

100 MHz - 4000 MHz **RF/IF Digitally Controlled VGA**

Preliminary Technical Data

ADL5240

FEATURES

Operating frequency 100 MHz to 4000 MHz Digitally controlled variable gain amplifier Supports both serial and parallel interfaces 6-bit, 0.5 dB digital step attenuator 31.5 dB gain control range with ±0.25 dB step accuracy **Amplifier specifications:**

Gain: 19.0 dB @ 2 GHz OIP3: 38 dBm @ 2 GHz P1dB: 19.1 dBm @ 2 GHz Noise figure: 3.3 dB @ 2 GHz

Single supply operation from 4.75 V to 5.25 V

Low quiescent current 90 mA

Thermally efficient 32-Lead 5 x 5 mm LFCSP

FUNCTIONAL BLOCK DIAGRAM

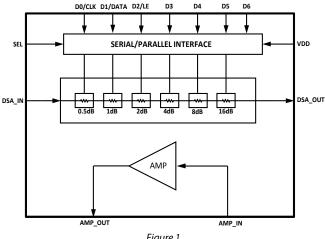


Figure 1

GENERAL DESCRIPTION

The ADL5240 is a high performance digitally controlled variable gain amplifier operating from 100 MHz to 4000 MHz. The VGA integrates a high performance, 20 dB gain, internally matched amplifier with a 6-bit digital step attenuator (DSA) with 31.5 dB gain control range, 0.5 dB steps, and ±0.25 dB step accuracy. The attenuation of the DSA can be controlled using a serial or parallel interface.

The ADL5240 consumes just 90 mA and operates off a single supply ranging from 4.75V to 5.25V. The VGA is packaged in a thermally enhanced 5 x 5 mm 32-lead LFCSP, and is fully

specified for operation from -40°C to +85°C. A fully populated evaluation board is available.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2011 Analog Devices, Inc. All rights reserved.

ADL5240

SPECIFICATIONS

 $VCC1 = 5V, VDD = 5V, T_A = 25^{\circ}C$

Table 1.

Parameter	Conditions	Min	Тур	Max	Unit
OVERALL FUNCTION					
Frequency Range		100		4000	MHz
Amplifier	Pins AMP_IN, AMP_OUT				
FREQUENCY = 140MHz					
Gain			17.0		dB
vs. Frequency	±50 MHz		±1.2		dB
vs. Temperature	-40 °C \leq T _A \leq $+85$ °C		±0.03		dB
vs. Supply	4.75 V to 5.25 V		±0.04		dB
Output 1 dB Compression Point			18.3		dBm
Output Third-Order Intercept	$\Delta f = 1$ MHz, $P_{OUT} = 0$ dBm per tone		25		dBm
Noise Figure			2.9		dB
FREQUENCY = 400MHz					
Gain			19.5		dB
vs. Frequency	±50 MHz		±0.2		dB
vs. Temperature	-40 °C \leq T _A \leq $+85$ °C		±0.3		dB
vs. Supply	4.75 V to 5.25 V		±0.01		dB
Output 1 dB Compression Point			20.0		dBm
Output Third-Order Intercept	$\Delta f = 1$ MHz, $P_{OUT} = 0$ dBm per tone		36.5		dBm
Noise Figure			3.0		dB
FREQUENCY = 900MHz					
Gain			20.2		dB
vs. Frequency	±50 MHz		±0.01		dB
vs. Temperature	-40 °C $\leq T_A \leq +85$ °C		±0.28		dB
vs. Supply	4.75 V to 5.25 V		±0.01		dB
Output 1 dB Compression Point			20.0		dBm
Output Third-Order Intercept	$\Delta f = 1$ MHz, $P_{OUT} = 0$ dBm per tone		38.1		dBm
Noise Figure			2.9		dB
FREQUENCY = 2000MHz					
Gain			19.0		dB
vs. Frequency	±50 MHz		±0.04		dB
vs. Temperature	-40°C ≤ T _A ≤ +85°C		±0.35		dB
vs. Supply	4.75 V to 5.25 V		±0.04		dB
Output 1 dB Compression Point			19.1		dBm
Output Third-Order Intercept	$\Delta f = 1$ MHz, $P_{OUT} = 0$ dBm per tone		38.0		dBm
Noise Figure			3.3		dB
FREQUENCY = 2600MHz					
Gain			19.2		dB
vs. Frequency	±50 MHz		±0.01		dB
vs. Temperature	-40 °C \leq T _A \leq $+85$ °C		±0.28		dB
vs. Supply	4.75 V to 5.25 V		±0.05		dB
Output 1 dB Compression Point			18.7		dBm
Output Third-Order Intercept	$\Delta f = 1$ MHz, $P_{OUT} = 0$ dBm per tone		32.5		dBm
Noise Figure			3.4		dB

