

Features

• 2.6V to 5.5V Input Supply Range

• 640KHz/1.2MHz Current-Mode PWM Step-Up Regulator:

Fast Transient Response

1.0% High-Accuracy Output Voltage

Built-In 18V, 2.0A, 0.2Q N-Channel MOSFET

Programmable Soft-Start

Current-Limit

Latched Fault Protection with Timer

- High Efficiency
- Gate-On Charge Pump Regulator Controller with Latched Fault Protection with Timer
- High-Performance Linear Regulator:
 - 1.5% Output Accuracy

Works with Small Ceramic Output Capacitors

- Fast Transient Response
- Foldback Current Limit

• High-Current Operational Amplifier:

±150mA Output Short-Circuit Current

13V/µs Slew Rate

Applications

- 12MHz, -3dB Bandwidth
- Rail-to-Rail Input/Output
- · Gate-on Pulse Modulator with Adjustable Delay for Sequence Control
- · Voltage Detector with Adjustable Delay

LCD Monitor Panel Modules

NB LCD Panel Modules

Automotive Displays

VPSR 00 ORN 18 17 16 15 7 13 OUTOP 19 12 SWCTL POSOP 20 11 DLP 10 DLVD COMP 21 AT1738 22 9 PG FB 23 VSEN FREQ 8 PGND 24 7 INI C 4 G 9 \leq SS GND FBL Ъ

Aimtron reserves the right without notice to change this circuitry and specifications.

7F, No.9, PARK AVENUE. II, Science-Based Industrial Park, Hsinchu 300, Taiwan, R.O.C. Tel: 886-3-563-0878 Fax: 886-3-563-0879 8/01/2008 REV: 0.8 Email: service@aimtron.com.tw

General Description The AT1738 offers a complete power-supply solution for TFT LCD panels used in LCD monitors and NB LCD panels. The AT1738 consists of a high-performance step-up converter, a low-power charge-pump regulator, a high-performance linear regulator, an operational amplifier, a voltage detector and a logic-controlled gate-on pulse modulator.

The step-up DC-DC converter provides the regulated supply voltage for the panel source driver ICs. The charge-pump regulator generates the positive gate-on supply voltage. The operational amplifier supplies the VCOM buffer with high output current, fast slew rate and wide bandwidth performances for driving capacitive loads.

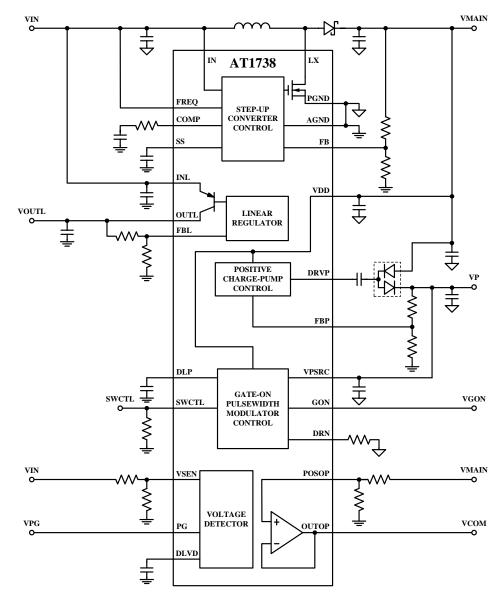
The high-voltage gate-on pulse modulator to control the positive gate-on output voltage waveform for reducing the flicker on TFT LCD panel.

The high-performance linear regulator uses an internal P-channel MOSFET to supply load currents up to 350mA. It provides the regulated supply voltage for the TCON IC.

The voltage detector with adjustable detected voltage-point and delay-time monitors the input supply voltage to prevent the improper shutdown of the system power application.

The AT1738 is available in a 24-pin thin QFN package which is 4mm x 4mm with a maximum thickness of 0.8mm for ultra-thin LCD panel design.

