

# Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers

**Preliminary Technical Data** 

ADA4001-2

#### **FEATURES**

Low  $T_cV_{os}$ : 2  $\mu V/^{\circ}C$  typical

Low input bias current: TBD pA typical at  $V_s = \pm 15 \text{ V}$ 

Dual-supply operation: ±4.5 V to ±15 V

Low noise:

8.5 nV/√Hz typical at f = 1 kHz 0.7 μV<sub>P-P</sub> at 0.1 Hz to 10 Hz Low distortion: 0.00008% No phase reversal Rail-to-Rail Output Unity gain stable

#### **APPLICATIONS**

Instrumentation
Medical Instruments
Multipole filters
Precision current measurement
Photodiode amplifiers
Sensors
Audio

#### **GENERAL DESCRIPTION**

The ADA4001-2 is a dual JFET amplifier that features low input bias current, input voltage noise, input current noise, and rail-to-rail output.

The combination of low noise and very low input bias currents makes these amplifiers especially suitable for high impedance sensor amplification. Unlike many competitive amplifiers, the ADA4001-2 maintain their fast settling performance even with substantial capacitive loads. Unlike many older JFET amplifiers, the ADA4001-2 do not suffer from output phase reversal when input voltages exceed the maximum common-mode voltage range.

#### **PIN CONFIGURATIONS**

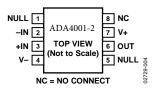



Figure 1. 8-Lead SOIC\_N (R Suffix)

Fast slew rate and great stability with capacitive loads make the ADA4001-2 a perfect fit for high performance filters. Low input bias currents, low offset, and low noise result in a wide dynamic range of photodiode amplifier circuits. Low noise and distortion, high output current, Rail-to-Rail Output and excellent speed make the ADA4001-2 a great choice for audio frequency applications.

The ADA4001-2 is specified over the  $-40^{\circ}$ C to  $+125^{\circ}$ C extended industrial temperature range.

The ADA4001-2 is available in 8-lead narrow SOIC, 8-lead.

## **SPECIFICATIONS**

@  $V_S = \pm 15$  V,  $V_{CM} = 0$  V,  $T_A = 25$ °C, unless otherwise noted.

Table 1.

