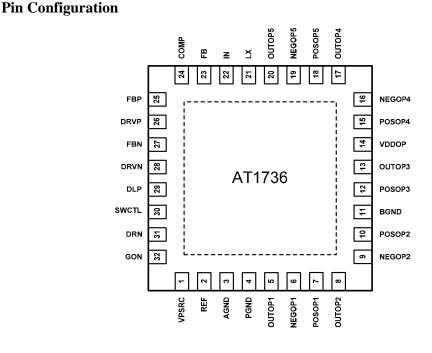


Features

- 2.6V to 5.5V Input Supply Range
- 1.2MHz Current-Mode PWM Step-Up Regulator: Fast Transient Response
 1.5% High-Accuracy Output Voltage Built-In 17V, 2.5A, 0.16Ω N-Channel MOSFET Current-Limit High Efficiency
- High-Current Operational Amplifiers: ±150mA Output Short-Circuit Current 13V/µs Slew Rate 12MHz, -3dB Bandwidth Rail-to-Rail Inputs/Outputs
- Gate-On and Gate-off Linear Regulator Controllers
- Gate-on Pulse Modulator with Adjustable Delay for Sequence Control
- · Latched Fault Protection with Timer

Applications


- LCD Monitor Panel Modules
- TV LCD Panel Modules
- Automotive Displays

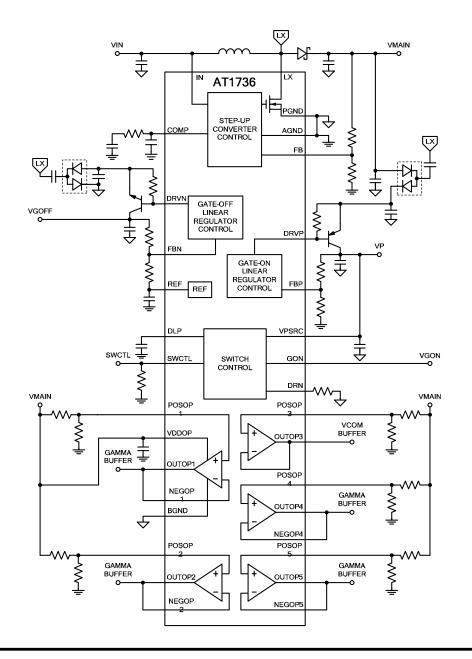
General Description

The AT1736 offers a complete power-supply solution for TFT LCD panels used in LCD monitors and LCD TVs. The AT1736 consists of a highperformance step-up converter, two linear-regulator controllers, five high-current operational amplifiers, and a logic-controlled gate-on pulse modulator.

The step-up DC-DC converter provides the regulated supply voltage for the panel source driver ICs. The two linear regulators provide the regulated positive gate-on and negative gate-off supply voltages from external charge-pumps. The operational amplifier supplies the VCOM & GAMMA buffers with high output current, fast slew rate and wide bandwidth performances for driving capacitive loads. The high-voltage gate-on pulse modulator to control the positive gate-on output voltage waveform.

The AT1736 is available in a 32-pin thin QFN package which is 5mm x 5mm with a maximum thickness of 0.8mm for ultra thin LCD panel design.

Aimtron reserves the right without notice to change this circuitry and specifications.


7F, No.9, PARK AVENUE. II, Science-Based Industrial Park, Hsinchu 300, Taiwan, R.O.C.Tel: 886-3-563-0878Fax: 886-3-563-087910/19/2007REV:0.5WWW: http://www.aimtron.com.tw