Pin Configuration


WWW: http://www.aimtron.com.tw

Ordering Information

Part number	Package	Marking
AT1738N_GRE	Thin QFN24, Green	AT1738N

Block Diagram

Pin No.	Pin Name	Function
1	LX	Drain of Internal N-Channel Power MOSFET of Step-Up Converter. Minimize the connecting trace area for the lowest EMI.
2	IN	IC Supply Voltage Input.
3	SS	Soft-Start Setting Pin of Step-Up Converter. Connect a capacitor from SS to AGND to set the soft-start period.
4	AGND	Analog Ground for the Signal Control.
5	FBL	Linear-Regulator Feedback Input. Place the voltage-divider to IC as close as possible.
6	OUTL	Linear Regulator Output.
7	INL	Linear Regulator Input.
8	VSEN	Sense Input of Voltage Detector.
9	PG	Power-Good Signal Output of Voltage Detector.
10	DLVD	Voltage Detector Power-Good Signal Delay Input. Connect a capacitor from DLVD to GND to set the delay time.
11	DLP	Positive Gate-On Pulse Modulator Delay Input. Connect a capacitor from DLP to GND to set the delay time.
12	SWCTL	Gate-On Pulse Modulator Timing Control Input.
13	DRN	Discharge Switch Input. Connect a resistor to GND to discharge the VGON when SWCTL is low.
14	GON	Internal High-Voltage Gate-On Pulse Modulator Output Terminal for Positive Gate-On Driver Voltage Supply.
15	VPSRC	Gate-On Pulse Modulator Voltage Supply Input. Source of the internal high-voltage P-channel MOSFET connected to GON. Connect a minimum 0.1µF capacitor close to the VPSRC and PGND pins.
16	FBP	Positive Charge-Pump Feedback Input. Place the voltage-divider to IC as close as possible.
17	DRVP	Positive Charge-Pump Driver Output. Output high level is VDD, and output low level is GND. SWP is internally pulled to GND in shutdown.
18	VDD	Power Supply Input for Gate-On Pulse Modulator Driver, Positive Charge-Pump Driver and Operational Amplifier. Connect a 0.1µF capacitor from VDD to PGND.
19	OUTOP	Operational Amplifier Output.
20	POSOP	Operational Amplifier Noninverting Input.
21	COMP	Compensation Pin of Step-Up Converter Error-Amplifier. Connect a compensation network from COMP to AGND.
22	FB	Step-Up Converter Feedback Input. Connect a resistive voltage-divider to determine the step-up converter output voltage. Place the resistive voltage-divider close to this pin.
23	FREQ	Frequency Selection Pin of Step-Up Converter. Connect to logic high for 1.2MHz operation, and connect to logic low for 640KHz operation. This pin is with an internal 4μ A pull-low constant current.
24	PGND	Power Ground. PGND is the source of the n-channel power MOSFET of step-up converter. Place the input-capacitor ground terminals close to PGND with a wide trace.
Exposed Pad	AGND	Analog Ground. Exposed pad should solder to analog ground plane for the optimal power dissipation.

Parameter	Rate	ed Value	Unit	
i ai ametei	Min.	Max.	Omt	
IN, FB, SS, COMP, FREQ, INL, OUTL, FBL, FBP, VSEN, PG, DLVD, SWCTL, DLP	-0.3	+6.0	V	
PGND to AGND	-0.3	+0.3	V	
LX, DRVP	-0.3	+16.0	v	
VDD, POSOP, OUTOP	-0.3	+16.0	v	
VPSRC, GON, DRN	-0.3	+30.0	v	
LX Switch Maximum Continuous RMS Output Current	-	2.0	А	
OUTOP Maximum Continuous Output Current	-75.0	+75.0	mA	
Power Dissipation (Ta 25)	-	1349	mW	
Operating Temperature	-30	+85	°C	
Storage Temperature	-55	+150	°C	
Lead Temperature (soldering, 10s)	-	+260	°C	
ESD Susceptibility (MM)	-200	200	V	
ESD Susceptibility (HBM)	-2	2	KV	

Absolute Maximum Ratings (Ta = 25)

1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. Devices are ESD sensitive. Handling precaution recommended. The Human Body model is a 100pF capacitor discharged through a 1.5K Ω resistor into each pin.

Recommended Operating Conditions

Parameter	Symbol	Va	Unit			
1 al ametel	Symbol	Min.		Max.	Omt	
Power supply voltage	V _{IN}	2.6	-	5.5	V	
Operating Junction Temperature	T _J	-30	-	+125	°C	

*Using X5R or X7R capacitors.

Electrical Characteristics

(Test circuit is shown as Typical Application Circuit. $V_{IN} = 3.3V$, $V_{VDD} = 8.5V$, PGND = AGND = 0,

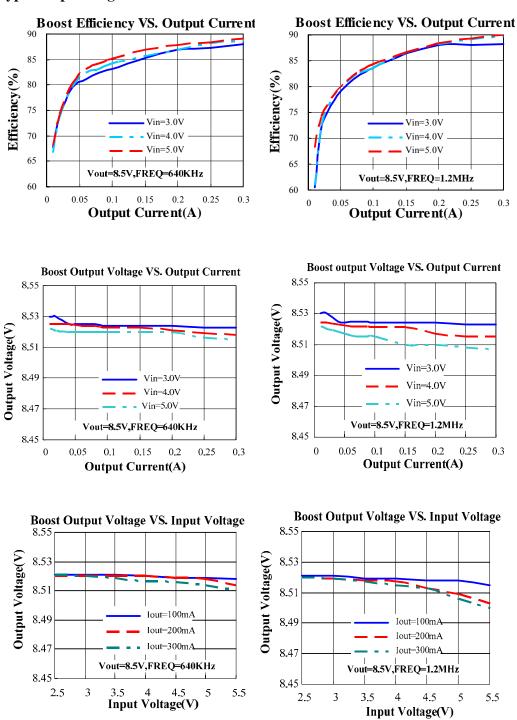
Ta=0 to +85 . Typical values are at Ta=+25 , unless otherwise noted.)