Parameter	Conditions	Min	Тур	Max	Unit
FREQUENCY = 3500MHz					
Gain			18.8		dB
vs. Frequency	±50 MHz	±0.03			dB
vs. Temperature	-40 °C $\leq T_A \leq +85$ °C		±0.37		dB
vs. Supply	4.75 V to 5.25 V	±0.07			dB
Output 1 dB Compression Point			18.7		dBm
Output Third-Order Intercept	$\Delta f = 1$ MHz, $P_{OUT} = 0$ dBm per tone		31.5		dBm
Noise Figure	, , , , , , , , , , , , , , , , , ,		3.8		dB
FREQUENCY = 4000MHz					
Gain			18.5		dB
vs. Frequency	±50 MHz		±0.19		dB
vs. Temperature	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +85^{\circ}\text{C}$		±0.73		dB
vs. Supply	4.75 V to 5.25 V		±0.08		dB
Output 1 dB Compression Point	1175 V to 5125 V		17		dBm
Output Third-Order Intercept	$\Delta f = 1$ MHz, $P_{OUT} = 0$ dBm per tone		28		dBm
Noise Figure	Zi = 1 Wil 12, 1 out = 0 dbill per tolle		3.9		dB
Noise rigure			5.9		ab
Digital Step Attenuator	Pins DSA_IN, DSA_OUT				
FREQUENCY = 400 - 1000MHz					
Insertion Loss	Minimum Attenuation		1.7		dB
Attenuation Range			31.5		dB
Step Size			0.5		dB
Input Return Loss			15		dB
Output Return Loss			13		dB
Input 1 dB Compression Point			28		dBm
Input Third-Order Intercept	$\Delta f = 1 \text{ MHz}, P_{OUT} = 8 \text{ dBm/tone}, Minimum Attenuation$ 51				dBm
FREQUENCY = 1400 - 2200MHz					G.D
Insertion Loss	Minimum Attenuation		2.4		dB
Attenuation Range	Willimani/Acceluacion		31.5		dB
Step Size			0.5		dB
Input Return Loss			12		dB
-			12		dB
Output Return Loss					
Input 1 dB Compression Point	Af 1 MILE D. 16 IDm /hours Minimum Attaches		28		dBm
Input Third-Order Intercept	$\Delta f = 1 \text{ MHz}, P_{OUT} = 16 \text{ dBm/tone}, Minimum Attenuation}$		50		dBm
FREQUENCY = 2200 - 2700MHz			2.4		
Insertion Loss	Minimum Attenuation		3.4		dB
Attenuation Range			31.5		dB
Step Size			0.5		dB
Input Return Loss			10		dB
Output Return Loss		1	10		dB
Input 1 dB Compression Point			28		dBm
Input Third-Order Intercept	$\Delta f = 1$ MHz, $P_{OUT} = 15$ dBm/tone, Minimum Attenuation		49		dBm
POWER SUPPLIES	Pin VDD				
Voltage		4.75	5.0	5.25	V
Supply Current			90		m/