| Parameter                               | Symbol                   | Conditions                                     | Min              | Тур     | Max   | Unit   |
|-----------------------------------------|--------------------------|------------------------------------------------|------------------|---------|-------|--------|
| INPUT CHARACTERISTICS                   |                          |                                                |                  |         |       |        |
| Offset Voltage                          | Vos                      |                                                |                  | ±0.5    | ±1.5  | mV     |
|                                         |                          | -40°C < T <sub>A</sub> < +125°C                |                  |         | ±2.5  | mV     |
| Offset Voltage Drift                    | $\Delta V_{OS}/\Delta T$ |                                                |                  | ±2      |       | μV/°C  |
| Input Bias Current                      | I <sub>B</sub>           |                                                |                  | TBD     | 30    | pА     |
|                                         |                          | -40°C < T <sub>A</sub> < +125°C                |                  |         | 4     | nA     |
| Input Offset Current                    | los                      |                                                |                  |         | 20    | рА     |
|                                         |                          | -40°C < T <sub>A</sub> < +125°C                |                  |         | 2     | nA     |
| Input Voltage Range                     |                          |                                                | -12.5            |         | +12.5 | V      |
| Common-Mode Rejection Ratio             | CMRR                     | $V_{CM} = \pm 12.5V$                           | 96               | 110     |       | dB     |
|                                         |                          | -40°C < T <sub>A</sub> < +125°C                | 90               |         |       | dB     |
| Large-Signal Voltage Gain               | Avo                      | $R_L = 2 k\Omega, V_O = \pm 13.5 V$            | 104              | 110     |       | dB     |
|                                         |                          | $-40$ °C < $T_A$ < $+125$ °C                   | 90               |         |       | dB     |
| Input Capacitance, Differential Mode    | CINDM                    |                                                |                  | 3.1     |       | pF     |
| Input Capacitance, Common Mode          | C <sub>INCM</sub>        |                                                |                  | 4.8     |       | pF     |
| OUTPUT CHARACTERISTICS                  |                          |                                                |                  |         |       |        |
| Output Voltage High                     | V <sub>OH</sub>          | $R_L = 2 k\Omega$                              | 14.8             | 14.9    |       | V      |
|                                         |                          | -40°C < T <sub>A</sub> < +125°C                | TBD              |         |       | V      |
|                                         |                          | $R_L = 600 \Omega$                             | 14.2             | 14.3    |       | V      |
|                                         |                          | -40°C < T <sub>A</sub> < +125°C                | TBD              |         |       | V      |
| Output Voltage Low                      | VoL                      | $R_L = 2 k\Omega$                              |                  | -14.8   | -14.7 | ٧      |
|                                         |                          | -40°C < T <sub>A</sub> < +125°C                |                  |         | TBD   | V      |
|                                         |                          | $R_L = 600 \Omega$                             |                  | -14.7   | -14.6 | V      |
|                                         |                          | -40°C < T <sub>A</sub> < +125°C                |                  |         | TBD   | V      |
| Output Current                          | l <sub>OUT</sub>         |                                                |                  | ±40     |       | mA     |
| POWER SUPPLY                            |                          |                                                |                  |         |       |        |
| Power Supply Rejection Ratio            | PSRR                     | $V_S = \pm 2.5 \text{ V to } \pm 18 \text{ V}$ | 96               | 120     |       | dB     |
|                                         |                          | -40°C < T <sub>A</sub> < +125°C                | 100              |         |       | dB     |
| Supply Current/Amplifier                | Isy                      | $I_0 = 0 \text{ mA}$                           |                  | 2       | 3     | mA     |
|                                         |                          | -40°C < T <sub>A</sub> < +125°C                |                  |         | 4     | mA     |
| DYNAMIC PERFORMANCE                     |                          |                                                |                  |         |       |        |
| Slew Rate                               | SR                       | $R_L = 2 k\Omega$                              | ±15 <sup>1</sup> | ±25     |       | V/µs   |
| Gain Bandwidth Product                  | GBP                      |                                                |                  | 8       |       | MHz    |
| Settling Time                           | ts                       | To 0.1%, 0 V to 10 V step, $G = +1$            |                  | TBD     |       | μs     |
|                                         |                          | To 0.01%, 0 V to 10 V step, G = +1             |                  | TBD     |       | μs     |
| Total Harmonic Distortion (THD) + Noise | THD + N                  | 1 kHz, G = +1, $R_L$ = 2 k $\Omega$            |                  | 0.00008 |       | %      |
| NOISE PERFORMANCE                       |                          |                                                |                  |         |       |        |
| Peak-to-Peak Voltage Noise              | e <sub>n</sub> p-p       | 0.1 Hz to 10 Hz bandwidth                      |                  | 8.0     |       | μV p-p |
| Voltage Noise Density                   | e <sub>n</sub>           | f = 100 Hz                                     |                  | 8.5     |       | nV/√Hz |
|                                         |                          | f = 1 kHz                                      |                  | 7.5     |       | nV/√Hz |
| Current Noise Density                   | İn                       | f = 1 kHz                                      |                  | 3       |       | fA/√Hz |

<sup>&</sup>lt;sup>1</sup>Guaranteed by design and characterization

### **ABSOLUTE MAXIMUM RATINGS**

Table 2.

| Parameter                                     | Rating                  |
|-----------------------------------------------|-------------------------|
| Supply Voltage                                | ±18 V                   |
| Input Voltage                                 | ±V <sub>S</sub>         |
| Output Short-Circuit Duration to GND          | Observe derating curves |
| Storage Temperature Range                     | −65°C to +150°C         |
| Operating Temperature Range                   | −40°C to +125°C         |
| Junction Temperature Range                    | −65°C to +150°C         |
| Lead Temperature (Soldering, 10 sec)          | 300°C                   |
| Electrostatic Discharge<br>(Human Body Model) | 3000 V                  |

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

**Table 3. Thermal Resistance** 

| Package Type      | $\Theta_{JA}^1$ | θ <sub>JC</sub> | Unit |
|-------------------|-----------------|-----------------|------|
| 8-Lead SOIC_N (R) | 120             | 45              | °C/W |

 $<sup>^{1}</sup>$   $\theta_{JA}$  is specified for worst-case conditions, that is,  $\theta_{JA}$  is specified for device soldered in circuit board for surface-mount packages. This was measured using a standard 4-layer board.

#### **ESD CAUTION**



**ESD** (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