Parameter	Condition	Values			Unit
Farameter	Condition	Min.	Тур.	Max.	Unit
IN Supply Range		2.5		5.5	V
IN Undervoltage-Lockout Threshold	V _{IN} rising	2.1	2.2	2.3	V
in Ondervoltage-Lockout Threshold	Hysteresis		200		mV
	$V_{FB} = 1.4V$, LX not switching		0.4	1.1	
IN Quiescent Current	$V_{FB} = 1.2$ V, LX switching		5	7	mA
	$V_{FB} = 0.5$ V, shutdown current		0.3	0.5	mA
Main Step-Up Regulator Section					
Output Voltage Range		V _{IN}		16	V
Operating Frequency (fosc)	FREQ=high	1000	1200	1400	kHz
Operating Frequency (I _{OSC})	FREQ=low		640		кпа
FREQ Input Low Voltage				0.6	V
FREQ Input High Voltage		1.5			V
FREQ Pull-Down Current	V _{FREO} =1.0V		4		μA
Oscillator Maximum Duty Cycle		86	90	94	%
Feedback Regulation voltage	No load, Ta=+25	1.228	1.240	1.252	V
FB Input Bias Current	V _{FB} =1.5V	-40	1	40	nA
FB Load Regulation	0 mA $<$ I _{LX} $<$ full load, transient only		-1.6		%
FB Line Regulation	2.5V < Vin < 5.5V		0.1		%/V
FB Transconductance		75	160	280	μS
FB Voltage Gain	FB to COMP		700		V/V
FB Fault Trip Level	V _{FB} falling		1.0		V
Duration to Trigger Fault condition			160		ms
LX Switch On-Resistance			200	400	mΩ
LX Leakage Current	V _{LX} =18V		0.02	40	μA
LX Current Limit	V _{IN} =3.3V		2.0		A
Current-Sense Transconductance			0.5		S
Soft-Start Charge Current		2	4	6	μA
Operational Amplifier Section					
OP Supply Operating Range		4.5		16	V
OP Supply Current	Buffer configuration, $V_{POSOP} = 4V$, no load		1.5	1.7	mA
Input Offset Voltage	$(V_{OUTOP}, V_{POSOP}) = V_{VDD} / 2,$ $T_A = +25$	-17	0	17	mV
Input Bias Current	$(V_{OUTOP}, V_{POSOP}) = V_{VDD} / 2$	-50	1	50	nA
Output Valtaga Swing High	$I_{OUTOP} = 100 \mu A$	V _{VDD} -15	V _{VDD} - 3		mV
Output Voltage Swing High	$I_{OUTOP} = 5mA$	V _{VDDOP} -150	V _{VDDOP} - 80		

AT1738

Preliminary Product Information LCD Panel Step-up Converter with Analog Multi-Function Outputs