Ordering Information

Part number	Package	Marking
AT1736N_GRE	Thin QFN32, Green	AT1736N

Block Diagram

Pin Descriptions

Pin No.	Pin Name	Function
1	VDSDC	Gate-on Pulse Modulator Voltage Supply Input. Source of the internal
1	VPSRC	high-voltage P-channel MOSFET connected to GON. Connect a minimum 0.1µF capacitor close to the VPSRC and PGND pins.
2	REF	Reference Output. Connect a 0.22µF capacitor from REF to GND. REF
2	ACND	remains on in shutdown.
3	AGND	Analog Ground for the Signal Control of the Regulators.
4	PGND	Power Ground. PGND is the source of the n-channel power MOSFET of step-up converter. Place the input-capacitor ground terminals close to PGND with a wide trace.
5	OUTOP1	Operational Amplifier 1 Output.
6	NEGOP1	Operational Amplifier 1 inverting Input.
7	POSOP1	Operational Amplifier 1 Noninverting Input.
8	OUTOP2	Operational Amplifier 2 Output.
9	NEGOP2	Operational Amplifier 2 inverting Input.
10	POSOP2	Operational Amplifier 2 Noninverting Input.
11	BGND	Analog Ground for Operational Amplifiers.
12	POSOP3	Operational Amplifier 3 Noninverting Input.
13	OUTOP3	Operational Amplifier 3 Output.
14	VDDOP	Operational Amplifier Power Supply Input. Connect a 0.1μ F capacitor from VDDOP to BGND.
15	POSOP4	Operational Amplifier 4 Noninverting Input.
16	NEGOP4	Operational Amplifier 4 inverting Input.
17	OUTOP4	Operational Amplifier 4 Output
18	POSOP5	Operational Amplifier 5 Noninverting Input.
10	NEGOP5	Operational Amplifier 5 inverting Input.
20	OUTOP5	Operational Amplifier 5 Output.
20	001015	Drain of Internal N-Channel Power MOSFET of Step-up Converter
21	LX	Minimize the connecting trace area for the lowest EMI.
22	IN	IC Supply Voltage Input.
22	111	Step-Up Converter Feedback Input. Connect a resistive voltage-divider
23	FB	to determine the step-up converter output voltage. Place the resistive voltage-divider close to this pin.
24	СОМР	Compensation pin of Error-Amplifier of the Step-Up Converter Connect a compensation network from COMP to AGND.
25	FBP	Positive Gate-On Linear Regulator Feedback Input. Connect a resistive voltage-divider to determine the gate-on linear regulator output voltage Place the resistive voltage-divider close to this pin.
26	DRVP	Transistor Base Driver of Positive Gate-On Linear-Regulator. Oper drain of an internal n-channel MOSFET. Connect DRVP to the base o an external pnp transistor.
27	FBN	Negative Gate-Off Linear-Regulator Feedback Input. Connect a resistive voltage-divider to determine the gate-off linear regulator outpu voltage. Place the resistive voltage-divider close to this pin.
28	DRVN	Transistor Base Driver of Negative Gate-off Linear Regulator. Open drain of an internal p-channel MOSFET. Connect DRVN to the base o an external npn transistor.
29	DLP	Positive Gate-on Pulse Modulator Delay Input. Connect a capacitor from DLP to GND to set the delay time.
30	SWCTL	Gate-on Pulse Modulator Timing Control Input.
31	DRN	Discharge Switch Input. Connect a resistor to GND to discharge the V_{GON} when SWCTL is low.

22	GON	Internal High-voltage Gate-on Pulse Modulator Output Terminal for
52	UON	Positive Gate-on Voltage Supply.

Absolute Maximum Ratings (Ta = 25)

Parameter	Rate	Rated Value		
i arameter	Min.	Max.	Unit	
IN, FB, FBP, FBN, COMP, REF, SWCTL, DLP	-0.3	+6.0	V	
PGND, BGND to AGND	-0.3	+0.3	V	
LX, VDDOP	-0.3	+17.0	V	
POSOP_, NEGOP_, OUTOP_	-0.3	+17.0	V	
DRVN	V _{IN} -30	V _{IN} +0.3	V	
DRVP, VPSRC, GON, DRN	-0.3	+30.0	V	
DRN to GON	-30.0	+30.0	V	
LX Switch Maximum Continuous RMS Output Current	-	1.6	А	
OUTOP Maximum Continuous Output Current	-75.0	+75.0	mA	
Power Dissipation (Ta 25)	-	1702	mW	
Operating Temperature	-35	+85	⁰ C	
Storage Temperature	-55	+150	⁰ C	
Lead Temperature (soldering, 10s)	-	+260	⁰ C	
ESD Susceptibility (MM)	-200	200	V	
ESD Susceptibility (HBM)	-2	2	KV	

1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. Devices are ESD sensitive. Handling precaution recommended. The Human Body model is a 100pF capacitor discharged through a 1.5K Ω resistor into each pin.

Parameter	Symbol	Values			Unit		
i arameter	Symbol	Min.	Тур.	Max.	Cint		
Operating Supply Range	V _{IN}	2.6	-	5.5	V		
Operating Temperature*	T _{OP}	-20	+25	+85	°C		
Operating Junction Temperature	TJ	-	-	+150	°C		

Recommended Operating Conditions

*Using X5R or X7R capacitors.

Electrical Characteristics

(Test circuit is shown as Typical Application Circuit, unless otherwise noted. $V_{IN} = 3V$, $V_{VDDOP} = 8V$,

PGND = AGND = BGND = 0, $I_{REF} = 25\mu A$, Ta= 0 to +85 . Typical values are at Ta=+25 .)

