

28F016XD 16-MBIT (1 MBIT x 16) DRAM-INTERFACE FLASH MEMORY

- 85 ns Access Time (t_{RAC})
 - Supports both Standard and Fast-Page-Mode Accesses
- Multiplexed Address Bus
 RAS# and CAS# Control Inputs
- No-Glue Interface to Many Memory Controllers
- SmartVoltage Technology
 - User-Selectable 3.3V or 5V V_{CC}
 - User-Selectable 5V or 12V V_{PP}
- 0.33 MB/sec Write Transfer Rate
- x16 Architecture

- 56-Lead TSOP Type I Package
- Backwards-Compatible with 28F008SA Command Set
- 2 µA Typical Deep Power-Down Current
- 1 mA Typical I_{CC} Active Current in Static Mode
- 32 Separately-Erasable/Lockable 64-Kbyte Blocks
- 1 Million Erase Cycles per Block
- State-of-the-Art 0.6 µm ETOX™ IV Flash Technology

Intel's 28F016XD 16-Mbit flash memory is a revolutionary architecture which is the ideal choice for designing truly revolutionary high-performance products. Combining its DRAM-like read performance and interface with the intrinsic nonvolatility of flash memory, the 28F016XD eliminates the traditional redundant memory paradigm of shadowing code from a slow nonvolatile storage source to a faster execution memory, such as DRAM, for improved system performance. The innovative capabilities of the 28F016XD enable the design of direct-execute code and mass storage data/file flash memory systems.

The 28F016XD's DRAM-like interface with a multiplexed address bus, flexible V_{CC} and V_{PP} voltages, power saving features, extended cycling, fast program and read performance, symmetrically-blocked architecture, and selective block locking provide a highly flexible memory component suitable for resident flash component arrays on the system board or SIMMs. The DRAM-like interface with RAS# and CAS# control inputs allows for easy migration to flash memory in existing DRAM-based systems. The 28F016XD's dual read voltage allows the same component to operate at either 3.3V or 5.0V V_{CC} . Programming voltage at 5.0V V_{PP} minimizes external circuitry in minimal-chip, space critical designs, while the 12.0V V_{PP} option maximizes program/erase performance. The x16 architecture allows optimization of the memory-to-processor interface. Its high read performance combined with flexible block locking enable both storage and execution of operating systems/application software and fast access to large data tables. The 28F016XD is manufactured on Intel's 0.6 μ m ETOX IV process technology.

December 1996 Order Number: 290533-004

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

The 28F016XD may contain design defects or errors known as errata. Current characterized errata are available upon request.

*Third-party brands and names are the property of their respective owners.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained from:

Intel Corporation P.O. Box 7641 Mt. Prospect, IL 60056-7641

or call 1-800-879-4683 COPYRIGHT © INTEL CORPORATION, 1996

CG-041493

CONTENTS

	PAGE
1.0 1.1	INTRODUCTION 5 Product Overview 5
2.0	DEVICE PINOUT6
2.1	Lead Descriptions9
3.0	MEMORY MAPS11
3.1	Extended Status Registers Memory Map12
4.0	BUS OPERATIONS, COMMANDS AND STATUS REGISTER DEFINITIONS13
4.1	Bus Operations13
4.2	28F008SA—Compatible Mode Command Bus Definitions14
4.3	28F016XD—Enhanced Command Bus Definitions15
4.4	Compatible Status Register16
4.5	Global Status Register17
4.6	Block Status Register18
5.0	ELECTRICAL SPECIFICATIONS19
5.1	Absolute Maximum Ratings19
5.2	Capacitance20
5.3	Transient Input/Output Reference Waveforms21
5.4	DC Characteristics $(V_{CC} = 3.3V \pm 0.3V)$ 22
5.5	DC Characteristics ($V_{CC} = 5.0V \pm 0.5V$)25

		PAGE
5.6	AC Characteristics $(V_{CC} = 3.3V \pm 0.3V)$	28
	Read, Write, Read-Modify-Write and	
	Refresh Cycles (Common Parameter	
	Read Cycle	28
	Write Cycle	29
	Read-Modify-Write Cycle	30
	Fast Page Mode Cycle	30
	Fast Page Mode Read-Modify-Write	
	Cycle	
	Refresh Cycle	
	Misc. Specifications	31
5.7	AC Characteristics $(V_{CC} = 5.0V \pm 0.5V)$	33
	Read, Write, Read-Modify-Write and	
	Refresh Cycles (Common Parameter	rs)33
	Read Cycle	
	Write Cycle	35
	Read-Modify-Write Cycle	35
	Fast Page Mode Cycle	35
	Fast Page Mode Read-Modify-Write	20
	Cycle	
	Refresh Cycle	
5.8	AC Waveforms	
5.6 5.9	Power-Up and Reset Timings	
	Erase and Word Program Performan	
5.10	Elase and Word Flogram Fellonna	ice51
6.0	MECHANICAL SPECIFICATIONS	52
	NDIX A: Device Nomenclature and ering Information	53
APPEI	NDIX B: Additional Information	54

REVISION HISTORY

Number	Description
-001	Original Version
-002	Removed support of the following features: • All page buffer operations (read, write, programming, Upload Device Information) • Command queuing • Software Sleep and Abort • Erase All Unlocked Blocks • Device Configuration command Changed definition of "NC." Removed "No internal connection to die" from description. Added "xx" to Upper Byte of Command (Data) Definition in Sections 4.2 and 4.3. Modified parameters "V" and "I" of Section 5.1 to apply to "NC" pins. Increased I _{PPS} (V _{PP} Read Current) for V _{PP} > V _{CC} to 200 μA at V _{CC} = 3.3V/5.0V. Changed V _{CC} = 5.0V DC Characteristics (Section 5.5) marked with Note 1 to indicate that these currents are specified for a CMOS rise/fall time (10% to 90%) of <5 ns and a TTL rise/fall time of <10 ns. Corrected "RP# high to RAS# going low" to be a "Min" specification at V _{CC} = 3.3V/5.0V. Increased Typical "Word/Block Program Times" (t _{WHRH1} /t _{WHRH3}) for V _{PP} = 5.0V: t _{WHRH1} from 24.0 μs to 35.0 μs and t _{WHRH3} from 0.8 sec to 1.2 sec at V _{CC} = 3.3V t _{WHRH1} from 16.0 μs to 25.0 μs and t _{WHRH3} from 0.6 sec to 0.85 sec at V _{CC} = 5.0V Changed "Time from Erase Suspend Command to WSM Ready" spec name to "Erase Suspend Latency Time to Read;" modified typical values and added Min/Max values at V _{CC} = 3.3/5.0V and V _{PP} = 5.0/12.0V (Section 5.10). Minor cosmetic changes throughout document.
-003	Added 3/5# pin to Pinout Configuration (Figure 2), Product Overview (Section 1.1) and Lead Descriptions (Section 2.1) Modified Block Diagram (Figure 1): Removed Address/Data Queues, Page Buffers, and
	Address Counter; Added 3/5# pin
	Added 3/5# pin to Test Conditions of I _{CC} 2 and I _{CC} 5 Specifications
	Modified Power-Up and Reset Timings (Section 5.9) to include 3/5# pin: Removed t _{5VPH} and t _{3VPH} specifications; Added t _{PLYL} , t _{PLYH} , t _{YLPH} , and t _{YHPH} specifications
	Corrected TSOP Mechanical Specification A1 from 0.50 mm to 0.050 mm (Section 6.0)
	Minor cosmetic changes throughout document.
-004	Updated DC Specifications I _{CC} 3, I _{CC} 4, I _{CC} 6, I _{CC} 7, I _{CCD} and I _{PPES} Updated AC Specifications t _{CAS} (min), t _{RCD} (max) and t _{CWD} (min)

1.0 INTRODUCTION

The documentation of the Intel 28F016XD flash memory device includes this datasheet, a detailed user's manual, and a number of application notes and design tools, all of which are referenced in Appendix B.

The datasheet is intended to give an overview of the chip feature-set and of the operating AC/DC specifications. *The 16-Mbit Flash Product Family User's Manual* provides complete descriptions of the user modes, system interface examples and detailed descriptions of all principles of operation. It also contains the full list of software algorithm flowcharts, and a brief section on compatibility with the Intel 28F008SA.