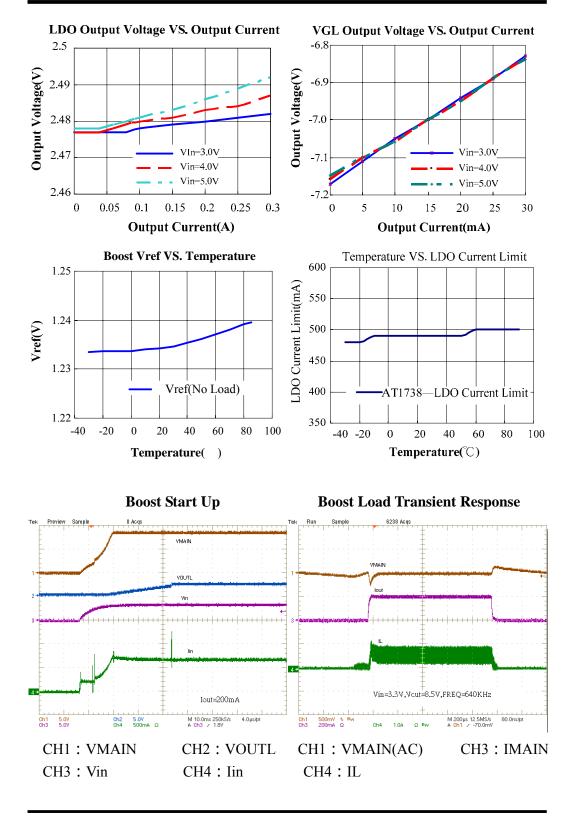
Ordened Welters a Service a Larra	$I_{OUTOP} = -100 \mu A$		2	15	
Output Voltage Swing Low	$I_{OUTOP} = -5mA$		70	150	mV
Short-Circuit Current	Short to V_{VDDOP} / 2, sourcing	100	150	180	mA
Short-Circuit Current	Short to V_{VDDOP} / 2, sinking	100	150	180	IIIA
Output Current	Buffer configuration, $V_{POSOP} = 4V$, V_{OUTOP} error $< \pm 10mV$	±40			mA
Slew Rate			13		$V/\mu s$
-3dB Bandwidth	Buffer configuration, $R_L = 10k\Omega$, $C_L = 10pF$		12		MHz
Gain-Bandwidth Product	Buffer configuration, $R_L = 10k\Omega$, $C_L = 10pF$		8		MHz
Linear Regulator Section					
INL Operation Supply Range	$V_{OUTL} < V_{INL}$	2.5		5.5	V
Quiescent Current			60		μΑ
Dropout Voltage	$I_{OUTL} = 350 \text{mA}$		300	500	mV
FBL Regulation Voltage	$I_{OUTL} = 50 \text{mA}$	1.224	1.240	1.256	V
FBL Input Bias Current	$V_{FBL} = 2.5 V$			50	nA
FBL Line-Regulation Error	$V_{INL} = 2.8V \sim 5.5V,$ $V_{OUTL} = 2.5V, I_{OUTL} = 100mA$		0.1	0.3	%/V
OUTL Load Regulation	Iout=1mA to 300mA		0.2	0.5	%
Current Limit	$V_{FBL} = 1.2V$		500		mA
Positive Charge-Pump Regulator S	Section				
FBP Regulation Voltage	$I_{VP} = 10 \text{mA}$	1.216	1.240	1.264	V
FBP Line-Regulation Error	$V_{MAIN} (V_{VDD}) = 10.8V \sim 13.2V,$ $V_{VP} = 18V, I_{GON} = 20mA$		0.5	0.8	%/V
Operating Frequency			0.5* f _{OSC}		Hz
FBP Input Bias Current	$V_{FBP} = 1.24V$	-50		+50	nA
SWP P-Channel On-Resistance			15	30	Ω
SWP N-Channel On-Resistance	$V_{FBP} = 1.2V$ $V_{FBP} = 1.5V$	20	6	12	$\frac{\Omega}{k\Omega}$
FBP Fault Trip Level (UVP)	Falling edge		1.0		V
Duration to Trigger Fault condition			160		ms
Gate-On Voltage Pulse Modulation	n Switches Section				
DLP Capacitor Charge Current	During startup, $V_{DLP} = 1.0V$	18	20	22	μΑ
DLP Turn-On Threshold		1.216	1.240	1.264	V
DLP Discharge Switch On-Resistance	During UVLO, V _{IN} = 2.2V		35		Ω
SWCTL Input Low Voltage				0.6	V
SWCTL Input High Voltage		2.0			V
SWCTL Input Leakage Current		-1		+1	μA
SWCTL to GON Propagation Delay	Rising & Falling		100		ns
VPSRC Input Voltage Range				30	V
	V _{DLP} =1.5V, SWCTL=low		50	100	μΑ
VPSRC Input Current	V _{DLP} =1.5V, SWCTL=high		15	30	μΑ

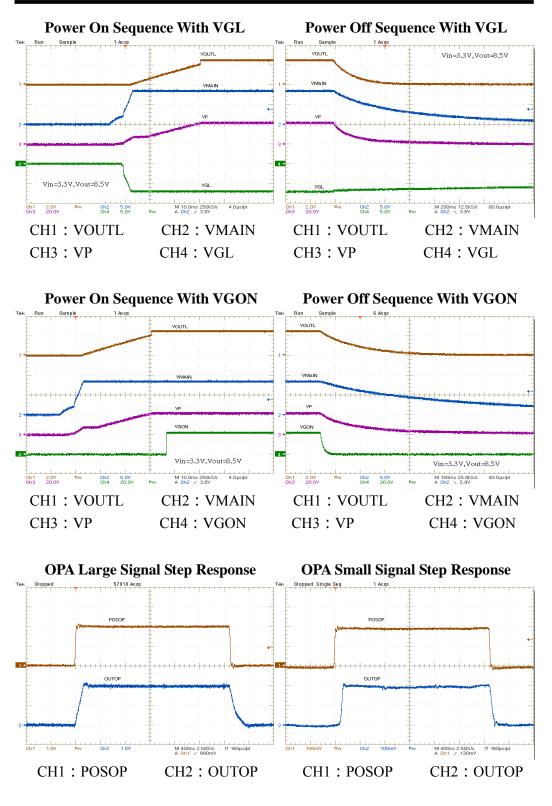


AT1738 Product Information

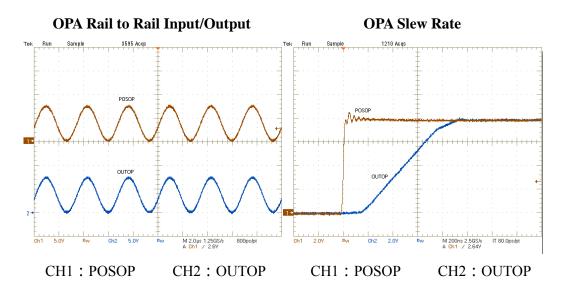
Preliminary Product Information LCD Panel Step-up Converter with Analog Multi-Function Outputs

