869 MHz to 1990 MHz Quadrature Modulators

FEATURES

Operating frequencies
ADL5590: 869 MHz to 960 MHz
ADL5591: 1805 MHz to 1990 MHz
Output compression point P1dB: 16 dBm
Output third-order intercept point OIP3
ADL5590: 29 dBm @ 900 MHz
ADL5591: $\mathbf{3 0}$ dBm @ 1900 MHz
Noise floor: $\mathbf{- 1 5 7} \mathbf{~ d B m} / \mathbf{H z}$
Sideband suppression
ADL5590: <-50 dBc @ 900 MHz
ADL5591: <-47 dBc @ 1900 MHz
Baseband common-mode bias: 1.5 V
LO leakage
ADL5590: - $\mathbf{5 0} \mathbf{~ d B c @ 9 0 0 ~ M H z , ~ P o u t ~}=5 \mathrm{dBm}$
ADL5591: - $\mathbf{4 4} \mathbf{~ d B c} @ 1900 \mathrm{MHz}$, Pout $=5 \mathrm{dBm}$
Single supply: 4.75 V to 5.25 V
Package: 36-lead, $6 \mathrm{~mm} \times 6 \mathrm{~mm}$ LFCSP

APPLICATIONS

Wireless infrastructure

Optimized for GSM transmitters

GENERAL DESCRIPTION

This family of monolithic RF quadrature modulators is designed for use from 869 MHz to 960 MHz and from 1805 MHz to 1990 MHz . Excellent phase accuracy and amplitude balance enable high performance, direct RF modulation for communications systems.

The ADL5590 and ADL5591 can be used as direct RF modulators in digital communications systems such as those using the Global System for Mobile Communications (GSM) network. In addition, the parts are compatible with enhanced data rates for GSM evolution (EDGE).

This family is fabricated using an advanced silicon-germanium bipolar process from Analog Devices, Inc., and is available in a 36-lead, exposed paddle LFCSP. The devices operate from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Figure 1.

Rev. 0

ADL5590/ADL5591

TABLE OF CONTENTS

\qquad
Applications. 1
General Description 1
Functional Block Diagram 1
Revision History 2
Specifications3
Absolute Maximum Ratings 5
ESD Caution 5
Pin Configuration and Function Descriptions. 6
Basic Connections 7
Outline Dimensions 8
Ordering Guide 8

REVISION HISTORY

5/07—Revision 0: Initial Version

SPECIFICATIONS

$\mathrm{V}_{\mathrm{s}}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{LO}=2 \mathrm{dBm}$; baseband I / Q amplitude $=1 \mathrm{~V}$ p-p differential sine waves in quadrature with a 1.5 V dc bias; baseband I / Q frequency $\left(\mathrm{f}_{\mathrm{BB}}\right)=1 \mathrm{MHz}$, unless otherwise noted.

Table 1.

