FEATURES

Output frequency range: $\mathbf{4 0 0} \mathbf{~ M H z}$ to $6 \mathbf{~ G H z}$
Modulation bandwidth: $\mathbf{5 0 0} \mathbf{~ M H z}$ (3 dB)
1 dB output compression: $\geq \mathbf{9 . 4} \mathbf{~ d B m}$ from 500 MHz to $\mathbf{4 ~ G H z}$
Output return loss: $\leq 15 \mathrm{~dB}$ from 500 MHz to $\mathbf{5} \mathbf{~ G H z}$
Noise floor: - $\mathbf{1 6 1 ~ d B m / H z ~ @ ~} 900 \mathrm{MHz}$
SB suppression: $\leq \mathbf{- 4 0} \mathbf{~ d B c}, \mathbf{4 5 0} \mathbf{~ M H z}$ to $\mathbf{4 ~ G H z}$ and vs. temp
LO leakage: $\leq \mathbf{- 4 0} \mathbf{d B m}, 450 \mathrm{MHz}$ to 2 GHz and vs. temp
Baseband bias levels of $\mathbf{5 0 0} \mathbf{~ m V}$ and 1.5 V
Single supply: 4.75 V to 5.25 V
24-lead LFCSP_VQ package

APPLICATIONS

Cellular communications systems

GSM/EDGE, CDMA2000, WCDMA, TDSCDMA
WiMAX/broadband wireless access systems
Multi-band, Multi-standard radios
Satellite modems

GENERAL DESCRIPTION

The ADL5375 is a broadband quadrature modulator designed for operation from 400 MHz to 6 GHz . Its excellent phase accuracy and amplitude balance enable high performance intermediate frequency or direct radio frequency modulation for communications systems.

The ADL5375 provides a greater than $500 \mathrm{MHz}, 3 \mathrm{~dB}$ baseband bandwidth, making it ideally suited for use in broadband zero IF or low IF-to-RF applications and in broadband digital predistortion transmitters. In addition, the ADL5375 offers output gain flatness of $\pm 0.5 \mathrm{~dB}$ from 450 MHz to 3 GHz and a broadband output return loss of less than -15 dB .

The ADL5375 accepts two differential baseband inputs and a single-ended LO and generates a single-ended 50Ω output. Two versions offer input baseband bias levels of 500 mV (ADL5375-05) and 1.5 V (ADL5375-15).
The ADL5375 is fabricated using an advanced silicongermanium bipolar process. It is available in a 24 -lead, exposedpaddle, Pb -free, LFCSP_VQ package. Performance is specified over a $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. A Pb -free evaluation board is available.

Rev. PrE

TABLE OF CONTENTS

Features .. 1
Applications... 1
Functional Block Diagram .. 1
General Description ... 1
Revision History .. 2
Specifications... 3
Absolute Maximum Ratings.. 5
ESD Caution 5
Pin Configuration and Function Descriptions 6
Typical Performance Characteristics. 7
Evaluation Board 9
Outline Dimensions 11
Ordering Guide 11

REVISION HISTORY

12/07-Revision PrE

SPECIFICATIONS

$\mathrm{V}_{\mathrm{s}}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{LO}=0 \mathrm{dBm}$ single-ended; baseband I / Q amplitude $=1 \mathrm{~V}$ p-p differential sine waves in quadrature with a 500 mV (ADL5375-05) or 1.5 V (ADL5375-15) dc bias; baseband I / Q frequency $\left(\mathrm{f}_{\mathrm{BB}}\right)=1 \mathrm{MHz}$, unless otherwise noted.

Table 1.