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage, VDD	TBDV
Lead Temperature (Soldering, 60 sec)	TBD C
Internal Power Dissipation	TBD W
θ_{JA} (Exposed Paddle Soldered Down)	TBD °C/W
Maximum Junction Temperature	150°C
Operating Temperature Range	-40°C to +85°C
Storage Temperature Range	-65°C to +150°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

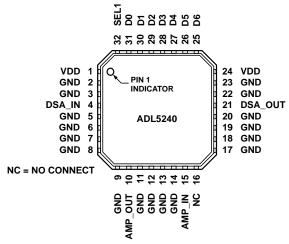


Figure 2. Pin Configuration

Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Description		
1, 24	VDD	Supply voltage for DSA, Connect to 5V supply		
2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 17, 18, 19, 20, 22, 23	GND	Ground connection, connect to low impedance ground plane		
4	DSA_IN	RF Input to DSA		
10	AMP_OUT	RF Output from Amplifier, Bias for the amplifier is provided through this pin		
15	AMP_IN	RF Input to Amplifier		
16	NC	No Connect		
21	DSA_OUT	RF Output from DSA		
25	D6	Data bit in Parallel Mode (LSB), Connect to supply in Serial Mode		
26	D5	Data bit in Parallel Mode, Connect to ground in Serial Mode		
27	D4	Data bit in Parallel Mode, Connect to ground in Serial Mode		
28	D3	Data bit in Parallel Mode, Connect to ground in Serial Mode		
29	D2	Data bit in Parallel Mode and Latch Enable in Serial Mode		
30	D1	Data bit in Parallel Mode (MSB) and Data in Serial Mode		
31	D0	Connect to ground in Parallel Mode and Clock in Serial Mode		
32	SEL1	Connect to supply for Parallel mode operation, connect to ground for serial mode operation		