Significant 28F016XD feature revisions occurred between datasheet revisions 290533-001 and 290533-002. These revisions center around removal of the following features:

- All page buffer operations (read, write, programming, Upload Device Information)
- · Command queuing
- · Software Sleep and Abort
- Erase all Unlocked Blocks
- · Device Configuration command

In addition, a significant 28F016XD change occurred between datasheet revisions 290532-002 and 290532-003. This change centers around the addition of a 3/5# pin to the device's pinout configuration. Figure 2 shows the 3/5# pin assignment for the TSOP Type 1 package.

Intel recommends that all customers obtain the latest revisions of 28F016XD documentation.

1.1 Product Overview

The 28F016XD is a high-performance, 16-Mbit (16,777,216-bit) block erasable, nonvolatile random access memory, organized as 1 Mword x 16. The 28F016XD includes thirty-two 32-KW (32,768 word) blocks. A chip memory map is shown in Figure 3.

The implementation of a new architecture, with many enhanced features, will improve the device operating characteristics and result in greater product reliability and ease-of-use as compared to other flash memories. Significant features of the 28F016XD include:

- No-Glue Interface to Memory Controllers
- Improved Word Program Performance
- SmartVoltage Technology
 - Selectable 3.3V or 5.0V V_{CC}
 - Selectable 5.0V or 12.0V V_{PP}
- · Block Program/Erase Protection

The 28F016XD's multiplexed address bus with RAS# and CAS# inputs allows for a "No Glue" interface to many existing in-system memory controllers. As such, 28F016XD-based SIMMs (72-pin JEDEC Standard) offer attractive advantages over their DRAM counterparts in many applications. For more information on 28F016XD-based SIMM designs, see the application note referenced at the end of this datasheet.

The 28F016XD incorporates SmartVoltage technology, providing V_{CC} operation at both 3.3V and 5.0V and program and erase capability at $V_{PP}=12.0V$ or 5.0V. Operating at $V_{CC}=3.3V$, the 28F016XD consumes less than 60% of the power consumption at 5.0V V_{CC} , while 5.0V V_{CC} provides the highest read performance capability. $V_{PP}=5.0V$ operation eliminates the need for a separate 12.0V converter, while $V_{PP}=12.0V$ maximizes program/erase performance. In addition to the flexible program and erase voltages, the dedicated V_{PP} gives complete code protection with $V_{PP} \leq V_{PPLK}$.

A 3/5# input pin configures the device's internal circuitry for optimal 3.3V or 5.0V read/program operation.

A Command User Interface (CUI) serves as the system interface between the microprocessor or microcontroller and the internal memory operation.

Internal Algorithm Automation allows word programs and block erase operations to be executed using a Two-Write command sequence to the CUI in the same way as the 28F008SA 8-Mbit FlashFileTM memory.

Software Locking of Memory Blocks is an added feature of the 28F016XD as compared to the 28F008SA. The 28F016XD provides selectable block locking to protect code or data such as direct-executable operating systems or application code. Each block has an associated nonvolatile lock-bit which determines the lock status of the

block. In addition, the 28F016XD has a master Write Protect pin (WP#) which prevents any modifications to memory blocks whose lock-bits are set.

Writing of memory data is performed in word increments typically within 6 μs (12.0V V_{pp})—a 33% improvement over the 28F008SA. A block erase operation erases one of the 32 blocks in typically 0.6 sec (12.0V V_{pp}), independent of the other blocks, which is about a 65% improvement over the 28F008SA.

Each block can be written and erased a minimum of 100,000 cycles. Systems can achieve one million Block Erase Cycles by providing wear-leveling algorithms and graceful block retirement. These techniques have already been employed in many flash file systems and hard disk drive designs.

All operations are started by a sequence of Write commands to the device. Three types of Status Registers (described in detail later in this datasheet) and a RY/BY# output pin provide information on the progress of the requested operation.

The following Status Registers are used to provide device and WSM information to the user:

- A Compatible Status Register (CSR) which is 100% compatible with the 28F008SA FlashFile memory Status Register. The CSR, when used alone, provides a straightforward upgrade capability to the 28F016XD from a 28F008SAbased design.
- A Global Status Register (GSR) which also informs the system of overall Write State Machine (WSM) status.
- 32 Block Status Registers (BSRs) which provide block-specific status information such as the block lock-bit status.

The GSR and BSR memory maps are shown in Figure 4.

The 28F016XD incorporates an open drain RY/BY# output pin. This feature allows the user to OR-tie many RY/BY# pins together in a multiple memory configuration such as a Resident Flash Array.

The 28F016XD is specified for a maximum fast page mode cycle time of 65 ns $(t_{PC,R})$ at 5.0V operation (4.75V to 5.25V) over the commercial temperature range (0°C to +70°C). A corresponding maximum fast page mode cycle time of 75 ns at 3.3V (3.0V to 3.6V and 0°C to +70°C) is achieved for reduced power consumption applications.

The 28F016XD incorporates an Automatic Power Saving (APS) feature, which substantially reduces the active current when the device is in static mode of operation (addresses not switching). In APS mode, the typical I_{CC} current is 1 mA at 5.0V (3.0 mA at 3.3V).

A deep power-down mode of operation is invoked when the RP# (called PWD# on the 28F008SA) pin transitions low. This mode brings the device power consumption to less than 2.0 μA , typically, and provides additional write protection by acting as a device reset pin during power transitions. A reset time of 300 ns (5.0V V_{CC} operation) is required from RP# switching high until dropping RAS#. In the deep power-down state, the WSM is reset (any current operation will abort) and the CSR, GSR and BSR registers are cleared.

A CMOS standby mode of operation is enabled when RAS# and CAS# transition high and RP# stays high with all input control pins at CMOS levels. In this mode, the device typically draws an I_{CC} standby current of 70 μA at 5.0V V_{CC} .

The 28F016XD is available in a 56-Lead, 1.2 mm thick, 14 mm x 20 mm TSOP Type I package. This form factor and pinout allow for very high board layout densities.

2.0 DEVICE PINOUT

The 28F016XD 56-Lead TSOP Type I pinout configuration is shown in Figure 2.

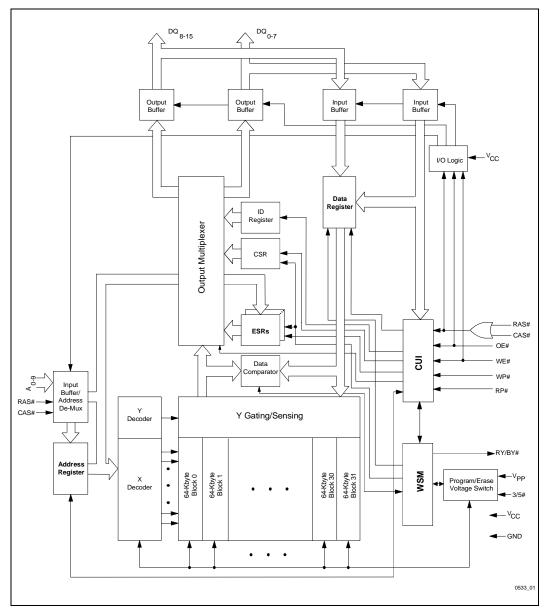


Figure 1. 28F016XD Block Diagram Architectural Evolution Includes Multiplexed Address Bus, SmartVoltage Technology, and Extended Registers