Parameter	Conditions	Min	Typ	Max	Unit
OPERATING FREQUENCY RANGE	Low frequency High frequency		$\begin{aligned} & 400 \\ & 6000 \end{aligned}$		MHz
OUTPUT FREQUENCY $=900 \mathrm{MHz}$ Output Power Output P1 dB Output Return Loss Carrier Leakage Sideband Suppression Second Harmonic Third Harmonic Output IP2 Output IP3 Noise Floor GSM	$\mathrm{V}_{1 \mathrm{Q}}=1 \mathrm{~V}$ p-p differential Pout $-\left(f_{\text {LO }}+\left(2 \times f_{B B}\right)\right)$, Pout $=1 \mathrm{dBm}$ Pout $-\left(f_{\text {LO }}+\left(3 \times f_{\text {BB }}\right)\right)$, Pout $=1 \mathrm{dBm}$ $\mathrm{f}_{\mathrm{BB}}=3.5 \mathrm{MHz}, \mathrm{f}_{\mathrm{BB}}=4.5 \mathrm{MHz}$, $\mathrm{P}_{\text {out }}=-8 \mathrm{dBm}$ per tone $\mathrm{f}_{\text {BB }}=3.5 \mathrm{MHz}, \mathrm{f}_{\mathrm{BB}}=4.5 \mathrm{MHz}$, $\mathrm{P}_{\text {out }}=-8 \mathrm{dBm}$ per tone I / Q inputs $=0 \mathrm{~V}$ differential with a 500 mV common-mode bias, 20 MHz LO offset 6 MHz carrier offset, $\mathrm{P}_{\text {out }}=4 \mathrm{dBm}, \mathrm{P}_{\mathrm{Lo}}=0 \mathrm{dBm}$		$\begin{aligned} & 1 \\ & 9.4 \\ & -15 \\ & -46 \\ & -52 \\ & -72 \\ & -52 \\ & 66 \\ & 26 \\ & -161 \\ & -158 \\ & \hline \end{aligned}$		dBm dBm dBm dBc dBc dBc dBm dBm $\mathrm{dBm} / \mathrm{Hz}$ dBc/Hz
OUTPUT FREQUENCY $=1900 \mathrm{MHz}$ Output Power Output P1 dB Output Return Loss Carrier Leakage Sideband Suppression Second Harmonic Third Harmonic Output IP2 Output IP3 Noise Floor	$V_{10}=1 \mathrm{~V} \text { p-p differential }$ $\begin{aligned} & \text { Pout }-\left(\mathrm{f}_{\mathrm{LO}}+\left(2 \times \mathrm{f}_{\mathrm{BB}}\right)\right), \text { Pout }=1 \mathrm{dBm} \\ & \text { Pout }-\left(\mathrm{f}_{\mathrm{LO}}+\left(3 \times \mathrm{f}_{\mathrm{BB}}\right)\right), \text { Pout }=1 \mathrm{dBm} \\ & \mathrm{f}_{\text {1BB }}=3.5 \mathrm{MHz}, \mathrm{f}_{\mathrm{BB}}=4.5 \mathrm{MHz}, \mathrm{Pout}^{2}=-8 \mathrm{dBm} \text { per tone } \\ & \mathrm{f}_{\mathrm{BB}}=3.5 \mathrm{MHz}, \mathrm{f}_{\mathrm{BB}}=4.5 \mathrm{MHz}, \text { Pout }=-8 \mathrm{dBm} \text { per tone } \end{aligned}$ I / Q inputs $=0 \mathrm{~V}$ differential with a 500 mV or 1.5 V commonmode bias, 20 MHz LO offset		$\begin{aligned} & 1 \\ & 9.8 \\ & -15 \\ & -41 \\ & -55 \\ & -67 \\ & -52 \\ & 62 \\ & 24 \\ & -161 \end{aligned}$		dBm dBm dB dBm dBc dBc dBc dBm dBm $\mathrm{dBm} / \mathrm{Hz}$
OUTPUT FREQUENCY $=2140 \mathrm{MHz}$ Output Power Output P1 dB Output Return Loss Carrier Leakage Sideband Suppression Second Harmonic Third Harmonic Output IP2 Output IP3 Noise Floor	$V_{10}=1 \vee p \text {-p differential }$ I / Q inputs $=0 \mathrm{~V}$ differential with a 500 mV or 1.5 V commonmode bias, 20 MHz LO offset		$\begin{aligned} & 1 \\ & 10 \\ & -16 \\ & -40 \\ & -45 \\ & -68 \\ & -53 \\ & 57 \\ & 24 \\ & -160 \end{aligned}$		dBm dBm dB dBm dBc dBc dBc dBm dBm $\mathrm{dBm} / \mathrm{Hz}$