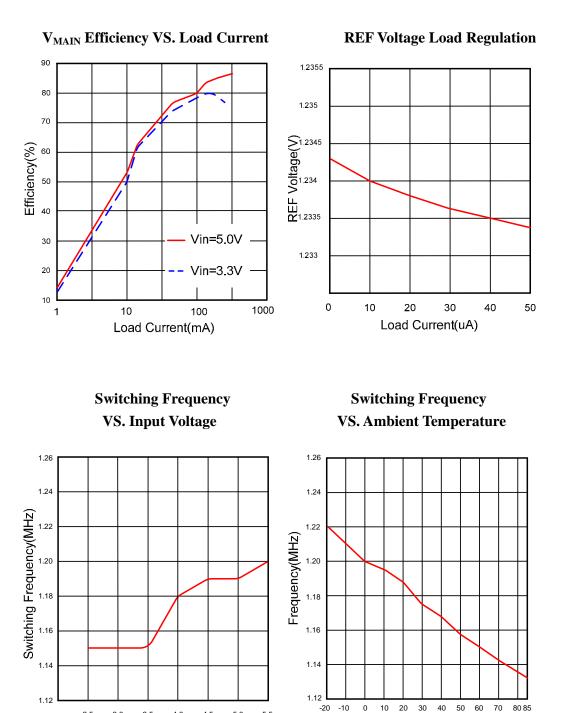
Demonstern	Con l'Alon		Values		Unit
Parameter	Condition	Min.	Тур.	Max.	Unit
IN Operating Supply Range		2.6		5.5	V
	V _{IN} rising	2.3	2.5	2.7	V
IN Undervoltage-Lockout Threshold	Hysteresis		150		mV
IN Quiescent Current	$V_{FB} = V_{FBP} = 1.4 V$, $V_{FBN} = 0 V$, LX not switching		0.8	1.1	mA
	$V_{FB} = 1.1 V$, $V_{FBP} = 1.4 V$, $V_{FBN} = 0 V$, LX switching		6	11	IIIA
Duration to Trigger Fault condition			55		ms
REF Output Voltage	-10μA < I _{REF} < 50μA, VIN = 2.6 to 5.5V	1.210	1.233	1.256	V
Step-Up Converter Section					
Output Voltage Range		V _{IN}		16	V
Operating Frequency		1020	1200	1380	kHz
Oscillator Maximum Duty Cycle		84	87	90	%
Feedback Regulation voltage	No load, $Ta = +25$	1.210	1.233	1.256	V
FB Input Bias Current	$V_{FB} = 1.4 V$	-50	1	50	nA
FB Fault Trip Level	V _{FB} falling	0.90	1.00	1.10	V
FB Load Regulation	0 mA < I _{LX} < full load, transient only		-1.6		%
FB Line Regulation	2.6V < Vin < 5.5V		±0.04	±0.15	%/V
FB Transconductance	$\Delta I_{\text{COMP}} = 1.4 \text{V}$	75	160	280	μS
FB Voltage Gain	FB to COMP		600		V/V
LX Switch On-Resistance			160	250	mΩ
LX Leakage Current	$V_{LX} = 17V$		0.02	40	μΑ
LX Current Limit	$V_{IN} = 3.3V$	2.5	3.0	3.5	А
Current-Sense Transconductance		3.0	3.8	5	S
Soft-Start Period t _{ss}			14		ms
Soft-Start Step Size			I _{LIM} / 8		А
Operational Amplifiers Section					
VDDOP Supply Operating Range		4.5		16	V

AT1736

Preliminary Product Information LCD Panel Power Supplies with High-Current Operational Amplifiers