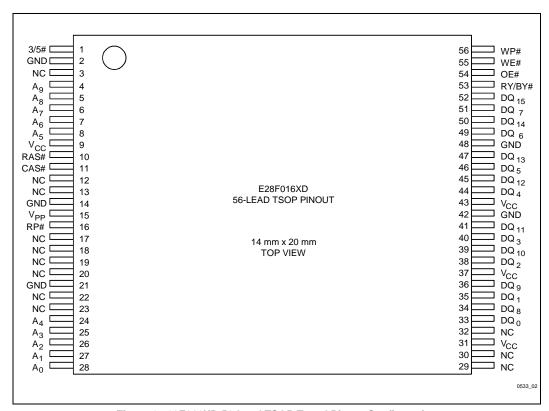


Figure 2. 28F016XD 56-Lead TSOP Type I Pinout Configuration

2.1 Lead Descriptions

Symbol	Туре	Name and Function
A ₀ -A ₉	INPUT	MULTIPLEXED ROW/COLUMN ADDRESSES: Selects a word within one of thirty-two 32-Kword blocks. Row (upper) addresses are latched on the falling edge of RAS#, while column (lower) addresses are latched on the falling edge of CAS#.
DQ ₀ –DQ ₁₅	INPUT/OUTPUT	DATA BUS: Inputs data and commands during CUI write cycles. Outputs array, identifier or status data (DQ ₀₋₇) in the appropriate read mode. Floated when the chip is de-selected or the outputs are disabled.
RAS#	INPUT	ROW ADDRESS STROBE: Latches row address information on inputs A ₉₋₀ when RAS# transitions low. A subsequent CAS# low transition initiates 28F016XD read or program operations.
CAS#	INPUT	COLUMN ADDRESS STROBE: Latches column address information on inputs A ₉₋₀ when CAS# transitions low. When preceded by a RAS# low transition, CAS# low initiates 28F016XD read or program operations, along with OE# and WE#. Subsequent CAS# low transitions, with RAS# held low, enable fast page mode reads/programs
RP#	INPUT	RESET/POWER-DOWN: RP# low places the device in a deep power-down state. All circuits that consume static power, even those circuits enabled in standby mode, are turned off. When returning from deep power-down, a recovery time of 300 ns at 5.0V V _{CC} is required to allow these circuits to power-up. When RP# goes low, the current WSM operation is terminated, and the device is reset. All Status Registers return to ready (with all status flags cleared). Exit from deep power-down places the device in read array mode.
OE#	INPUT	OUTPUT ENABLE: Gates device data through the output buffers when low in combination with RAS# and CAS# low. The outputs float to tri-state off when OE# is high. OE# can be tied to GND if not controlled by the system memory controller. RAS# and CAS# high override OE# low. WE# low also overrides OE# low.
WE#	INPUT	WRITE ENABLE: Controls access to the CUI, Data Register and Address Register. WE# is active low and initiates programs in combination with RAS# and CAS# low. WE# low overrides OE# low. RAS# and CAS# high override WE# low.
RY/BY#	OPEN DRAIN OUTPUT	READY/BUSY: Indicates status of the internal WSM. When low, it indicates that the WSM is busy performing an operation. RY/BY# floating indicates that the WSM is ready for new operations, erase is suspended, or the device is in deep power-down mode. This output is always active (i.e., not floated to tri-state off when OE#, RAS# or CAS# are high).
WP#	INPUT	WRITE PROTECT: Erase blocks can be locked by writing a nonvolatile lock-bit for each block. When WP# is low, those locked blocks as reflected by the Block-Lock Status bits (BSR.6), are protected from inadvertent data programs or erases. When WP# is high, all blocks can be written or erased regardless of the state of the lock-bits. The WP# input buffer is disabled when RP# transitions low (deep power-down mode).

2.1 Lead Descriptions (Continued)

Symbol	Туре	Name and Function
3/5#	INPUT	3.3/5.0 VOLT SELECT: 3/5# high configures internal circuits for 3.3V operation. 3/5# low configures internal circuits for 5.0V operation. NOTE:
		Reading the array with 3/5# high in a 5.0V system could damage the device. Reference the power-up and reset timings (Section 5.9) for 3/5# switching delay to valid data.
V_{PP}	SUPPLY	PROGRAM/ERASE POWER SUPPLY (12.0V \pm 0.6V, 5.0V \pm 0.5V): For erasing memory array blocks or writing words into the flash array. $V_{PP} = 5.0V \pm 0.5V$ eliminates the need for a 12.0V converter, while connection to 12.0V \pm 0.6V maximizes program/erase performance. NOTE:
		Successful completion of program and erase attempts is inhibited with V_{PP} at or below 1.5V. Program and erase attempts with V_{PP} between 1.5V and 4.5V, between 5.5V and 11.4V, and above 12.6V produce spurious results and should not be attempted.
V _{CC}	SUPPLY	DEVICE POWER SUPPLY (3.3V \pm 0.3V, 5.0V \pm 0.5V): To switch 3.3V to 5.0V (or vice versa), first ramp V_{CC} down to GND, and then power to the new V_{CC} voltage. Do not leave any power pins floating.
GND	SUPPLY	GROUND FOR ALL INTERNAL CIRCUITRY: Do not leave any ground pins floating.
NC		NO CONNECT: Lead may be driven or left floating.

3.0 MEMORY MAPS

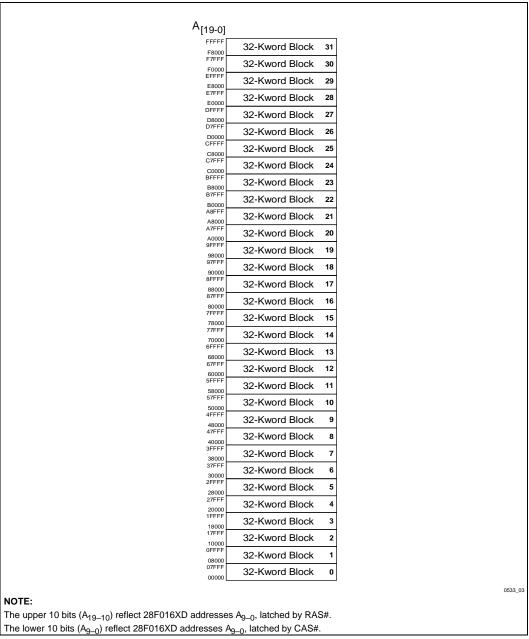


Figure 3. 28F016XD Memory Map

3.1 Extended Status Registers Memory Map

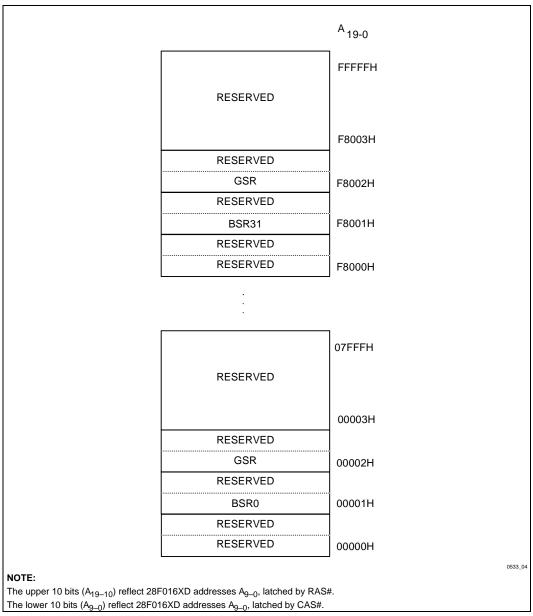


Figure 4. Extended Status Registers Memory Map

4.0 BUS OPERATIONS, COMMANDS AND STATUS REGISTER DEFINITIONS

4.1 Bus Operations

Mode	Notes	RP#	RAS#	CAS#	OE#	WE#	DQ ₀₋₁₅	RY/BY#
Row Address Latch	1,2,9	V_{IH}	\downarrow	V _{IH}	Х	Х	Х	Х
Column Address Latch	1,2,9	V _{IH}	V_{IL}	\downarrow	Х	Х	X	Х
Read	1,2,7	V _{IH}	V_{IL}	V _{IL}	V_{IL}	V_{IH}	D _{OUT}	Х
Output Disable	1,6,7	V _{IH}	V_{IL}	V _{IL}	V_{IH}	V_{IH}	High Z	Х
Standby	1,6,7	V _{IH}	V _{IH}	V _{IH}	Х	Х	High Z	Х
Deep Power-Down	1,3	V_{IL}	Х	Х	Х	Х	High Z	V _{OH}
Manufacturer ID	4,8	V _{IH}	V_{IL}	V_{IL}	V_{IL}	V_{IH}	0089H	V _{OH}
Device ID	4,8	V _{IH}	V _{IL}	V _{IL}	V_{IL}	V_{IH}	66A8H	V _{OH}
Write	1,5,6	V _{IH}	V _{IL}	V _{IL}	Х	V_{IL}	D _{IN}	Х