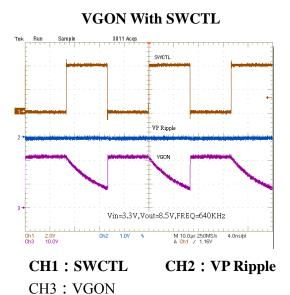
VPSRC to GON Switch On-Resistance	V _{DLP} =1.5V, SWCTL=low		10	20	Ω
DRN to GON Switch On-Resistance	V _{DLP} =1.5V, SWCTL =high		35	70	Ω
Voltage Detector Section					
V _{IN} Minimum Operation Voltage		2.1	2.2	2.3	V
Detect Threshold Voltage			1.04		V
Detect Threshold Voltage Accuracy		-1.0		1.0	%
Adjustable Delay Time-Constant	$\mathbf{K} = \mathbf{T}_{\mathrm{DELAY}_\mathrm{VD}} / \mathbf{C}_{\mathrm{DLVD}}$		120k		Ω



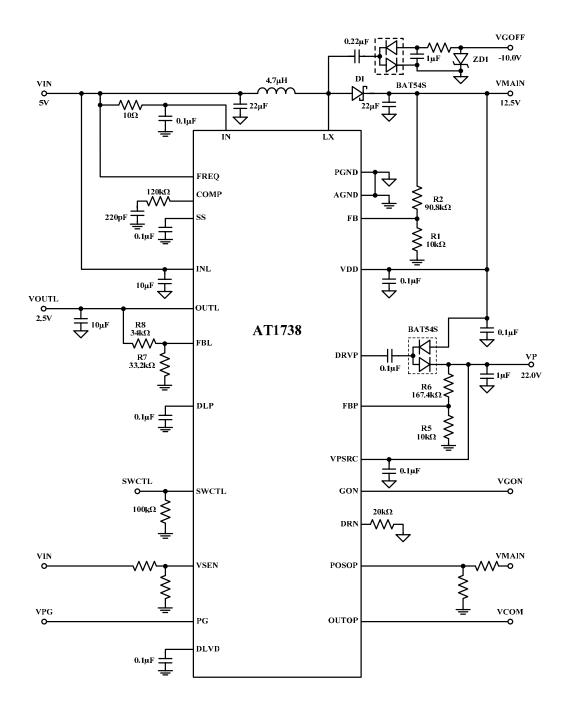

Typical Operating Characteristics

7F, No.9, PARK AVENUE. II, Science-Based Industrial Park, Hsinchu 300, Taiwan, R.O.C.Tel: 886-3-563-0878Fax: 886-3-563-08798/01/2008REV: 0.8WWW: http://www.aimtron.com.tw





7F, No.9, PARK AVENUE. II, Science-Based Industrial Park, Hsinchu 300, Taiwan, R.O.C.Tel: 886-3-563-0878Fax: 886-3-563-08798/01/2008REV: 0.8WWW: http://www.aimtron.com.tw



Typical Application Circuit

7F, No.9, PARK AVENUE. II, Science-Based Industrial Park, Hsinchu 300, Taiwan, R.O.C.Tel: 886-3-563-0878Fax: 886-3-563-08798/01/2008REV: 0.8WWW: http://www.aimtron.com.tw

Function Description

The AT1738 offers a complete power-supply solution for TFT LCD panels used in LCD monitors and NB LCD panels. The AT1738 consists of a high-performance step-up converter, a low-power charge-pump regulator, a high-performance linear regulator, an operational amplifier, a voltage detector and a logic-controlled gate-on pulse modulator.

Step-up Converter

The step-up DC-DC converter adopts the PWM current mode control, fixed selectable 640k/1.2MHz switching frequency and an internal 2.0A, 0.2Ω (typical) power MOSFET. Such architecture provides faster line and load transient responses for the specific performance of the source-driver supply voltage source. The high switching frequency can minimize the components as the space of thick LCD panel required. The programmable soft-start function restrains the inrush current and output voltage overshoot with an external capacitor. The external compensation network provides the flexibility in determining output voltage regulation accuracy and dynamic response. The switching frequency can be selected by user to operate at either 640 kHz or 1.2MHz. Connect FREQ to logic high for 1.2MHz operation, and connect to logic low for 640 KHz operation. FREQ has an internal pull-low for the 640 kHz operation if leaving FREQ unconnected.