Parameter	Conditions	Min	Typ	Max	Unit
```OUTPUT FREQUENCY = 2600 MHz Output Power Output P1 dB Output Return Loss Carrier Leakage Sideband Suppression Second Harmonic Third Harmonic Output IP2 Output IP3 Noise Floor```	$\mathrm{V}_{\mathrm{IQ}}=1 \mathrm{~V}$ p-p differential   Pout $-\left(f_{\text {LO }}+\left(2 \times f_{\text {BB }}\right)\right)$, Pout $=1 \mathrm{dBm}$   Pout $-\left(f_{\text {LO }}+\left(3 \times f_{B B}\right)\right)$, Pout $=1 \mathrm{dBm}$   $\mathrm{f} 1_{\mathrm{BB}}=3.5 \mathrm{MHz}, \mathrm{f} 2_{\mathrm{BB}}=4.5 \mathrm{MHz}, \mathrm{P}_{\text {out }}=-8 \mathrm{dBm}$ per tone   $\mathrm{f} 1_{\mathrm{BB}}=3.5 \mathrm{MHz}, \mathrm{f} 2_{\mathrm{BB}}=4.5 \mathrm{MHz}, \mathrm{P}_{\text {out }}=-8 \mathrm{dBm}$ per tone   $\mathrm{I} / \mathrm{Q}$ inputs $=0 \mathrm{~V}$ differential with a 500 mV common-mode bias, 20 MHz LO offset		$\begin{aligned} & 1.1 \\ & 10.3 \\ & -17 \\ & -40 \\ & -44 \\ & -58 \\ & -52 \\ & 56 \\ & 23 \\ & -158 \end{aligned}$		dBm   dBm   dB   dBm   dBC   dBC   dBC   dBm   dBm   $\mathrm{dBm} / \mathrm{Hz}$
OUTPUT FREQUENCY $=3.5 \mathrm{GHz}$   Output Power   Output P1 dB   Output Return Loss   Carrier Leakage   Sideband Suppression   Second Harmonic   Third Harmonic   Output IP2   Output IP3   Noise Floor	$\mathrm{V}_{\mathrm{IQ}}=1 \mathrm{~V}$ p-p differential   Pout $-\left(f_{\text {LO }}+\left(2 \times f_{B B}\right)\right)$, Pout $=1 \mathrm{dBm}$   Pout $-\left(f_{\text {LO }}+\left(3 \times f_{\text {BB }}\right)\right)$, Pout $=1 \mathrm{dBm}$   $\mathrm{f} 1_{\mathrm{BB}}=3.5 \mathrm{MHz}, \mathrm{f}_{\mathrm{BB}}=4.5 \mathrm{MHz}$, Pout $=-8 \mathrm{dBm}$ per tone   $\mathrm{f} 1_{\mathrm{BB}}=3.5 \mathrm{MHz}, \mathrm{f} 2_{\mathrm{BB}}=4.5 \mathrm{MHz}$, $\mathrm{P}_{\text {out }}=-8 \mathrm{dBm}$ per tone   $\mathrm{I} / \mathrm{Q}$ inputs $=0 \mathrm{~V}$ differential with a 500 mV common-mode bias, 20 MHz LO offset		$\begin{aligned} & 1.7 \\ & 10.4 \\ & -20 \\ & -31 \\ & -50 \\ & -54 \\ & -52 \\ & 50 \\ & 24 \\ & -158 \end{aligned}$		dBm   dBm   dB   dBm   dBC   dBC   dBC   dBm   dBm   $\mathrm{dBm} / \mathrm{Hz}$
OUTPUT FREQUENCY $=5.8 \mathrm{GHz}$   Output Power   Output P1 dB   Output Return Loss   Carrier Leakage   Sideband Suppression   Second Harmonic   Third Harmonic   Output IP2   Output IP3   Noise Floor	$\mathrm{V}_{10}=1 \mathrm{~V}$ p-p differential   Pout $-\left(f_{\text {LO }}+\left(2 \times f_{\text {BB }}\right)\right.$, Pout $=0 \mathrm{dBm}$   Pout $-\left(f_{\text {LO }}+\left(3 \times f_{\text {BB }}\right)\right)$, Pout $=0 \mathrm{dBm}$   $\mathrm{f}_{\text {BB }}=3.5 \mathrm{MHz}, \mathrm{f}_{\text {BB }}=4.5 \mathrm{MHz}$, Pout $=-8 \mathrm{dBm}$ per tone   $\mathrm{f}_{\mathrm{BB}}=3.5 \mathrm{MHz}, \mathrm{f} 2_{\mathrm{BB}}=4.5 \mathrm{MHz}$, Pout $=-8 \mathrm{dBm}$ per tone   $\mathrm{I} / \mathrm{Q}$ inputs $=500 \mathrm{mV}$ common-mode bias, 20 MHz LO offset		$\begin{aligned} & 2.5 \\ & 7.3 \\ & -6 \\ & -18 \\ & -30 \\ & -46 \\ & -43 \\ & 37 \\ & 13 \\ & -152 \end{aligned}$		dBm   dBm   dBm   dBC   dBC   dBc   dBm   dBm   $\mathrm{dBm} / \mathrm{Hz}$
OUTPUT DISABLE   Off Isolation   DSOP High Level (Logic 1)   DSOP Low Level (Logic 0)	Pin DSOP   $\mathrm{LO}=0 \mathrm{dBm}$; measured at LO frequency $900 \mathrm{MHz}$   1900 MHz $3500 \mathrm{MHz}$   Logic high disables output   Logic low or floating enables output.	2.0	$\begin{aligned} & -83 \\ & -55 \\ & -42 \end{aligned}$	$0.8$	$\begin{aligned} & \mathrm{dBm} \\ & \mathrm{dBm} \\ & \mathrm{dBm} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \hline \end{aligned}$