NOTES:

- X can be V_{IH} or V_{IL} for address or control pins except for RY/BY#, which is either V_{OL} or V_{OH}, or High Z or D_{OUT} for data pins depending on whether or not OE# is active.
- RY/BY# output is open drain. When the WSM is ready, erase is suspended or the device is in deep power-down mode, RY/BY# will be at V_{OH} if it is tied to V_{CC} through a resistor. RY/BY# at V_{OH} is independent of OE# while a WSM operation is in progress.
- 3. RP# at GND \pm 0.2V ensures the lowest deep power-down current.
- A₀ (latched by CAS#) at V_{IL} provides the Manufacturer ID code. A₀ (latched by CAS#) at V_{IH} provides the Device ID code. All other addresses (row and column) should be set to zero.
- Commands for erase, data program, or lock-block operations can only be completed successfully when ¼p = V_{PPH1} or V_{PP} = V_{PPH2}.
- While the WSM is running, RY/BY# stays at V_{OL} until all operations are complete. RY/BY# goes to V_{OH} when the WSM is not busy or in erase suspend mode.
- RY/BY# may be at V_{OL} while the WSM is busy performing various operations (for example, a Status Register read during a program operation).
- 8. The 28F016XD shares an identical device identifier with the 28F016XS.
- Row (upper) addresses are latched via inputs A₀₋₉ on the falling edge of RAS#. Column (lower) addresses are latched via inputs A₀₋₉ on the falling edge of CAS#. Row addresses must be latched before column addresses are latched.

4.2 28F008SA—Compatible Mode Command Bus Definitions

		Fir	First Bus Cycle			Second Bus Cycle		
Command	Notes	Oper	Addr	Data ⁽⁴⁾	Oper	Addr	Data ⁽⁴⁾	
Read Array		Write	Х	xxFFH	Read	AA	AD	
Intelligent Identifier	1	Write	Х	xx90H	Read	IA	ID	
Read Compatible Status Register	2	Write	Х	xx70H	Read	X	CSRD	
Clear Status Register	3	Write	Х	xx50H				
Word Program		Write	Х	xx40H	Write	PA	PD	
Alternate Word Program		Write	Х	xx10H	Write	PA	PD	
Block Erase/Confirm		Write	Х	xx20H	Write	BA	xxD0H	
Erase Suspend/Resume		Write	X	xxB0H	Write	Х	xxD0H	

ADDRESS

DATA

 $\begin{array}{lll} AA = Array \ Address & AD = Array \ Data \\ BA = Block \ Address & CSRD = CSR \ Data \\ IA = Identifier \ Address & ID = Identifier \ Data \\ PA = Program \ Address & PD = Program \ Data \\ \end{array}$

X = Don't Care

NOTES:

- 1. Following the Intelligent Identifier command, two read operations access the manufacturer and device signature codes.
- 2. The CSR is automatically available after device enters data program, erase, or suspend operations.
- Clears CSR.3, CSR.4 and CSR.5. Also clears GSR.5 and all BSR.5, BSR.4 and BSR.2 bits. See Status Register definitions.
- 4. The upper byte of the data bus (D_{8-15}) during command writes is a "Don't Care."

4.3 28F016XD—Enhanced Command Bus Definitions

		Fir	First Bus Cycle		Second Bus Cycle		
Command	Notes	Oper	Addr	Data ⁽³⁾	Oper	Addr	Data ⁽³⁾
Read Extended Status Register	1	Write	Х	xx71H	Read	RA	GSRD BSRD
Lock Block/Confirm		Write	Х	xx77H	Write	BA	xxD0H
Upload Status Bits/Confirm	2	Write	Х	xx97H	Write	Х	xxD0H

ADDRESS

 $BA = Block \ Address \\ RA = Extended \ Register \ Address \\ PA = Program \ Address \\ GSRD = GSR \ Data \\ GSRD = GSR \ Data$

X = Don't Care

NOTES:

- 1. RA can be the GSR address or any BSR address. See Figure 4 for the Extended Status Register memory map.
- 2. Upon device power-up, all BSR lock-bits come up locked. The Upload Status Bits command must be written to reflect the actual lock-bit status.

DATA

3. The upper byte of the data bus (D_{8-15}) during command writes is a "Don't Care."

4.4 Compatible Status Register

WSMS	ESS	ES	DWS	VPPS	R	R	R
7	6	5	4	3	2	1	0

NOTES:

CSR.7 = WRITE STATE MACHINE STATUS

1 = Ready

0 = Busy

RY/BY# output or WSMS bit must be checked to determine completion of an operation (erase, erase suspend, or data program) before the appropriate Status bit (ESS, ES or DWS) is checked for success.

If DWS and ES are set to "1" during an erase

entered. Clear the CSR and attempt the

attempt, an improper command sequence was

CSR.6 = ERASE-SUSPEND STATUS

1 = Erase Suspended

0 = Erase In Progress/Completed

CSR.5 = ERASE STATUS

1 = Error In Block Erasure

0 = Successful Block Erase

operation again.

CSR.4 = DATA-WRITE STATUS

1 = Error in Data Program

0 = Data Program Successful

 $CSR.3 = V_{PP} STATUS$

1 = V_{PP} Error Detect, Operation Abort

 $0 = V_{PP} OK$

The VPPS bit, unlike an A/D converter, does not provide continuous indication of $V_{\rm PP}$ level. The WSM interrogates $V_{\rm PP}$'s level only after the Data Program or Erase command sequences have been entered, and informs the system if $V_{\rm PP}$ has not been switched on. VPPS is not guaranteed to report accurate feedback between $V_{\rm PPLK}(max)$ and $V_{\rm PPH1}(min)$, between $V_{\rm PPH1}(max)$ and $V_{\rm PPH2}(min)$ and above $V_{\rm PPH2}(max)$.

CSR.2-0 = RESERVED FOR FUTURE ENHANCEMENTS

These bits are reserved for future use; mask them out when polling the CSR.

4.5 Global Status Register

WSMS	OSS	DOS	R	R	R	R	R
7	6	5	4	3	2	1	0

GSR.7 = WRITE STATE MACHINE STATUS

1 = Ready

0 = Busy

NOTES:

RY/BY# output or WSMS bit must be checked to determine completion of an operation (block lock, suspend, Upload Status Bits, erase or data program) before the appropriate Status bit (OSS or DOS) is checked for success.

GSR.6 = OPERATION SUSPEND STATUS

1 = Operation Suspended

0 = Operation in Progress/Completed

GSR.5 = DEVICE OPERATION STATUS

1 = Operation Unsuccessful

0 = Operation Successful or Currently

GSR.4-0 = RESERVED FOR FUTURE ENHANCEMENTS

These bits are reserved for future use; mask them out when polling the GSR.

4.6 Block Status Register

BS	BLS	BOS	R	R	VPPS	VPPL	R
7	6	5	4	3	2	1	0

BSR.7 = BLOCK STATUS

1 = Ready

0 = Busy

NOTES:

RY/BY# output or BS bit must be checked to determine completion of an operation (block lock, suspend, erase or data program) before the appropriate Status bits (BOS, BLS) is checked for success.

BSR.6 = BLOCK LOCK STATUS

1 = Block Unlocked for Program/Erase

0 = Block Locked for Program/Erase

BSR.5 = BLOCK OPERATION STATUS

1 = Operation Unsuccessful

0 = Operation Successful or Currently Running

 $BSR.2 = V_{PP} STATUS$ $1 = V_{PP} Error Detect, Operation Abort$

 $0 = V_{PP} OK$

 $BSR.1 = V_{PP} LEVEL$

1 = V_{PP} Detected at 5.0V ± 10% 0 = V_{PP} Detected at 12.0V ± 5%

BSR.1 is not guaranteed to report accurate feedback between the V_{PPH1} and V_{PPH2} voltage ranges. Programs and erases with V_{PP} between V_{PPLK}(max) and V_{PPH1} (min), between V_{PPH1}(max) and V_{PPH2}(min), and above V_{PPH2}(max) produce spurious results and should not be attempted.

not be attempted.

BSR.1 was a RESERVED bit on the 28F016SA.

BSR.4,3,0 = RESERVED FOR FUTURE ENHANCEMENTS

These bits are reserved for future use; mask them out when polling the BSRs.