VDDOP Supply Current	Buffer configuration, $V_{POSOP} = 4V$,		3.2	4.8	mA	
	no load					
Input Offset Voltage	Offset Voltage $(V_{\text{NEGOP}}, V_{\text{POSOP}}) = V_{\text{VDDOP}} / 2,$ $T_{\text{A}} = +25$		0	16	mV	
Input Bias Current	$(V_{\text{NEGOP}}, V_{\text{POSOP}}) = V_{\text{VDDOP}} / 2$	-50	1	50	nA	
Common-Mode Input Range	V _{NEGOP} , V _{POSOP}	0		V _{VDDOP}	V	
Common-Mode Rejection Ratio	0 . (V _{NEGOP} , V _{POSOP}) < V _{VDDOP}	45			dB	
Open-Loop Gain			125		dB	
	$I_{OUTOP} = 100 \mu A$	V _{VDDOP} -15	V _{VDDOP} - 3		mV	
Output Voltage Swing High	$I_{OUTOP} = 5mA$	V _{VDDOP} -150	V _{VDDOP} - 80		mV	
	$I_{OUTOP} = -100 \mu A$		2	15		
Output Voltage Swing Low	$I_{OUTOP} = -5mA$		80	150	mV	
	Short to V_{VDDOP} / 2, sourcing	50	150			
Short-Circuit Current	Short to V _{VDDOP} / 2, sinking	50	150		mA	
Output Current	Buffer configuration, $V_{POSOP} = 4V$, V_{OUTOP} error $< \pm 10$ mV	±40			mA	
Power-Supply Rejection Ratio	$6V$, V_{VDDOP} , 13.2V, DC (V_{NEGOP} , V_{POSOP}) = V_{VDDOP} / 2				dB	
Slew Rate			13		V/µs	
-3dB Bandwidth	Buffer configuration, $R_L = 10k\Omega$, $C_L = 10pF$		12		MHz	
Gain-Bandwidth Product	Buffer configuration		8		MHz	
Gate-On Linear Regulator Contro	oller Section					
FBP Regulation Voltage	$I_{DRVP} = 100 \mu A$	1.210	1.233	1.256	V	
FBP Fault Trip Level	V _{FBP} falling	0.90	1.00	1.10	V	
FBP Input Bias Current	$V_{FBP} = 1.4V$	-50		+50	nA	
FBP Effective Load-Regulation Error (Transconductance)	$V_{DRVP} = 10V$, $I_{DRVP} = 50\mu$ A to 1mA		-0.7	-1.5	%	
FBP Line (IN) Regulation Error	$I_{DRVP} = 100 \mu A$, 2.6V < $V_{IN} < 5.5V$		±1.5	±5	mV	
DRVP Sink Current	$V_{\text{FBP}} = 1.1 \text{V}, V_{\text{DRVP}} = 10 \text{V}$	1	5		mA	
DRVP Off-Leakage Current	$\overline{V_{\text{FBP}}} = 1.4\text{V}, V_{\text{DRVP}} = 28\text{V}$		0.01	10	μA	
Soft-Start Period			14		ms	
Soft-Start Step Size			V _{REF} / 128		V	

AT1736


Preliminary Product Information LCD Panel Power Supplies with High-Current Operational Amplifiers

Gate-Off Linear Regulator Controller Section								
FBN Regulation Voltage	$I_{DRVN} = 100 \mu A$	235	250	265	mV			
FBN Fault Trip Level	V _{FBN} rising	320	420	520	mV			
FBN Input Bias Current	$V_{\text{FBN}} = 0V$	-50		+50	nA			
FBN Effective Load-Regulation	$V_{DRVN} = -10V$, $I_{DRVN} = 50\mu A$ to		11	25	mV			
Error (Transconductance)	1mA							
FBN Line (IN) Regulation Error	$I_{DRVN} = 100 \mu A, 2.6 V < V_{IN} < 5.5 V$		±0.7	±5	mV			
DRVN Source Current	$V_{\rm FBN} = 500 {\rm mV}, V_{\rm DRVN} = -10 {\rm V}$	1	4		mA			
DRVN Off-Leakage Current	$V_{\rm FBN} = 0V, V_{\rm DRVN} = -25V$		-0.01	-10	μΑ			
Soft-Start Period			14		ms			
Soft-Start Step Size			V _{REF} /		V			
			128					
Gate-on Pulse Modulator Section								
DLP Capacitor Charge Current	During startup, $V_{DLP} = 1.0V$	4	5	6	μA			
DLP Turn-On Threshold		1.210	1.233	1.256	V			
DLP Discharge Switch On-Resistance	During UVLO, $V_{IN} = 2.2V$		20		Ω			
				0.6	V			
SWCTL Input Low Voltage		2.0		0.6	v V			
SWCTL Input High Voltage		2.0		. 1				
SWCTL Input Leakage Current		-1		+1	μA			
SWCTL to GON Propagation Delay	Rising & Falling		100		ns			
VPSRC Input Voltage Range				30	V			
VDOD C. Laurent Crans. (V _{DLP} =1.5V, SWCTL=high		50	100	μA			
VPSRC Input Current	V _{DLP} =1.5V, SWCTL=low		15	30	μΑ			
VPSRC to GON Switch On-Resistance	V _{DLP} =1.5V, SWCTL=high		6	12	Ω			
DRN to GON Switch On-Resistance	V _{DLP} =1.5V, SWCTL =low		35	70	Ω			

Typical Characteristics :

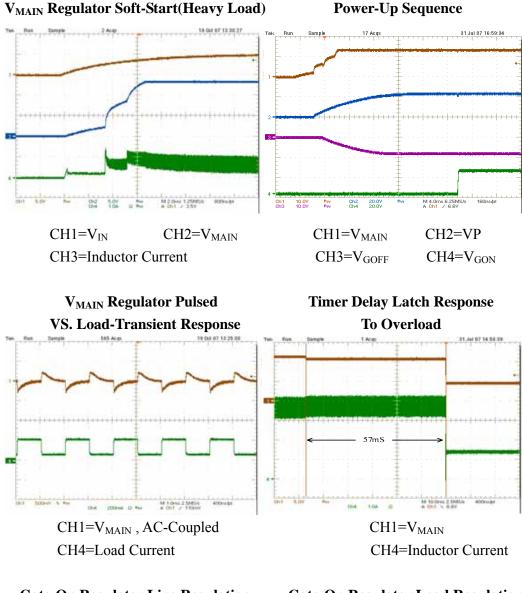
 $(V_{IN}=5.0V, V_{MAIN}=13.5V, V_P=23.5V, V_{GOFF}=-8.0V, T_A=+25$, unless otherwise noted.)