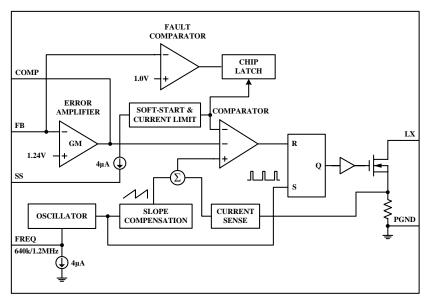


Figure 1. Step-up converter block diagram

Positive Charge-Pump Regulator

Positive charge-pump regulator also contains internal P-channel and N-channel MOSFETs to perform the power transfer. The internal MOSFETs switch at a constant 0.5* f_{OSC} Hz. The charge-pump inverts the doubles supply voltage (VMAIN) and provides a regulated positive output voltage. During the first half-cycle, the N-channel MOSFET turns on and flying capacitor C_{CPP} charges to VMAIN minus a diode drop. During the second half-cycle, the N-channel MOSFET turns on, level shifting C_{CPP} by VMAIN volts. This connects C_{CPP} in parallel with the reservoir capacitor C_{POS} . The amount of charge transferred to the output is controlled by the variable N-channel on-resistance.

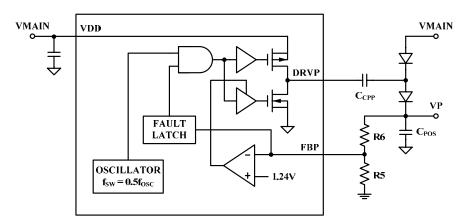


Figure 2. Charge-Pump Regulator Function Block

Soft-Start

The step-up converter and positive charge-pump regulator uses an external capacitor to perform the soft-start function. When VIN exceeds UVLO threshold, the internal reference voltage of the step-up converter starts to rise. After reference voltage reaches regulation, the step-up converter and positive charge-pump regulator start the soft-start process. The soft-start capacitor is immediately charged at a constant current of 4μ A (typical). During this time, the SS voltage directly controls the peak inductor current of the step-up converter and the feedback reference voltage of the positive charge-pump regulator. The soft-start period is complete when V_{SS} exceeds 1.24V. When VIN falls below UVLO threshold, the soft-start capacitor is discharged to ground.

$$T_{SS} = C_{SS} \times \frac{1.24V}{4.0\mu A} \quad (sec)$$

⁷F, No.9, PARK AVENUE. II, Science-Based Industrial Park, Hsinchu 300, Taiwan, R.O.C.Tel: 886-3-563-0878Fax: 886-3-563-08798/01/2008REV: 0.8Email: service@aimtron.com.tw

Linear Regulator

The linear regulator uses an internal P-channel MOSFET to supply load currents up to 350mA. The internal reference voltage of linear regulator is 1.24V, connect an external resistive voltage-divider (R7 & R8 as the Typical Application Circuit shown) to set the output voltage as requirement. The linear regulator can driver at least 350mA output current continuously. The maximum application device power dissipation should not exceed the package dissipation limit listed in the Absolute Maximum Ratings section. The linear regulator includes an OCP function to protect the internal transistor against over loads and short circuits The internal current limit of linear-regulator is approximately 500mA. Once the load current exceeds limit value, the linear regulator output voltage starts to droop.

Operational Amplifier

The operational amplifier is with the excellent performances as high output current (150mA), fast slew rate $(13V/\mu s)$, and wide bandwidth (12MHz) to drive the distributed series capacitance and resistance of the TFT LCD backplane.

Voltage Detector

The voltage detector with adjustable detected voltage-point and delay-time monitors the input supply voltage to prevent the improper shutdown of the system power application. Connect a capacitor from DLVD to GND to set the required delay time.

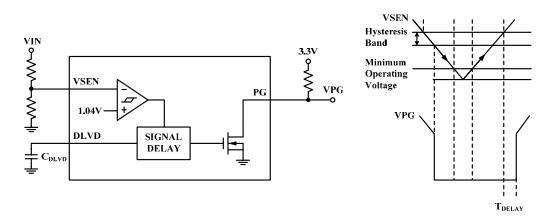


Figure 3. Voltage Detector Function Block and Timing Chart

 $T_{DELAY_VD} = C_{DLVD} \times 120k$ (sec)

Gate-On Pulse Modulator

The AT1738 includes a gate-on pulse modulator to control gate-on voltage waveform to reduce the flicker on TFT LCD panel. After the VIN exceeds UVLO, once the soft-start periods are complete, fault conditions do not exist, and the VDLP exceeds the turn-on threshold, then the gate-on pulse modulator starts to be active and is controlled by SWCTL. There are two high voltage switches Q1 and Q2 connecting to GON. Another terminal of Q1 is connected to positive charge-pump output for the positive high voltage input (VPSRC), and Q2 is connected to DRN with an external series resistor to ground for discharging the positive gate-on voltage. If SWCTL is high, Q1 turns off and Q2 turns on. If SWCTL is low, Q1 turns on and Q2 turns off.