5.0 ELECTRICAL SPECIFICATIONS

5.1 Absolute Maximum Ratings*

Temperature Under Bias0°C to +80°C Storage Temperature-65°C to +125°C

NOTICE: This is a production datasheet. The specifications are subject to change without notice. Verify with your local Intel Sales office that you have the latest datasheet before finalizing a design.

*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

V_{CC} = 3.3V ± 0.3V Systems

Sym	Parameter	Notes	Min	Max	Units	Test Conditions
T _A	Operating Temperature, Commercial	1	0	70	°C	Ambient Temperature
V _{CC}	V _{CC} with Respect to GND		-0.2	7.0	٧	
V_{PP}	V _{PP} Supply Voltage with Respect to GND	2,3	-0.2	14.0	V	
V	Voltage on any Pin (except V_{CC}, V_{PP}) with Respect to GND	2,5	-0.5	V _{CC} + 0.5	>	
1	Current into any Non-Supply Pin	5		± 30	mA	
I _{OUT}	Output Short Circuit Current	4		100	mA	

$V_{CC} = 5.0V \pm 0.5V$ Systems

Sym	Parameter	Notes	Min	Max	Units	Test Conditions
T _A	Operating Temperature, Commercial	1	0	70	°C	Ambient Temperature
V _{CC}	V _{CC} with Respect to GND	2	-0.2	7.0	٧	
V_{PP}	V _{PP} Supply Voltage with Respect to GND	2,3	-0.2	14.0	>	
٧	Voltage on any Pin (except V _{CC} ,V _{PP}) with Respect to GND	2,5	-2.0	7.0	>	
1	Current into any Non-Supply Pin	5		± 30	mA	
I _{OUT}	Output Short Circuit Current	4		100	mA	

NOTES:

- 1. Operating temperature is for commercial product defined by this specification.
- Minimum DC voltage is -0.5V on input/output pins. During transitions, this level may undershoot to -2.0V for periods <20 ns. Maximum DC voltage on input/output pins is V_{CC} + 0.5V which, during transitions, may overshoot to V_{CC} + 2.0V for periods <20 ns.
- 3. Maximum DC voltage on V_{PP} may overshoot to +14.0V for periods <20 ns.
- 4. Output shorted for no more than one second. No more than one output shorted at a time.
- 5. This specification also applies to pins marked "NC."

5.2 Capacitance

For a 3.3V ± 0.3V System:

Sym	Parameter	Notes	Тур	Max	Units	Test Conditions
C _{IN}	Capacitance Looking into an Address/Control Pin	1	6	8	pF	$T_A = +25^{\circ}C, f = 1.0 \text{ MHz}$
C _{OUT}	Capacitance Looking into an Output Pin	1	8	12	pF	$T_A = +25^{\circ}C, f = 1.0 \text{ MHz}$
C _{LOAD}	Load Capacitance Driven by Outputs for Timing Specifications	1,2		50	pF	

For 5.0V ± 0.5V System:

	olov Ediov Gyotoliii									
Sym	Parameter	Notes	Тур	Max	Units	Test Conditions				
C _{IN}	Capacitance Looking into an Address/Control Pin	1	6	8	pF	$T_A = +25^{\circ}C$, $f = 1.0 \text{ MHz}$				
C _{OUT}	Capacitance Looking into an Output Pin	1	8	12	pF	$T_A = +25^{\circ}C$, $f = 1.0 \text{ MHz}$				
C _{LOAD}	Load Capacitance Driven by Outputs for Timing Specifications	1,2		100	pF					

NOTE:

- 1. Sampled, not 100% tested.
- $2. \ \ \, \text{To obtain iBIS models for the 28F016XD, please contact your local Intel/Distribution Sales Office.}$

5.3 Transient Input/Output Reference Waveforms

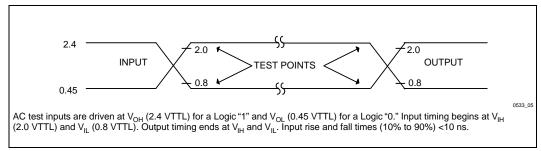


Figure 5. Transient Input/Output Reference Waveform for V_{CC} = 5.0V \pm 0.5V⁽¹⁾

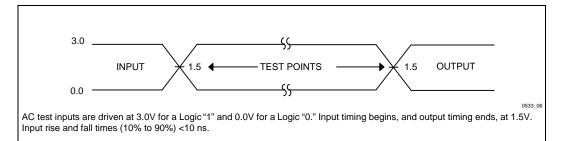


Figure 6. Transient Input/Output Reference Waveform for $V_{CC} = 3.3V \pm 0.3V^{(2)}$

NOTES:

- 1. Testing characteristics for 28F016XD-85.
- 2. Testing characteristics for 28F016XD-95.

5.4 DC Characteristics

 V_{CC} = 3.3V ± 0.3V, T_A = 0°C to +70°C 3/5# = Pin Set High for 3.3V Operations

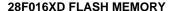
Sym	Parameter	Notes	Min	Тур	Max	Unit	Test Condition
I _{CC} 1	V _{CC} Word Read Current	1,4,5		50	70	mA	$\begin{aligned} & V_{CC} = V_{CC} \; Max \\ & RAS\#, \; CAS\# = V_{IL} \\ & RAS\#, \; CAS\#, \; Addr. \; Cycling \; @ \\ & t_{RC} = min \\ & I_{OUT} = 0 \; mA \\ & Inputs = TTL \; or \; CMOS \end{aligned}$
I _{CC} 2	V _{CC} Standby Current	1,5		1	4	mA	$V_{CC} = V_{CC}$ Max RAS#, CAS#, RP# = V_{IH} WP#, 3/5# = V_{IL} or V_{IH}
I _{CC} 3	V _{CC} RAS#-Only Refresh Current	1,5		50	80	mA	$\begin{aligned} & V_{CC} = V_{CC} \text{ Max} \\ & CAS\# = V_{IH} \\ & RAS\# = V_{IL} \\ & RAS\#, \text{ Addr. Cycling } @ \\ & t_{RC} = \text{min} \\ & \text{Inputs} = TTL \text{ or CMOS} \end{aligned}$
I _{CC} 4	V _{CC} Fast Page Mode Word Read Current	1,4,5		40	70	mA	$V_{CC} = V_{CC}$ Max RAS#, CAS# = V_{IL} CAS#, Addr. Cycling @ t_{PC} = min I_{OUT} = 0 mA Inputs = V_{IL} or V_{IH}
I _{CC} 5	V _{CC} Standby Current	1,5		70	130	μА	$V_{CC} = V_{CC}$ Max RAS# CAS# RP# = $V_{CC} \pm 0.2V$ WP#, 3/5# = $V_{CC} \pm 0.2V$ or GND $\pm 0.2V$
I _{CC} 6	V _{CC} CAS#-before- RAS# Refresh Current	1,5		40	15	mA	$V_{CC} = V_{CC}$ Max CAS#, RAS# = V_{IL} CAS#, RAS#, Addr. Cycling @ t_{RC} = min Inputs = TTL or CMOS
I _{CC} 7	V _{CC} Standby Current (Self Refresh Mode)	1,5		40	10	mA	$V_{CC} = V_{CC}$ Max RAS#, CAS# = V_{IL} $I_{OUT} = 0$ mA Inputs = V_{IL} or V_{IH}
ILI	Input Load Current	1			± 1	μA	$V_{CC} = V_{CC} Max$ $V_{IN} = V_{CC} or GND$
I _{LO}	Output Leakage Current	1			± 10	μA	$V_{CC} = V_{CC} Max$ $V_{OUT} = V_{CC} or GND$
I _{CCD}	V _{CC} Deep Power- Down Current	1		2	10	μΑ	RP# = GND ± 0.2V

5.4 DC Characteristics (Continued) $V_{CC} = 3.3V \pm 0.3V$, $T_A = 0^{\circ}C$ to +70°C 3/5# = Pin Set High for 3.3V Operations