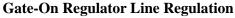
7F, No.9, PARK AVENUE. II, Science-Based Industrial Park, Hsinchu 300, Taiwan, R.O.C. Fax: 886-3-563-0879 Tel: 886-3-563-0878 WWW: http://www.aimtron.com.tw 10/19/2007 REV:0.5 Email: service@aimtron.com.tw

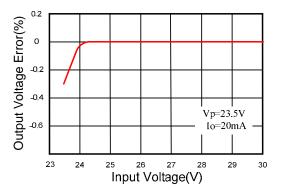
5.5

Ambient Temperature ()

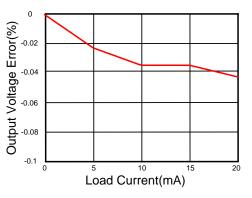
0 3.5 4.0 4.5 Input Voltage(V)

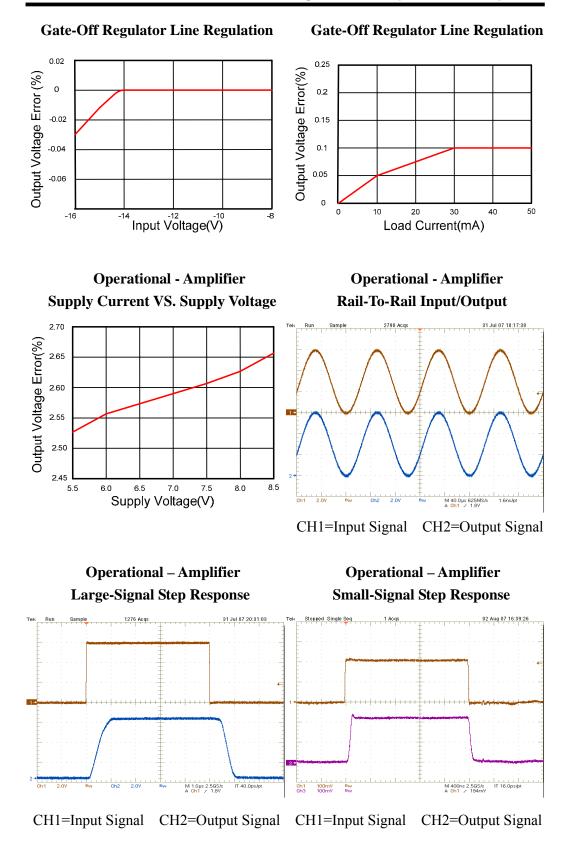

4.5


5.0


2.5

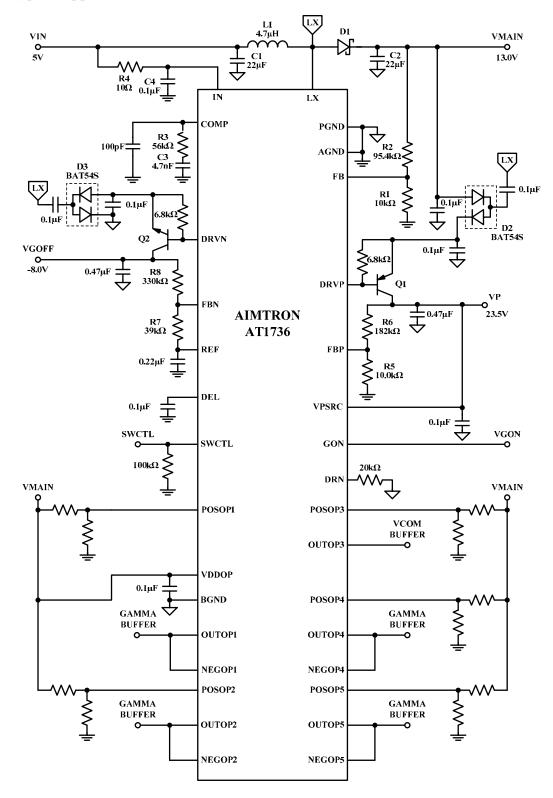
3.0





Gate-On Regulator Load Regulation

7F, No.9,PARK AVENUE. II, Science-Based Industrial Park, Hsinchu 300,Taiwan, R.O.C.Tel: 886-3-563-0878Fax: 886-3-563-087910/19/2007REV:0.5WWW: http://www.aimtron.com.tw