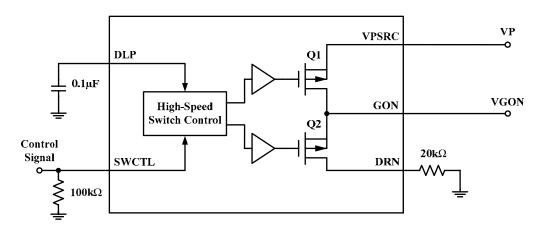


Figure 4. Gate-on pulse modulator

Output Voltage Fault Protection

After soft-start period, if feedback voltage of the step-up DC-DC converter or gate-on charge-pump regulator does not exceed its fault-detection threshold, the AT1738 enables the internal fault timer. If any fault condition exceeds the fault-timer duration (160ms typical), the AT1738 shuts down the step-up converter, gate-on charge-pump regulator, operational amplifier and gate-on pulse modulator. Once the fault condition is removed, cycle the input voltage to reactivate the chip.

7F, No.9, PARK AVENUE. II, Science-Based Industrial Park, Hsinchu 300, Taiwan, R.O.C.Tel: 886-3-563-0878Fax: 886-3-563-08798/01/2008REV: 0.8B/01/2008REV: 0.8

Power-Up Sequence

The AT1738 goes through start-up sequence after power-up. When VIN exceeds UVLO threshold, the internal reference voltage starts to rise. After reference voltage reaches regulation, the step-up converter and linear regulators will start up with the soft-start process.

Once the FB voltage reaches the reference voltage, the gate-on pulse modulator delay block is also enabled. The gate-on pulse modulator is enabled after the V_{DLP} goes above V_{REF} with a constant charging current (20µA typical). Connect an appropriate capacitor between DLP and GND to obtain the required delay-time.

$$T_{DELAY_{SW}} = C_{DLP} \times \frac{1.24V}{20.0\mu A} \text{ (sec)}$$

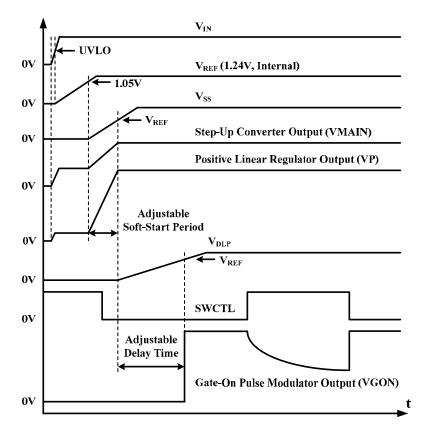


Figure 5. Power-up sequence

Output Voltages Setting

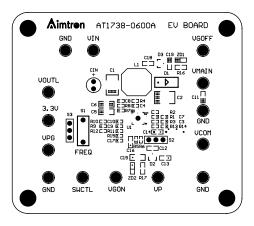
The output voltages of step-up converter, positive charge-pump regulator and linear regulators are set by each resistive voltage-divider as the Typical Application Circuit shown.

The AT1738 applies a 1.240V feedback reference voltage at FB pin of step-up converter, and the output voltage setting is according to the following equation:

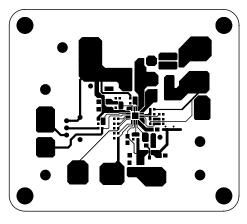
VMAIN =
$$1.24 \times \frac{(R1 + R2)}{R1}$$
 (V)

The feedback reference voltage of positive charge-pump regulator, V_{FBP} , is typical 1.240V. The output voltage is set by the following equation:

$$VP = 1.24 \times \frac{(R5 + R6)}{R5}$$
 (V)

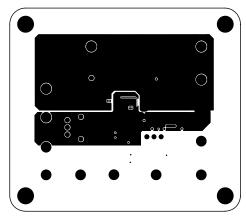

The feedback reference voltage of linear regulator, V_{FBL} , is typical 1.240V. The output voltage is set by the following equation:

VOUTL =
$$1.24 \times \frac{(R7 + R8)}{R7}$$
 (V)