Sym	Parameter	Notes	Min	Тур	Max	Unit	Test Condition
I _{CCW}	V _{CC} Word Program Current	1,6		8	12	mA	V _{PP} = 12.0V ± 5% Program in Progress
				8	17	mA	V _{PP} = 5.0V ± 10% Program in Progress
I _{CCE}	V _{CC} Block Erase Current	1,6		6	12	mA	V _{PP} = 12.0V ± 5% Block Erase in Progress
				9	17	mA	V _{PP} = 5.0V ± 10% Block Erase in Progress
I _{CCES}	V _{CC} Erase Suspend Current	1,2		1	4	mA	RAS#, CAS# = V _{IH} Block Erase Suspended
I _{PPS}	V _{PP} Standby/Read	1		± 1	± 10	μA	$V_{PP} \le V_{CC}$
	Current			30	200	μA	$V_{PP} > V_{CC}$
I _{PPD}	V _{PP} Deep Power- Down Current	1		0.2	5	μA	RP# = GND ± 0.2V
I _{PPW}	V _{PP} Word Program Current	1,6		10	15	mA	V _{PP} = 12.0V ± 5% Program in Progress
				15	25	mA	V _{PP} = 5.0V ± 10% Program in Progress
I _{PPE}	V _{PP} Block Erase Current	1,6		4	10	mA	V _{PP} = 12.0V ± 5% Block Erase in Progress
				14	20	mA	V _{PP} = 5.0V ± 10% Block Erase in Progress
I _{PPES}	V _{PP} Erase Suspend Current	1		30	200	μA	Block Erase Suspended
V_{IL}	Input Low Voltage	6	-0.3		0.8	V	
V _{IH}	Input High Voltage	6	2.0		V _{CC} + 0.3	V	
V _{OL}	Output Low Voltage	6			0.4	V	$V_{CC} = V_{CC} Min$ $I_{OL} = 4.0 mA$
V _{OH1}	Output High Voltage	6	2.4			V	$V_{CC} = V_{CC} \text{ Min}$ $I_{OH} = -2.0 \text{ mA}$
V _{OH2}		6	V _{CC} - 0.2			V	$V_{CC} = V_{CC} \text{ Min}$ $I_{OH} = -100 \mu\text{A}$
V _{PPLK}	V _{PP} Erase/Program Lock Voltage	3,6	0.0		1.5	V	
V _{PPH} 1	V _{PP} during Program/ Erase Operations	3	4.5	5.0	5.5	V	
V _{PPH} 2	V _{PP} during Program/ Erase Operations	3	11.4	12.0	12.6	V	
V_{LKO}	V _{CC} Erase/Program Lock Voltage		2.0			V	

NOTES:

- 1. All currents are in RMS unless otherwise noted. Typical values at $V_{CC} = 3.3V$, $V_{PP} = 12.0V$ or 5.0V, $T = +25^{\circ}C$.
- 2. ICCES is specified with the device de-selected. If the device is read while in erasesuspend mode, current draw is the sum of ICCES and ICC1/ICC4.
- 3. Block erases, word programs and lock block operations are inhibited when V_{PP} = V_{PPLK} and not guaranteed in the ranges between V_{PPLK(max)} and V_{PPH1(min)}, between V_{PPH1(max)} and V_{PPH2(min)}, and above V_{PPH2(max)}.
- 4. Automatic Power Saving (APS) reduces I_{CC1} and I_{CC4} to 3.0 mA typical in static operation.
- 5. CMOS inputs are either V_{CC} \pm 0.2V or GND \pm 0.2V. TTL inputs are either V_{IL} or V_{IH}.
- 6. Sampled, but not 100% tested. Guaranteed by design.


5.5 DC Characteristics $V_{CC} = 5.0V \pm 0.5V$, $T_A = 0^{\circ}C$ to +70°C 3/5# = Pin Set Low for 5.0V Operations

Sym	Parameter	Notes	Min	Тур	Max	Unit	Test Condition
I _{CC} 1	V _{CC} Word Read Current	1,4,5		90	120	mA	$\begin{aligned} & V_{CC} = V_{CC} \; Max \\ & RAS\#, \; CAS\# = V_{IL} \\ & RAS\#, \; CAS\#, \; Addr. \; Cycling \; @ \\ & t_{RC} = min \\ & I_{OUT} = 0 \; mA \\ & Inputs = TTL \; or \; CMOS \end{aligned}$
I _{CC} 2	V _{CC} Standby Current	1,5		2	4	mA	$V_{CC} = V_{CC}$ Max RAS#, CAS#, RP# = V_{IH} WP#, 3/5# = V_{IL} or V_{IH}
I _{CC} 3	V _{CC} RAS#-Only Refresh Current	1,5		90	145	mA	$\begin{split} & V_{CC} = V_{CC} \text{ Max} \\ & CAS\# = V_{IH} \\ & RAS\# = V_{IL} \\ & RAS\#, \text{Addr. Cycling } @ \\ & t_{RC} = \text{min} \\ & \text{Inputs} = \text{TTL or CMOS} \end{split}$
I _{CC} 4	V _{CC} Fast Page Mode Word Read Current	1,4,5		80	130	mA	$\begin{aligned} & V_{CC} = V_{CC} \; Max \\ & RAS\#, \; CAS\# = V_{IL} \\ & CAS\#, \; Addr. \; Cycling \; @ \\ & t_{PC} = min \\ & I_{OUT} = 0 \; mA \\ & Inputs = V_{IL} \; or \; V_{IH} \end{aligned}$
I _{CC} 5	V _{CC} Standby Current	1,5		70	130	μА	$V_{CC} = V_{CC} \text{ Max}$ RAS#,CAS#,RP# = $V_{CC} \pm 0.2V$ WP#, 3/5# = $V_{CC} \pm 0.2V$ or GND $\pm 0.2V$
I _{CC} 6	V _{CC} CAS#-before- RAS# Refresh Current	1,5		50	15	mA	$\begin{aligned} & V_{CC} = V_{CC} \; Max \\ & CAS\#, RAS\# = V_{IL} \\ & CAS\#, RAS\#, Addr. \; Cycling \; @ \\ & t_{RC} = min \\ & Inputs = TTL \; or \; CMOS \end{aligned}$
I _{CC} 7	V _{CC} Standby Current (Self Refresh Mode)	1,5		50	10	mA	$\begin{aligned} & V_{CC} = V_{CC} \; Max \\ & RAS\#, CAS\# = V_{IL} \\ & I_{OUT} = 0 \; mA \\ & Inputs = V_{IL} \; or \; V_{IH} \end{aligned}$
ILI	Input Load Current	1			± 1	μA	$V_{CC} = V_{CC} Max$ $V_{IN} = V_{CC} or GND$
I _{LO}	Output Leakage Current	1			± 10	μA	$V_{CC} = V_{CC} Max$ $V_{OUT} = V_{CC} \text{ or GND}$
I _{CCD}	V _{CC} Deep Power-Down Current	1		2	10	μA	RP# = GND ± 0.2V

5.5 DC Characteristics (Continued) $V_{CC} = 5.0V \pm 0.5V$, $T_A = 0$ °C to +70°C 3/5# = Pin Set Low for 5.0V Operations