Parameter	Conditions	Min	Typ	Max	Unit
Operating Frequency Range ADL5590		$\begin{gathered} 869 \\ 1805 \end{gathered}$		$\begin{gathered} 960 \\ 1990 \end{gathered}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
ADL5590 @ $\mathrm{f}_{\mathrm{RF}}=880 \mathrm{MHz}$ Output Power vs. Frequency vs. Temperature Sideband Suppression LO Leakage Output Return Loss Output P1 dB Output IP3 Output IP2 Output Noise Density Output Noise Floor Modulation Spectrum RMS Error Vector Magnitude Peak Error Vector Magnitude	$\mathrm{V}_{\mathrm{IO}}=1.0 \mathrm{~V}$ p-p differential $\mathrm{f}_{\mathrm{RF}}=869 \mathrm{MHz}$ to 894 MHz $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ $-25^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ $\mathrm{f} 1_{\mathrm{BB}}=3.5 \mathrm{MHz}, \mathrm{f}_{\text {BB }}=4.5 \mathrm{MHz}$, Pout $=0 \mathrm{dBm}$ per tone $\mathrm{f} 1_{\text {BB }}=3.5 \mathrm{MHz}, \mathrm{f}_{2 \mathrm{BB}}=4.5 \mathrm{MHz}$, Pout $=0 \mathrm{dBm}$ per tone Pout $=5 \mathrm{dBm}, 6 \mathrm{MHz}$ carrier offset Baseband inputs biased to 1.5 V Relative to carrier in 30 kHz , Pout $=3 \mathrm{dBm}, 8$ PSK 250 kHz carrier offset 400 kHz carrier offset 600 kHz carrier offset 1.2 MHz carrier offset Pout $=3 \mathrm{dBm}, 8$ PSK Pout $=3 \mathrm{dBm}, 8$ PSK	3.75	$\begin{gathered} 5.9 \\ \pm 0.1 \\ 0.01 \\ 0.01 \\ -50 \\ -50 \\ 2.8 \\ 16 \\ 29 \\ 66 \\ -155 \\ -156.6 \\ \\ -42.5 \\ -71.1 \\ -78.5 \\ -79.1 \\ 0.5 \\ 1.5 \\ \hline \end{gathered}$	8.0	dBm dB $\mathrm{dB} /{ }^{\circ} \mathrm{C}$ $\mathrm{dB} /{ }^{\circ} \mathrm{C}$ dBc dBc dB dBm dBm dBm $\mathrm{dBc} / \mathrm{Hz}$ $\mathrm{dBm} / \mathrm{Hz}$ dBc dBc dBc dBc \% \%
ADL5590 @ $\mathrm{f}_{\mathrm{RF}}=940 \mathrm{MHz}$ Output Power vs. Frequency vs. Temperature Sideband Suppression LO Leakage Output Return Loss Output P1 dB Output IP3 Output IP2 Output Noise Floor Modulation Spectrum RMS Error Vector Magnitude Peak Error Vector Magnitude	$\mathrm{V}_{\mathrm{I}}=1.0 \mathrm{~V}$ p-p differential $\mathrm{f}_{\text {RF }}=925 \mathrm{MHz}$ to 960 MHz $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ $-25^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ $\mathrm{f} 1_{\mathrm{BB}}=3.5 \mathrm{MHz}, \mathrm{f}_{\text {BB }}=4.5 \mathrm{MHz}$, Pout $=0 \mathrm{dBm}$ per tone $\mathrm{f} 1_{\text {BB }}=3.5 \mathrm{MHz}$, $\mathrm{f} \mathrm{ZBB}_{\text {B }}=4.5 \mathrm{MHz}$, Pout $=0 \mathrm{dBm}$ per tone Baseband inputs biased to 1.5 V Relative to carrier in 30 kHz , Pout $=3 \mathrm{dBm}, 8 \mathrm{PSK}$ 250 kHz carrier offset 400 kHz carrier offset 600 kHz carrier offset 1.2 MHz carrier offset Pout $=3 \mathrm{dBm}, 8$ PSK Pout $=3 \mathrm{dBm}, 8$ PSK	3.5	$\begin{gathered} 5.7 \\ \pm 0.1 \\ 0.01 \\ 0.01 \\ -50 \\ -50 \\ 3.2 \\ 16 \\ 29 \\ 70 \\ -156.6 \\ \\ -42.5 \\ -71.1 \\ -78.5 \\ -79.1 \\ 0.4 \\ 1.4 \\ \hline \end{gathered}$	7.75	dBm dB $\mathrm{dB} /{ }^{\circ} \mathrm{C}$ $\mathrm{dB} /{ }^{\circ} \mathrm{C}$ dBc dBc dB dBm dBm dBm $\mathrm{dBm} / \mathrm{Hz}$ dBc dBc dBc dBc \% \%
ADL5591 @ $\mathrm{f}_{\text {RF }}=1850 \mathrm{MHz}$ Output Power vs. Frequency vs. Temperature Sideband Suppression LO Leakage	$\begin{aligned} & \mathrm{f}_{\mathrm{RF}}=1850 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{VO}}=1.0 \mathrm{~V} \mathrm{p} \text {-p differential } \\ & \mathrm{f}_{\mathrm{FF}}=1805 \mathrm{MHz} \text { to } 1880 \mathrm{MHz} \\ & 0^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \text { to } 0^{\circ} \mathrm{C} \end{aligned}$	3.0	$\begin{gathered} 5.0 \\ \pm 0.1 \\ 0.011 \\ 0.011 \\ -47 \\ -44 \\ \hline \end{gathered}$	7.0	dBm dB $\mathrm{dB} /{ }^{\circ} \mathrm{C}$ $\mathrm{dB} /{ }^{\circ} \mathrm{C}$ dBc dBc

