}$
$\begin{aligned} & \text { C13, C50, L1, L2, L3, R2, } \\ & \text { R3, R50, T1, T5, T8, IF } \end{aligned}$	IF Output Interfaces. The 200- Ω open collector IF output interfaces are biased through the center tap of a 4:1 impedance transformer at T1. C50 provides local bypassing with R50 available for additional supply bypassing. L1 and L2 provide the options when pull-up choke inductors are used to bias the open-collector outputs. C13,	$\begin{aligned} & \text { C13 = OPEN }(\text { size 0402) } \\ & \text { C50 }=0.1 \mu \text { F }(\text { size 0402) } \\ & \text { L1, L2 }=\text { OPEN }(\text { size } 1008) \\ & \text { L3 }=\text { OPEN }(\text { size } 0402) \end{aligned}$

	L3, R2 and R3 are provided for IF filtering and matching options. T5 and T8 provides the options when high frequency baluns are used and require smaller balun footprints.	$\begin{aligned} & \text { R2, R3, R50 = } 0 \Omega \text { (size 0402) } \\ & \text { T1 = TC4-1W+ (Mini-Circuits) } \end{aligned}$
$\begin{aligned} & \text { C4, C5, R1, R4, T2, T4, T7, } \\ & \text { LO } \end{aligned}$	LO Interface. C4 and C5 provide ac-coupling for the local oscillator input. T2 is a 1:1 balun to allow single-ended interfacing to the differential $50-\Omega$ local oscillator input. R1 and R4 provide the options when additional matching is needed. T4 and T7 provides the options when high frequency baluns are used and require smaller balun footprints.	$\begin{aligned} & \hline \mathrm{C} 4, \mathrm{C} 5=100 \mathrm{pF} \text { (size 0402) } \\ & \mathrm{R} 1, \mathrm{R} 4=0 \Omega \text { (size 0402) } \\ & \mathrm{T} 2=\mathrm{TC} 1-1-13 \mathrm{M}+\text { (Mini-Circuits) } \end{aligned}$
C1, C12, R7, DET_OUT	DET_OUT Interface. C1 and C12 provide decoupling for pin DETO. R7 provide the access to pin ADJ when automatic IP3 control is needed.	$\begin{aligned} & \mathrm{C} 1=0.1 \mu \mathrm{~F}(\text { size } 0603) \\ & \mathrm{C} 12=0.01 \mu \mathrm{~F}(\text { size } 0603) \\ & \mathrm{R} 7=\text { OPEN }(\text { size 0402) } \\ & \hline \end{aligned}$
R9, R10, ISET	ADJ Bias Control. R9 and R10 form an optional resistor divider network between VCC and GND, allowing for a fixed bias setting. The default values are set up for 3.8 V at the ADJ pin.	R9, R10 = OPEN (size 0402)

OUTLINE DIMENSIONS

ANALOG

DEVICES
24-Lead Lead Frame Chip Scale Package [LFCSP_VQ] $4 \times 4 \mathrm{~mm}$ Body, Very Thin Quad
(CP-24-3)
Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-8

Figure 11. 24-Lead Lead Frame Chip Scale Package [LFCSP_VQ] $4 m m \times 4 m m$ Body, Very Thin Quad (CP-24-2))

Dimensions shown in millimeters

ORDERING GUIDE

Models	Temperature Range	Package Description	Package Option	Transport Branding
Media Quantity				

${ }^{\prime} Z=P b$-free part.

[^0]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700
 www.analog.com
 Fax: 781.326.8703 © 2009 Analog Devices, Inc. All rights reserved.