Sym	Parameter	Notes	Min	Тур	Max	Unit	Test Condition
I _{CCW}	V _{CC} Word Program	1,6		25	35	mA	V _{PP} = 12.0V ± 5%
	Current						Word Program in Progress
				25	40	mA	$V_{PP} = 5.0V \pm 10\%$
							Word Program in Progress
I _{CCE}	V _{CC} Block Erase Current	1,6		18	25	mA	$V_{PP} = 12.0V \pm 5\%$
							Block Erase in Progress
				20	30	mA	$V_{PP} = 5.0V \pm 10\%$
							Block Erase in Progress
ICCES	V _{CC} Erase Suspend	1,2		2	4	mA	RAS#, CAS# = V _{IH}
	Current						Block Erase Suspended
I_{PPS}	V _{PP} Standby/Read	1		± 1	± 10	μΑ	$V_{PP} \le V_{CC}$
	Current			30	200	μΑ	$V_{PP} > V_{CC}$
I _{PPD}	V _{PP} Deep Power-Down Current	1		0.2	5	μΑ	RP# = GND ± 0.2V
I _{PPW}	V _{PP} Word Program	1,6		7	12	mA	$V_{PP} = 12.0V \pm 5\%$
	Current						Word Program in Progress
				17	22	mA	$V_{PP} = 5.0V \pm 10\%$
							Word Program in Progress
I_{PPE}	V _{PP} Block Erase Current	1,6		5	10	mA	$V_{PP} = 12.0V \pm 5\%$
							Block Erase in Progress
				16	20	mA	$V_{PP} = 5.0V \pm 10\%$
							Block Erase in Progress
I _{PPES}	V _{PP} Erase Susp.Current	1		30	200	μΑ	Block Erase Suspended
V_{IL}	Input Low Voltage	6	-0.5		0.8	V	
V_{IH}	Input High Voltage	6	2.0		V _{CC} + 0.5	>	
V_{OL}	Output Low Voltage	6			0.45	V	$V_{CC} = V_{CC}$ Min
							$I_{OL} = 5.8 \text{ mA}$
V_{OH1}	Output High Voltage	6	0.85			V	$V_{CC} = V_{CC} Min$
			V _{CC}				$I_{OH} = -2.5 \text{ mA}$
V_{OH2}		6	V _{CC} -			V	V _{CC} = V _{CC} Min
			0.4				$I_{OH} = -100 \mu A$
V_{PPLK}	V _{PP} Erase/Program Lock Voltage	3,6	0.0		1.5	>	
V _{PPH} 1	V _{PP} during Program/Erase Operations	3	4.5	5.0	5.5	V	
V _{PPH} 2	V _{PP} during Program/Erase Operations	3	11.4	12.0	12.6	٧	
V_{LKO}	V _{CC} Erase/Program Lock Voltage		2.0			V	

NOTES:

- 1. All currents are in RMS unless otherwise noted. Typical values at $V_{CC} = 5.0V$, $V_{PP} = 12.0V$ or 5.0V, $T = +25^{\circ}C$. These currents are specified for a CMOS rise/fall time (10% to 90%) of <5 ns and a TTL rise/fall time of <10 ns.
- I_{CCES} is specified with the device de-selected. If the device is read while in EraseSuspend mode, current draw is the sum
 of I_{CCES} and I_{CC1}/I_{CC4}.
- 3. Block erases, word programs and lock block operations are inhibited when V_{PP} = V_{PPLK} and not guaranteed in the ranges between V_{PPLK(max)} and V_{PPH1(min)}, between V_{PPH1(max)} and V_{PPH2(min)}, and above V_{PPH2(max)}.
- 4. Automatic Power Saving (APS) reduces I_{CC1} and I_{CC4} to 1 mA typical in static operation.
- 5. CMOS inputs are either $V_{CC} \pm 0.2V$ or GND $\pm 0.2V$. TTL inputs are either V_{IL} or V_{IH} .
- 6. Sampled, not 100% tested. Guaranteed by design.

5.6 AC Characteristics(11) $V_{CC} = 3.3V \pm 0.3V$, $T_A = 0$ °C to +70°C

Read, Program, Read-Modify-Program and Refresh Cycles (Common Parameters)

	Versions		28F01	6XD-95	Units
Sym	Parameter	Notes	Min	Max	
t _{RP}	RAS# precharge time		10		ns
t _{CP}	CAS# precharge time		15		ns
t _{ASR}	Row address set-up time	9	0		ns
t _{RAH}	Row address hold time	9	15		ns
t _{ASC}	Column address set-up time	9	0		ns
tcah	Column address hold time	9	20		ns
t _{AR}	Column address hold time referenced to RAS#	3,9	35		ns
t _{RAD}	RAS# to column address delay time	8,9	15	15	ns
t _{CRP}	CAS# to RAS# precharge time		10		ns
t _{OED}	OE# to data delay	10	30		ns
t _{DZO}	OE# delay time from data-in	10	0		ns
t _{DZC}	CAS# delay time from data-in	10	0		ns
t _T	Transition time (rise and fall)	10	2	4	ns

Read Cycle

	Versions		28F010	Units	
Sym	Parameter	Notes	Min	Max	
t _{RC(R)}	Random read cycle time		105		ns
t _{RAS(R)}	RAS# pulse width (reads)		95	∞	ns
t _{CAS(R)}	CAS# pulse width (reads)		45	∞	ns
t _{RCD(R)}	RAS# to CAS# delay time (reads)	1	15	50	ns
t _{RSH(R)}	RAS# hold time (reads)		30		ns
t _{CSH(R)}	CAS# hold time (reads)		95		ns
t _{RAC}	Access time from RAS#	1,8		95	ns
t _{CAC}	Access time from CAS#	1,2		40	ns
t _{AA}	Access time from column address	8		75	ns
t _{OEA}	OE# access time			40	ns

Read Cycle (Continued)

	Versions		28F016XD-95		
Sym	Parameter	Notes	Min	Max	
t _{ROH}	RAS# hold time referenced to OE#		40		ns
t _{RCS}	Read command setup time		5		ns
t _{RCH}	Read command hold time referenced to CAS#	6,10	0		ns
t _{RRH}	Read command hold time referenced to RAS#	6,10	0		ns
t _{RAL}	Column address to RAS# lead time	9	15		ns
t _{CAL}	Column address to CAS# lead time	9	75		ns
t _{CLZ}	CAS# to output in Low-Z		0		ns
t _{OH}	Output data hold time		0		ns
t _{OHO}	Output data hold time from OE#		0		ns
t _{OFF}	Output buffer turn-off delay	4		30	ns
t _{OEZ}	Output buffer turn off delay time from OE#			30	ns
t _{CDD}	CAS# to data-in delay time		30		ns

Write Cycle

	Versions		28F01	6XD-95	Units
Sym	Parameter	Notes	Min	Max	
t _{RC(W)}	Random write cycle time		90		ns
t _{RAS(W)}	RAS# pulse width (writes)		80	∞	ns
t _{CAS(W)}	CAS# pulse width (writes)		65	∞	ns
t _{RCD(W)}	RAS# to CAS# delay time (writes)	1	15	15	ns
t _{RSH(W)}	RAS# hold time (writes)		65		ns
t _{CSH(W)}	CAS# hold time (writes)		80		ns
t _{WCS}	Write command set-up time	5	0		ns
t _{WCH}	Write command hold time		15		ns
t _{WCR}	Write command hold time referenced to RAS#	3	30		ns
t _{WP}	Write command pulse width		15		ns
t _{RWL}	Write command to RAS# lead time		65		ns
t _{CWL}	Write command to CAS# lead time		65		ns
t _{DS}	Data-in set-up time	7,9	0		ns
t _{DH}	Data-in hold time	7,9	15		ns
t _{DHR}	Data-in hold time referenced to RAS#	3,9	30		ns

Read-Modify-Write Cycle

	Versions	28F01	Units		
Sym	Parameter	Notes	Min	Max	
t _{RWC}	Read-modify-write cycle time	10	200		ns
t _{RWD}	RAS# to WE# delay time	5,10	125		ns
t _{CWD}	CAS# to WE# delay time	5,10	75		ns
t _{AWD}	Column address to WE# delay time	5,9,10	105		ns
t _{OEH}	OE# command hold time	10	15		ns

Fast Page Mode Cycle

	Versions			28F016XD-95		
Sym	Parameter	Notes	Min	Max		
t _{PC(R)}	Fast page mode cycle time (reads)		75		ns	
t _{PC(W)}	Fast page mode cycle time (writes)		80		ns	
t _{RASP(R)}	RAS# pulse width (reads)		95	∞	ns	
t _{RASP(W)}	RAS# pulse width (writes)		80	~	ns	
t _{CPA}	Access time from CAS# precharge			85	ns	
t _{CPW}	WE# delay time from CAS# precharge	10	0		ns	
t _{CPRH(R)}	RAS# hold time from CAS# precharge (reads)		75		ns	
t _{CPRH(W)}	RAS# hold time from CAS# precharge (writes)		80		ns	

Fast Page Mode Read-Modify-Write Cycle

	Versions		28F016XD-95		Units
Sym	Parameter	Notes	Min	Max	
t _{PRWC}	Fast page mode read-modify-write cycle time	10	170		ns