7F, No.9,PARK AVENUE. II, Science-Based Industrial Park, Hsinchu 300,Taiwan, R.O.C.Tel: 886-3-563-0878Fax: 886-3-563-087910/19/2007REV:0.5WWW: http://www.aimtron.com.tw

Downloaded from Elcodis.com electronic components distributor

Typical Application Circuit

Function Description

The AT1736 consists of a high-performance step-up converter, two linear regulator controllers, five high-current operational amplifiers, and a gate-on pulse modulator. The step-up DC-DC converter generates the source-driver supply voltage. The two linear regulator controllers provide the regulated positive gate-on and negative gate-off supply voltages from external charge pumps. The operational amplifiers supply the VCOM and GAMMA buffers with high output current, fast slew rate and wide bandwidth performances for driving capacitive loads. The gate-on pulse modulator controls the positive gate-on voltage waveform for reducing the flicker on TFT LCD panel.

Step-up Converter

The step-up DC-DC converter adopts the PWM current mode control, fixed 1.2MHz switching frequency and an internal 2.4A, 0.16 Ω (typical) power MOSFET. Such architecture provides faster line and load transient response for the specific performance of the source-driver supply voltage source. The high switching frequency can minimize the components as the space of thick LCD panel required. The internal soft-start function uses 8 steps digital current limit to restrain the inrush current and output voltage overshoot and also to reduce the pin number of the chip and the external component. The external compensation network provides the flexibility in determining output voltage regulation accuracy and dynamic response.

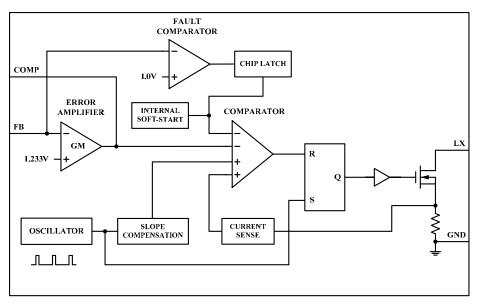


Figure 1. Step-up converter block diagram

Positive Gate-On Linear Regulator Controller

The positive gate-on linear regulator controller consists of FBP and DRVP pins. Use FBP to determine the positive gate-on output voltage. The DRVP pin is an open-drain n-channel MOSFET to drive an external pnp transistor. A $6.8k\Omega$ resistor connected from base to emitter of the external transistor and a 0.47μ F output capacitor are recommended. The driving sink current is at least 1 mA for the design of 20mA output current. The internal soft-start function adopts rising its reference voltage in the 128 steps (7 bits) to restrain the inrush current and output voltage overshoot.

If the applications where the charge-pump output voltage is over 28V, an external NPN transistor needs to be inserted in between the DRVP pin and the based of transistor Q1, or the linear regulator can control the VMAIN and regulate the final charge pump output as shown in Fig. 2.

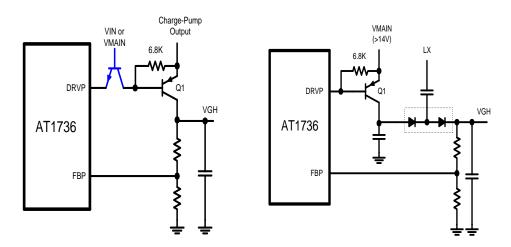


Figure 2. High Charge-Pump output Application Circuit

Negative Gate-Off Linear Regulator Controller

The negative gate-off linear regulator controller consists of FBN and DRVN pins. Use FBN to determine the negative gate-off output voltage. The DRVN pin is an open-drain p-channel MOSFET to drive an external npn transistor. A $6.8k\Omega$ resistor connected from base to emitter of the external transistor and a 0.22μ F output capacitor are recommended. The driving source current is at least 1 mA for the design of 20mA output current. The internal soft-start function adopts decreasing its reference voltage from V_{REF} to 250mV in the 128 steps (7 bits) to restrain the inrush current and output voltage overshoot.

Output Voltage Fault Protection

After soft-start period, if the feedback voltage of the step-up DC-DC converter or any of the linear regulators does not exceed its fault-detection threshold, the AT1736 enables the internal fault timer. If the fault condition exceeds the fault-timer duration (200ms typical), then the AT1736 shuts down all the outputs except the reference. Once the fault condition is removed, cycle the input voltage (below the UVLO falling threshold) to reactivate the chip.

Reference Voltage

The reference output voltage is typical 1.233V and the source ability is at least 50μ A. Connecting a 0.22μ F bypass ceramic capacitor between REF and GND is recommended.