LO INPUTS LO Drive Level Input Return Loss	Characterization performed at typical level 500 MHz to 3 GHz		$\begin{aligned} & 0 \\ & -10 \end{aligned}$		$\begin{aligned} & \mathrm{dBm} \\ & \mathrm{~dB} \end{aligned}$
BASEBAND INPUTS   I and Q Input Bias Level   Bandwidth (3 dB)	Pin IBBP, Pin IBBN, Pin QBBP, Pin QBBN ADL5375-05   ADL5375-15		$\begin{aligned} & 500 \\ & 1.5 \\ & 500 \end{aligned}$		$\begin{aligned} & \mathrm{mV} \\ & \mathrm{~V} \\ & \mathrm{MHz} \end{aligned}$
POWER SUPPLIES   Voltage   Supply Current	Pin VPS1 and Pin VPS2	4.75		5.25	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$

## ADL5375

## ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage VPOS	5.5 V
IBBP, IBBN, QBBP, QBBN	TBDV
LOIP and LOIN	13 dBm
Internal Power Dissipation	1375 mW
נJA (Exposed Paddle Soldered Down) $^{\mathrm{TBD}}{ }^{\circ} \mathrm{C} / \mathrm{W}$	
Maximum Junction Temperature	$159^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device.   Charged devices and circuit boards can discharge   without detection. Although this product features   patented or proprietary protection circuitry, damage   may occur on devices subjected to high energy ESD.   Therefore, proper ESD precautions should be taken to   avoid performance degradation or loss of functionality.

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	DSOP	Output Disable. A logic high on this pin disables the RF output (Pin 16). Connecting this pin to ground or leaving it floating enable the RF output.
$\begin{aligned} & 2,5,8,11,12 \\ & 14,17,19,20 \\ & 23 \end{aligned}$	COMM	Input Common Pins. Connect to ground plane via a low impedance path.
3,4	LOIP, LOIN	Local Oscillator Input. $50 \Omega$ single-ended local oscillator input. Internally dc-biased. Pins must be accoupled. AC-couple LOIN to ground and drive LO through LOIP.
6, 7, 13, 15,	NC	No Connect. These pins can be left open or tied to ground
9, 10, 21, 22	QBBN, QBBP, IBBP, IBBN,	Differential In-Phase and Quadrature Baseband Inputs. These high impedance inputs should be dcbiased to 500 mV (ADL5375-05) or 1.5 V (ADL5375-15). Nominal characterized ac signal swing is 500 mV p-p on each pin. This results in a differential drive of 1 V p-p with a 500 mV dc bias. These inputs are not self-biased and must be externally biased.
16	RFOUT	Device Output. Single-ended, $50 \Omega$ internally biased RF output. AC-couple to the output load.
18, 24	VPS1, VPS2 EP	Positive Supply Voltage Pins. All pins should be connected to the same supply (Vs). To ensure adequate external bypassing, connect $0.1 \mu \mathrm{~F}$ and 100 pF capacitors between each pin and ground. Exposed Paddle. Connect to ground plan via a low impedance path.

## TYPICAL PERFORMANCE CHARACTERISTICS

$V_{S}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{LO}=0 \mathrm{dBm}$ single-ended; baseband $\mathrm{I} / \mathrm{Q}$ amplitude $=1 \mathrm{~V}$ p-p differential sine waves in quadrature with a 500 mV dc bias; baseband $\mathrm{I} / \mathrm{Q}$ frequency $\left(\mathrm{f}_{\mathrm{BB}}\right)=1 \mathrm{MHz}$, unless otherwise noted. Red $=+85^{\circ} \mathrm{C}$, Green $=+25^{\circ} \mathrm{C}$, Blue $=-40^{\circ} \mathrm{C}$.