ADL5590/ADL5591

Parameter	Conditions	Min	Typ	Max	Unit
Output Return Loss Output P1 dB Output IP3 Output IP2 Output Noise Density Output Noise Floor Modulation Spectrum RMS Error Vector Magnitude Peak Error Vector Magnitude	$\begin{aligned} & \mathrm{f} 1_{\mathrm{BB}}=3.5 \mathrm{MHz}, \mathrm{f} 2_{\mathrm{BB}}=4.5 \mathrm{MHz}, \text { Pout }=-1 \mathrm{dBm} \text { per tone } \\ & \mathrm{f} 1_{\mathrm{BB}}=3.5 \mathrm{MHz}, \mathrm{f} 2_{\mathrm{BB}}=4.5 \mathrm{MHz}, \text { P out }=-1 \mathrm{dBm} \text { per tone } \\ & \text { Pout }=5 \mathrm{dBm}, 6 \mathrm{MHz} \text { carrier offset } \\ & \text { Baseband inputs biased to } 1.5 \mathrm{~V} \\ & \text { Relative to carrier in } 30 \mathrm{kHz}, \text { Pout }=3 \mathrm{dBm}, 8 \mathrm{PSK} \\ & 250 \mathrm{kHz} \text { carrier offset } \\ & 400 \mathrm{kHz} \text { carrier offset } \\ & 600 \mathrm{kHz} \text { carrier offset } \\ & 1.2 \mathrm{MHz} \text { carrier offset } \\ & \text { Pout }=3 \mathrm{dBm}, 8 \text { PSK } \\ & \text { Pout }=3 \mathrm{dBm}, 8 \text { PSK } \end{aligned}$		5.4 16 30 60 -156 -157 -42.5 -71.3 -79.4 -80.2 0.5 1.7		dB dBm dBm dBm $\mathrm{dBc} / \mathrm{Hz}$ $\mathrm{dBm} / \mathrm{Hz}$ dBc dBc dBc dBc \% \%
ADL5591 @ $f_{R F}=1960 \mathrm{MHz}$ Output Power vs. Frequency vs. Temperature Sideband Suppression LO Leakage Output Return Loss Output P1dB Output IP3 Output IP2 Output Noise Density Output Noise Floor Modulation Spectrum RMS Error Vector Magnitude Peak Error Vector Magnitude	$\begin{aligned} & \mathrm{V}_{\mathrm{GQ}}=1.0 \mathrm{~V} \mathrm{p} \text {-p differential } \\ & \mathrm{f}_{\mathrm{RF}}=1930 \mathrm{MHz} \text { to } 1990 \mathrm{MHz} \\ & 0^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \text { to } 0^{\circ} \mathrm{C} \end{aligned}$ $\mathrm{f}_{1 \mathrm{BB}}=3.5 \mathrm{MHz}, \mathrm{f}_{\mathrm{BB}}=4.5 \mathrm{MHz}$, Pout $=-1 \mathrm{dBm}$ per tone $\mathrm{f} 1_{\mathrm{BB}}=3.5 \mathrm{MHz}, \mathrm{f}_{\mathrm{BB}}=4.5 \mathrm{MHz}$, Pout $=-1 \mathrm{dBm}$ per tone Pout $=5 \mathrm{dBm}, 6 \mathrm{MHz}$ carrier offset Baseband inputs biased to 1.5 V Relative to carrier in 30 kHz , Pout $=3 \mathrm{dBm}, 8$ PSK 250 kHz carrier offset 400 kHz carrier offset 600 kHz carrier offset 1.2 MHz carrier offset $\text { Pout }=3 \mathrm{dBm}, 8 \mathrm{PSK}$ $\mathrm{P}_{\text {OUt }}=3 \mathrm{dBm}, 8 \mathrm{PSK}$	2.5	$\begin{gathered} 4.7 \\ \pm 0.1 \\ +0.011 \\ +0.011 \\ -48 \\ -44 \\ 6.0 \\ 16 \\ 30 \\ 60 \\ -156 \\ 157 \\ \\ -42.5 \\ -71.4 \\ -79.7 \\ -80.5 \\ 0.5 \\ 1.6 \end{gathered}$	6.5	dBm dB $\mathrm{dB} /{ }^{\circ} \mathrm{C}$ $\mathrm{dB} /{ }^{\circ} \mathrm{C}$ dBC dBC dB dBm dBm dBm $\mathrm{dBc} / \mathrm{Hz}$ $\mathrm{dBm} / \mathrm{Hz}$ dBC dBC dBC dBc \% \%
LO INPUTS LO Drive Level ${ }^{1}$ Input Return Loss	LOIP, LOIN $\begin{aligned} & \text { ADL5590 @ } f_{\mathrm{RF}}=880 \mathrm{MHz} \\ & \text { ADL5591 @ } \mathrm{f}_{\mathrm{RF}}=1850 \mathrm{MHz} \end{aligned}$	-1	$\begin{gathered} +2 \\ 7.5 \\ 10.7 \end{gathered}$	+5	dBm dB dB
BASEBAND INPUTS I and Q Input Bias Level Bandwidth (3 dB) Differential Input Impedance	Pins IBBP, IBBN, QBBP, QBBN		$\begin{gathered} 1.5 \\ 250 \\ 9 \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{MHz} \\ & \mathrm{k} \Omega \end{aligned}$
POWER SUPPLIES Voltage Supply Current ADL5590 ADL5591	Pin VPS1 to Pin VPS5 Full specification Degraded specification	$\begin{gathered} 4.75 \\ 4.5 \end{gathered}$	$\begin{aligned} & 170 \\ & 170 \end{aligned}$	$\begin{gathered} 5.25 \\ 5.5 \end{gathered}$	V V mA mA