Gate-On Pulse Modulator

The AT1736 includes a gate-on pulse modulator to control gate-on voltage waveform to reduce the flicker on TFT LCD panel. After the V_{IN} exceeds UVLO, all the soft-start periods are complete, fault conditions do not exist, and the V_{DLP} exceeds the turn-on threshold, the gate-on pulse modulator start to be active and is controlled by SWCTL. There are two high voltage switches Q1 and Q2 connecting to GON. Another terminal of Q1 is connected to positive charge-pump output for the positive high voltage input (VPSRC), and Q2 is connected to DRN with an external series resistor to ground for discharging the positive gate-on voltage. If SWCTL is high, Q1 turns on and Q2 turns off. If SWCTL is low, Q1 turns off and Q2 turns on.

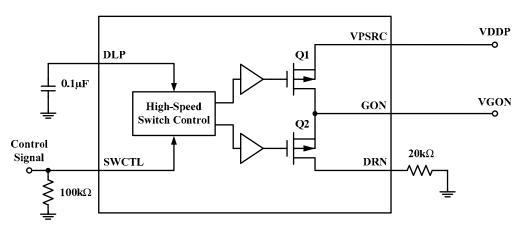


Figure 3. Gate-on pulse modulator

7F, No.9,PARK AVENUE. II, Science-Based Industrial Park, Hsinchu 300,Taiwan, R.O.C.Tel: 886-3-563-0878Fax: 886-3-563-087910/19/2007REV:0.5WWW: http://www.aimtron.com.tw

Power-Up Sequence

The AT1736 goes through start-up sequence after power-up. When V_{IN} exceeds UVLO threshold, the reference voltage starts to rise. After reference voltage reaches regulation, the step-up converter and linear regulators will start up with the soft-start procedure.

Once the FB voltage reaches the reference voltage, the gate-on pulse modulator delay block is also enabled. The gate-on pulse modulator is enabled after the V_{DLP} goes above V_{REF} with a constant charging current (5µA typical). Connect an appropriate capacitor between DLP and GND to obtain the required delay-time.

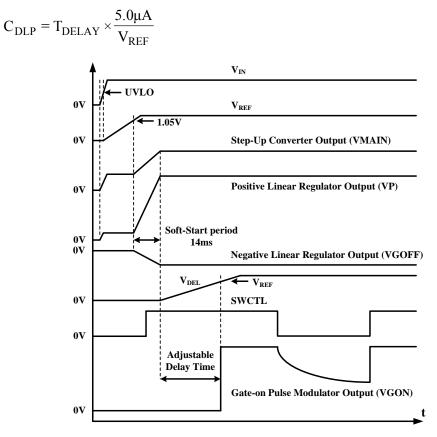


Figure 3. Power-up sequence

Operational Amplifier

These five identical operational amplifiers have the excellent performances as high output current (150mA), fast slew rate ($13V/\mu s$), and wide bandwidth (12MHz) to drive the distributed series capacitance and resistance of the TFT LCD backplane.

7F, No.9, PARK AVENUE. II, Science-Based Industrial Park, Hsinchu 300, Taiwan, R.O.C.Tel: 886-3-563-0878Fax: 886-3-563-087910/19/2007REV:0.5WWW: http://www.aimtron.com.tw

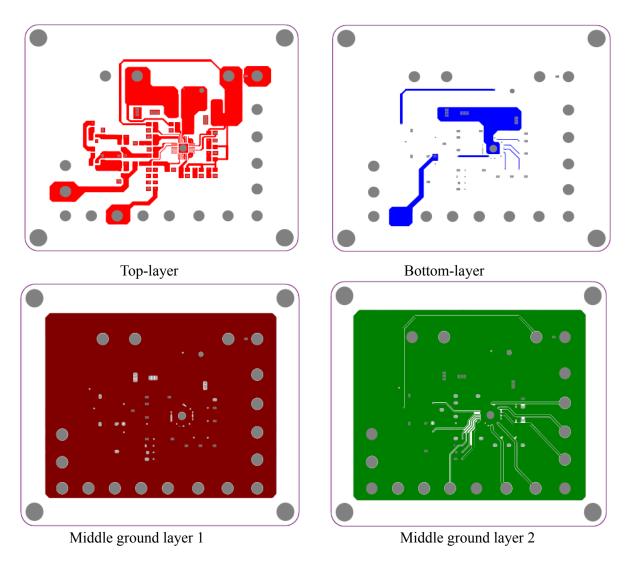
Output Voltages Setting

The output voltages of step-up converter and linear regulators are set by each resistive voltage-divider as the Typical Application Circuit shown.