TYPICAL PERFORMANCE CHARACTERISTICS

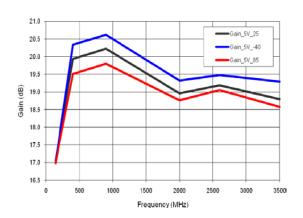


Figure 3 Amp: Gain vs. Freq and Temperature

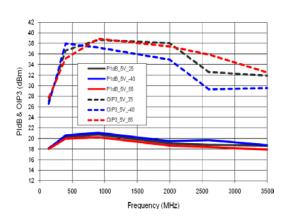


Figure 4 Amp: P1dB and OIP3 vs. Freq and Temperature

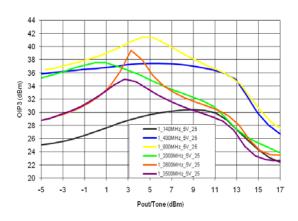


Figure 5 Amp: OIP3 vs. Pout and Freq

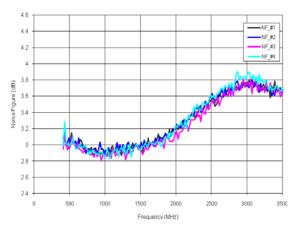


Figure 6 Amp: Noise Figure vs. Freq

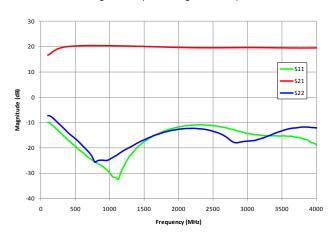


Figure 7 Amp: S parameters vs. Freq

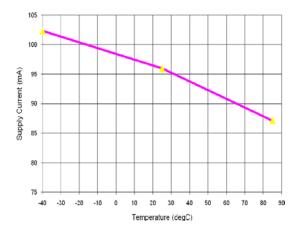


Figure 8 Supply Current vs. Temperature

TYPICAL PERFORMANCE CHARACTERISTICS

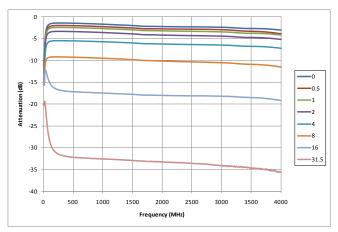


Figure 9 DSA: Attenuation vs. Freq

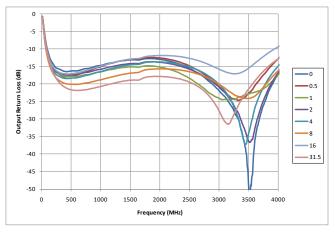


Figure 10 DSA: S22 vs Freq

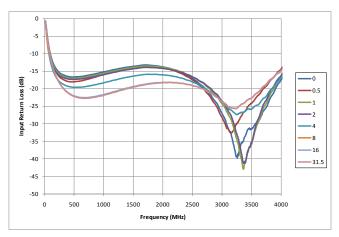


Figure 11 DSA: S11 vs Freq

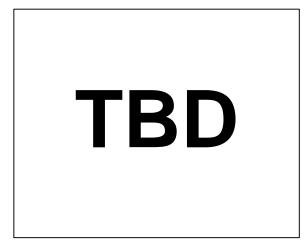


Figure 12

SPI TIMING SEQUENCE

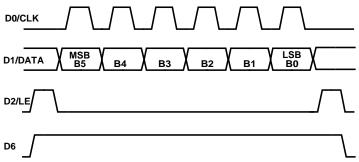
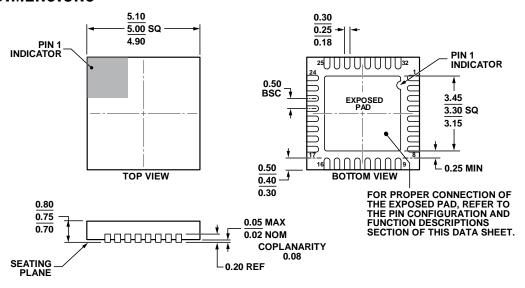


Figure 13. SPI Timing Sequence

Figure 13 is the timing sequence for the SPI function using a 6-bit operation. The clock can be as fast as 20MHz. In serial mode operation register B5 (MSB) comes in first and register B0 (LSB) comes in last.

Table 4. Mode Selection Table

Pin SEL 1	Functionality		
Ground	Serial Mode		
Supply	Parallel Mode		


Table 5. DSA Attenuation Truth Table - Serial Mode

Attenuation State	B5 (MSB)	B4	В3	B2	B1	B0 (LSB)
0 dB (reference)	1	1	1	1	1	1
0.5 dB	1	1	1	1	1	0
1.0 dB	1	1	1	1	0	1
2.0 dB	1	1	1	0	1	1
4.0 dB	1	1	0	1	1	1
8.0 dB	1	0	1	1	1	1
16.0 dB	0	1	1	1	1	1
31.5 dB	0	0	0	0	0	0

Table 6. DSA Attenuation Truth Table - Parallel Mode

Attenuation State	D1 (MSB)	D2	D3	D4	D5	D6 (LSB)
0 dB (reference)	1	1	1	1	1	1
0.5 dB	1	1	1	1	1	0
1.0 dB	1	1	1	1	0	1
2.0 dB	1	1	1	0	1	1
4.0 dB	1	1	0	1	1	1
8.0 dB	1	0	1	1	1	1
16.0 dB	0	1	1	1	1	1
31.5 dB	0	0	0	0	0	0

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-220-WHHD.

Figure 14. 32-Lead Lead Frame Chip Scale Package [LFCSP] 5 x 5 mm Quad 3.3 x 3.3mm pad (CP-32-13) Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADL5240ACPZ-R7	−40°C to +85°C	32 Lead Lead Frame Chip Scale Package LFCSP_WQ	
ADL5240-EVALZ			