Figure 4. SSB Output Power vs. Frequency and Temperature, Baseband Drive $=1 \mathrm{~V} p-p$ Differential, Multiple Devices


Figure 5. Third-Order Intercept (OIP3) vs. Frequency and Temperature,
Multiple Devices


Figure 6. Carrier Leakage vs. Frequency and Temperature, Multiple Devices


Figure 7. SSB Output $1 d B$ Compression Point (OP1dB) vs. Frequency and Temperature, Multiple Devices


Figure 8. Typical RF Output Return Loss


Figure 9. Carrier Leakage vs. Frequency and Temperature After Nulling at $25^{\circ} \mathrm{C}$, Multiple Devices


Figure 10. Sideband Suppression vs. Frequency and Temperature, Multiple Devices


Figure 11. Sideband Suppression vs. Frequency and Temperature After Nulling at $25^{\circ} \mathrm{C}$, Multiple Devices

## EVALUATION BOARD

Populated RoHS-compliant evaluation boards are available for evaluation of both versions of the ADL5375. The ADL5375 package has an exposed paddle on the underside. This exposed paddle must be soldered to the board for good thermal and electrical grounding. The evaluation board is designed without any components on the underside, so heat can be applied to the
underside for easy removal and replacement of the ADL5375 should it become necessary.
Both versions of the ADL5375 share the same evaluation board and schematic. To differentiate the boards from each other, the silkscreen on the underside of the board has a table that is marked to indicate which version ( -05 or -15 ) is populated on the board.


Figure 12. ADL5375 Evaluation Board Schematic

## ADL5375



Figure 13. Evaluation Board Layout, Top Layer


Figure 14. Evaluation Board Layout, Bottom Layer

Table 4. Evaluation Board Description and Configuration Options

Component	Description	Default Condition/Option Settings
VPOS, GND Test Points	Power supply and ground test points for clip leads.	Red = VPOS, black =GND
SW1 Switch	DSOP output disable select	Position $A=$ output enabled   Position $B=$ output disabled
R1 thru R4, R7 thru R12	Optional baseband input filtering components	R1 through R4 $=0 \Omega(0402)$   $R 7$ through R12 $=$ open (0402)
LOIP SMA, R16, R17	Single-ended local oscillator input	R16 =open, R17 =0 $\Omega(0402)$
LOIN SMA, R16, R17	Optional SMA for differential local oscillator input	$R 16=0 \Omega(0402), R 17=o p e n$

## Preliminary Technical Data

## OUTLINE DIMENSIONS



Figure 15. 24-Lead Lead Frame Chip Scale Package [LFCSP_VQ] $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body, Very Thin Quad (CP-24-3)
Dimensions shown in millimeters

Model	Temperature Range ( ${ }^{\circ} \mathrm{C}$ )	Package Description	Package Option	Ordering Quantity
ADL5375ACPZ-05-R71,2	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead LFCSP_VQ, 7"Tape and Reel	CP-24-3	1,500
ADL5375ACPZ-15-R71,3	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead LFCSP_VQ, 7"Tape and Reel	CP-24-3	1,500
ADL5375ACPZ-05-WP ${ }^{1,2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead LFCSP_VQ, Waffle Pack	CP-24-3	64
ADL5375ACPZ-15-WP ${ }^{1,3}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead LFCSP_VQ, Waffle Pack	CP-24-3	64
ADL5375-05-EVALZ ${ }^{1}$		Evaluation Board		
ADL5375-15-EVALZ ${ }^{1}$		Evaluation Board		

${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.
${ }^{2} 500 \mathrm{mV}$ baseband bias level.
${ }^{3} 1.5 \mathrm{~V}$ baseband bias level.

## NOTES