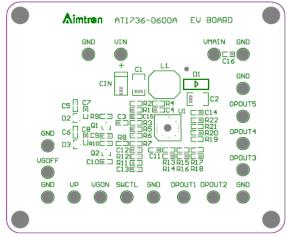
The AT1736 applies a 1.233V feedback reference voltage at FBL pin of linear regulator, and the output voltage setting is according to the following equation:

$$V_{\text{VMAIN}} = 1.233 \times \left(1 + \frac{\text{R2}}{\text{R1}}\right) \text{ (V)}$$

The feedback reference voltage of positive charge-pump V_{FBP} is typical 1.233V. The output voltage is set by the following equation:

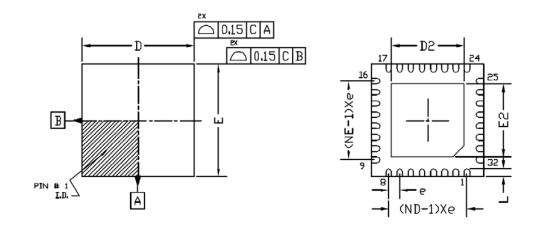

$$V_{VP} = 1.233 \times \left(1 + \frac{R6}{R5}\right)$$
 (V)

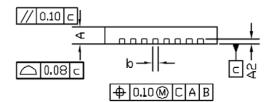
The feedback reference voltage of negative charge-pump V_{FBN} is typical 250mV, and the reference voltage (V_{REF}) is typical 1.233V. So the output voltage is set by the following equation:


$$V_{VGOFF} = 0.25 - \left(\frac{0.983 \times R8}{R7}\right) (V)$$

PC Board Layout

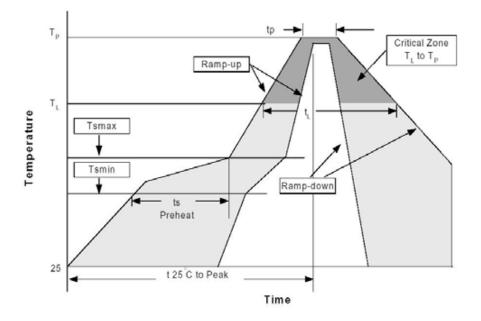
- 1. The most critical aspect of the layout is the placements of the input bypass capacitors of pin IN, VDDOP, VPSRC and REF. They must be placed as close as possible to the AT1736 to reduce the input ripple voltage and noise coupling.
- 2. Power loops on the input and output of the converters should be connected with the shortest and widest traces as possible. The long and narrow trace increases the ESR and ESL, and that will induce more effective noise at high frequency easily.
- 3. The feedback resistors should connect to FB pins as close as possible. And each route connected to output should be away from the switching noise source, such as charge-pump and step-up converter power loops.
- 4. Separate the power ground and analog signal ground into different planes to prevent the interference, and connect these two parts at the VMAIN output ground.





Component side

Package Outline: Thin QFN-32



ş			COM	MON			
S> M R O L	DINENSI	DIMENSIONS MILLIMETER			DINENSIONS INCH		
Ľ	MĪN,	NDM.	MAX.	MIN.	NOM.	MAX.	
A	0.70	0,75	0.80	0,027	0.029	0.031	
8 2		0.200 R E	-	0.0078 REF.			
b	0.20	0,25	0,30	0,008	0,0 <u>1</u> 0	0.012	
D	4,90	5.00	5,10	0.193	0 <u>.1</u> 97	0,201	
D5	3,05	3,15	3,25	0.120	0,124	0.128	
е		0.50 TYP		(0.020 TY	Р	
Ε	4,90	5.00	5,10	0.193	0.197	0.201	
E 2	3.05	3,15	3,25	0,120	0 <u>,1</u> 24	0,128	
L	0.30	0,40	0.50	0.012	0.016	0.020	

Reflow Profiles

	Sn-Pb Eutec	tic Assembly	Pb-Free	Assembly	
Profile Feature	Large Body Pkg. thickness ≥2.5mm or Pkg. volume ≥350mm ³	Small Body Pkg. thickness <2.5mm or Pkg. volume <350mm ³	Large Body Pkg. thickness ≥2.5mm or Pkg. volume ≥350mm ³	Small Body Pkg. thickness <2.5mm or Pkg. volume <350mm ³	
Average ramp-up rate $(T_L \text{ to } T_P)$	3°C/seco	ond max.	3°C/second max.		
Preheat -Temperature Min(Tsmin) -Temperature Max (Tsmax) -Time (min to max)(ts)	150)°C)°C seconds	150°C 200°C 60-180 seconds		
Tsmax to T _L -Ramp-up Rate			3°C/seco	ond max.	
Time maintained above: -Temperature (T _L) -Time (t _L)	183°C 60-150 seconds		217°C 60-150 seconds		
Peak Temperature(T _P)	225+0/-5°C	240+0/-5°C	245+0/-5°C	250+0/-5°C	
Time within 5°C of actual Peak Temperature (t_P)	10-30 seconds	10-30 seconds	10-30 seconds	20-40 seconds	
Ramp-down Rate	6°C/seco	ond max.	6°C/seco	ond max.	
Time 25°C to Peak Temperature	6 minut	es max.	8 minut	es max.	

*All temperatures refer to topside of the package, measured on the package body surface.