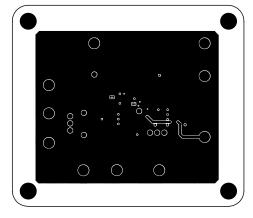


PC Board Layout

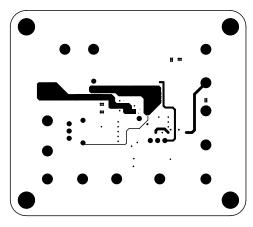
- 1. The most critical aspect of the layout is the placements of the input bypass capacitors of pin IN, INL, VDD and VPSRC. They must be placed as close as possible to the AT1738 to reduce the input ripple voltage and noise coupling.
- 2. Power loops on the input and output of the converters should be connected with the shortest and widest traces as possible. The long and narrow trace increases the ESR and ESL, and that will induce more effective noise at high frequency easily.
- 3. The feedback resistors should connect to FB pins as close as possible. And each route connected to output should be away from the switching noise source, such as charge-pump power loops.
- 4. Connecting all the ground-side of components at the backside ground-plane may effectively reduce the occurrence of unnecessary loop.



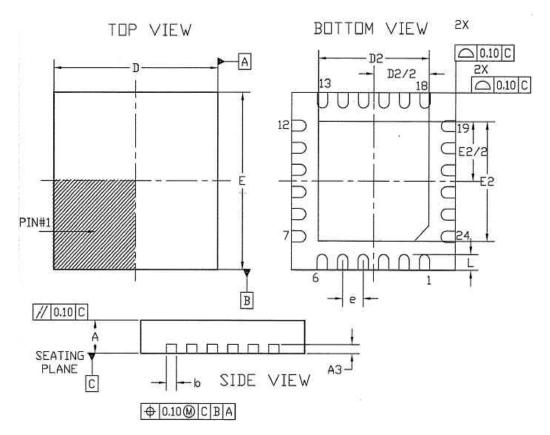
Component side



Top-layer

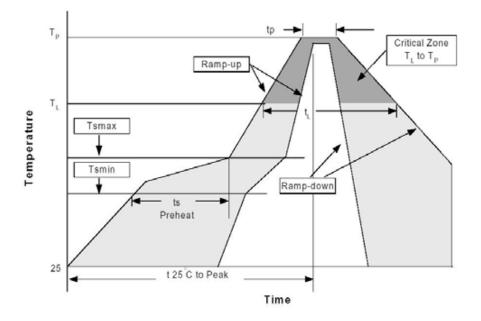


Middle ground layer 1


Middle ground layer 2

Bottom-layer

Package Outline: Thin QFN-24



SYMBOL	DIMEN	SIONS MILL	METER	DIMENSIONS INCH		
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
Α	0.70	0.75	0.80	0.027	0.029	0.031
A3	0.195	0.203	0.211	0.0077	0.008	0.0083
b	0.18	0.23	0.30	0.007	0.009	0.012
D	3.925	4.0	4.075	0.154	0.157	0.160
D2	2.50	2.65	2.80	0.098	0.104	0.110
E	3.925	4.0	4.075	0.154	0.157	0.160
E2	2.50	2.65	2.80	0.098	0.104	0.110
е		0.50 BSC	0.50 BSC 0.02 BSC			
L	0.30	0.35	0.40	0.012	0.014	0.016

Tel: 886-3-563-0878 8/01/2008 REV: 0.8

Reflow Profiles

	Sn-Pb Eutec	tic Assembly	Pb-Free	Assembly	
Profile Feature	Large Body Pkg. thickness ≥2.5mm or Pkg. volume ≥350mm ³	Small Body Pkg. thickness <2.5mm or Pkg. volume <350mm ³	Large Body Pkg. thickness ≥2.5mm or Pkg. volume ≥350mm ³	Small Body Pkg. thickness <2.5mm or Pkg. volume <350mm ³	
Average ramp-up rate $(T_L \text{ to } T_P)$	3°C/seco	ond max.	3°C/second max.		
Preheat -Temperature Min(Tsmin) -Temperature Max (Tsmax) -Time (min to max)(ts)	150)°C)°C seconds	150°C 200°C 60-180 seconds		
Tsmax to T _L -Ramp-up Rate			3°C/seco	ond max.	
Time maintained above: -Temperature (T _L) -Time (t _L)	183°C 60-150 seconds		217°C 60-150 seconds		
Peak Temperature(T _P)	225+0/-5°C	240+0/-5°C	245+0/-5°C	250+0/-5°C	
Time within 5°C of actual Peak Temperature (t_P)	10-30 seconds	10-30 seconds	10-30 seconds	20-40 seconds	
Ramp-down Rate	6°C/seco	second max. 6°C/second max.		ond max.	
Time 25°C to Peak Temperature	6 minut	es max.	8 minut	es max.	

*All temperatures refer to topside of the package, measured on the package body surface.

Tel: 886-3-563-0878 8/01/2008 REV: 0.8

7F, No.9, PARK AVENUE. II, Science-Based Industrial Park, Hsinchu 300, Taiwan, R.O.C. Fax: 886-3-563-0879 WWW: http://www.aimtron.com.tw Email: service@aimtron.com.tw