[^0]
ADL5590/ADL5591

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage, VPS1 to VPS5	5.5 V
IBBP, IBBN, QBBP, QBBN	$0 \mathrm{~V}, 3 \mathrm{~V}$
LOIP	10 dBm
Internal Power Dissipation	1155 mW
θ_{JA} (Exposed Paddle Soldered Down)	$40^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction Temperature	$132^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Soldering Temperature	$260^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

ADL5590/ADL5591

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. ADL5590/ADL5591 Pin Configuration

Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Description
$1,2,5,7$ to 12,14 , 16 to 19, 22, 24, 27 to $30,32,34$ to 36	GND	Ground. Connect to ground plane via a low impedance path.
3, 13, 15, 31, 33	VPS1, VPS2, VPS3, VPS4, VPS5	Positive Supply Voltage. All pins should be connected to the same supply. To ensure adequate external bypassing, connect $0.1 \mu \mathrm{~F}$ capacitors between each pin and ground.
4,6	LOIP, LOIN	Local Oscillator Input. 50Ω single-ended local oscillator input. Pins must be ac-coupled. AC-couple LOIN to ground and drive LO through LOIP.
20, 21, 25, 26	IBBP, IBBN, QBBN, QBBP	Baseband Inputs. Differential in-phase and quadrature baseband inputs. These high impedance inputs must be dc-biased to approximately 1.5 V dc. These inputs are not self-biased and must be externally biased.
23	VOUT	RF Output. Single-ended, 50Ω, internally biased RF output. Pin must be ac-coupled to the load.
-	Exposed Paddle	Exposed Paddle. Connect to ground plane via a low impedance path.

BASIC CONNECTIONS

ADL5590/ADL5591

OUTLINE DIMENSIONS

Figure 4. 36-Lead Lead Frame Chip Scale Package [LFCSP_VQ] $6 \mathrm{~mm} \times 6 \mathrm{~mm}$ Body, Very Thin Quad (CP-36-1)
Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADL5590ACPZ-R7 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$36-$ Lead LFCSP_VQ, 7" Tape and Reel	CP-36-1
ADL5591ACPZ-R7 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$36-$ Lead LFCSP_VQ, 7" Tape and Reel	CP-36-1

${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

[^0]: ${ }^{1} \mathrm{LO}$ drive in excess of 5 dBm can be provided to further reduce noise at 6 MHz carrier offset.