Refresh Cycle

Versions			28F016XD-95		Units
Sym	Parameter	Notes	Min	Max	
t _{CSR}	CAS# set-up time (CAS#-before-RAS# refresh)	10	10		ns
t _{CHR}	CAS# hold time (CAS#-before-RAS# refresh)	10	10		ns
t _{WRP}	WE# setup time (CAS#-before-RAS# refresh)	10	10		ns
t _{WRH}	WE# hold time (CAS#-before-RAS# refresh)	10	10		ns
t _{RPC}	RAS# precharge to CAS# hold time	10	10		ns
t _{RASS}	RAS# pulse width (self-refresh mode)	10	0		ns
t _{RPS}	RAS# precharge time (self-refresh mode)	10	10		ns
t _{CPN}	CAS# precharge time (self-refresh mode)	10	10		ns
t _{CHS}	CAS# hold time (self-refresh mode)	10	0		ns

Refresh

	Versions		28F016XD-95		Units
Sym	Parameter	Notes	Min	Max	
t _{REF}	Refresh period	10		∞	ms

Misc. Specifications

Versions		28F010	6XD-95	Units
Parameter	Notes	Min	Max	
RP# high to RAS# going low	10	480		ns
RP# set-up to WE# going low	10	480		ns
V _{PP} set-up to CAS# high at end of write cycle	10	100		ns
WE# high to RY/BY# going low	10		100	ns
RP# hold from valid status register data and RY/BY# high	10	0		ns
V _{PP} hold from valid status register data and RY/BY# high	10	0		ns

NOTES:

- 1. Operation within the t_{RCD(max)} limit insures that t_{RAC(max)} can be met. t_{RCD(max)} is specified as a reference point.
- 2. Assumes that t_{RCD} ≥t_{RCD(max)}.
- t_{AR}, t_{WCR}, t_{DHR} are referenced to t_{RAD(max)}.
- 4. t_{OFF(max)} defines the time at which the output achieves the open circuit condition and is not referenced to V_{OH} or V_{OL}.
- 5. t_{WCS} , t_{RWD} , t_{CWD} and t_{AWD} are non restrictive operating parameters. They are included in the datasheet as electrical characteristics only. If $t_{WCS} \ge t_{WCS(min)}$ the cycle is an early write cycle and the data output will remain high impedance for the duration of the cycle. If $t_{CWD} \ge t_{CWD(min)}$, $t_{RWD} \ge t_{RWD(min)}$, $t_{RWD} \ge t_{RWD(min)}$, then the cycle is a read-write cycle and the data output will contain the data read from the selected address. If neither of the above conditions are satisfied, the condition of the data out is indeterminate.
- 6. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- These parameters are referenced to the CAS# leading edge in early write cycles and to the WE# leading edge in readwrite cycles.
- 8. Operation within the t_{RAD(max)} limit ensures that t_{RAC(max)} can be met, t_{RAD(max)} is specified as a reference point only. If t_{RAD} is greater than the specified t_{RAD(max)} limit, then the access time is controlled by t_{AA}.
- 9. Refer to command definition tables for valid address and data values.
- 10. Sampled, but not 100% tested. Guaranteed by design.
- 11. See AC Input/Output Reference Waveforms for timing measurements.

5.7 AC Characteristics(11) $V_{CC} = 5.0V \pm 0.5V$, $T_A = 0$ °C to +70°C

Read, Write, Read-Modify-Write and Refresh Cycles (Common Parameters)

Versions		28F01	6XD-85	Units	
Sym	Parameter	Notes	Min	Max	
t _{RP}	RAS# precharge time		10		ns
t _{CP}	CAS# precharge time		15		ns
t _{ASR}	Row address set-up time	9	0		ns
t _{RAH}	Row address hold time	9	15		ns
t _{ASC}	Column address set-up time	9	0		ns
t _{CAH}	Column address hold time	9	20		ns
t _{AR}	Column address hold time referenced to RAS#	3,9	35		ns
t _{RAD}	RAS# to column address delay time	8,9	15	15	ns
t _{CRP}	CAS# to RAS# precharge time		10		ns
t _{OED}	OE# to data delay	10	30		ns
t _{DZO}	OE# delay time from data-in	10	0		ns
t _{DZC}	CAS# delay time from data-in	10	0		ns
t _T	Transition time (rise and fall)	10	2	4	ns

Read Cycle

Versions		28F01	6XD-85	Units	
Sym	Parameter	Notes	Min	Max	
t _{RC(R)}	Random read cycle time		95		ns
t _{RAS(R)}	RAS# pulse width (reads)		85	∞	ns
t _{CAS(R)}	CAS# pulse width (reads)		35	∞	ns
t _{RCD(R)}	RAS# to CAS# delay time (reads)	1	15	50	ns
t _{RSH(R)}	RAS# hold time (reads)		30		ns
t _{CSH(R)}	CAS# hold time (reads)		85		ns
t _{RAC}	Access time from RAS#	1,8		85	ns
t _{CAC}	Access time from CAS#	1,2		35	ns
t _{AA}	Access time from column address	8		65	ns
t _{OEA}	OE# access time			35	ns
t _{ROH}	RAS# hold time referenced to OE#		35		ns
t _{RCS}	Read command setup time		5		ns
t _{RCH}	Read command hold time referenced to CAS#	6,10	0		ns
t _{RRH}	Read command hold time referenced to RAS#	6,10	0		ns
t _{RAL}	Column address to RAS# lead time	9	15		ns
t _{CAL}	Column address to CAS# lead time	9	65		ns
t _{CLZ}	CAS# to output in Low-Z	10	0		ns
t _{OH}	Output data hold time	10	0		ns
t _{OHO}	Output data hold time from OE#	10	0		ns
t _{OFF}	Output buffer turn-off delay	4,10		30	ns
t _{OEZ}	Output buffer turn off delay time from OE#	10		30	ns
t _{CDD}	CAS# to data-in delay time	10	30		ns

Write Cycle

Versions		28F016X		Units	
Sym	Parameter	Notes	Min	Max	
t _{RC(W)}	Random write cycle time		75		ns
t _{RAS(W)}	RAS# pulse width (writes)		65	∞	ns
t _{CAS(W)}	CAS# pulse width (writes)		50	∞	ns
t _{RCD(W)}	RAS# to CAS# delay time (writes)	1	15	15	ns
t _{RSH(W)}	RAS# hold time (writes)		50		ns
t _{CSH(W)}	CAS# hold time (writes)		65		ns
t _{WCS}	Write command set-up time	5	0		ns
t _{WCH}	Write command hold time		15		ns
t _{WCR}	Write command hold time referenced to RAS#	3	30		ns
t _{WP}	Write command pulse width		15		ns
t _{RWL}	Write command to RAS# lead time		50		ns
t _{CWL}	Write command to CAS# lead time		50		ns
t _{DS}	Data-in set-up time	7,9	0		ns
t _{DH}	Data-in hold time	7,9	15		ns
t _{DHR}	Data-in hold time referenced to RAS#	3,9	30		ns

Read-Modify-Write Cycle

Versions		28F016XD-85		Units	
Sym	Parameter	Notes	Min	Max	
t _{RWC}	Read-modify-write cycle time	10	175		ns
t _{RWD}	RAS# to WE# delay time	5,10	115		ns
t _{CWD}	CAS# to WE# delay time	5,10	65		ns
t _{AWD}	Column address to WE# delay time	5,9,10	100		ns
t _{OEH}	OE# command hold time	10	15		ns

Fast Page Mode Cycle

Versions		Versions 28F016XD-85		Units	
Sym	Parameter	Notes	Min	Max	
t _{PC(R)}	Fast page mode cycle time (reads)		65		ns
t _{PC(W)}	Fast page mode cycle time (writes)		65		ns

Fast Page Mode Cycle Continued

Versions			28F016XD-85		Units
Sym	Parameter	Notes	Min	Max	
t _{RASP(R)}	RAS# pulse width (reads)		85	∞	ns
t _{RASP(W)}	RAS# pulse width (writes)		65	∞	ns
t _{CPA}	Access time from CAS# precharge			70	ns
t _{CPW}	WE# delay time from CAS# precharge	10	0		ns
t _{CPRH(R)}	RAS# hold time from CAS# precharge (reads)		65		ns
t _{CPRH(W)}	RAS# hold time from CAS# precharge (writes)		65		ns

Fast Page Mode Read-Modify-Write Cycle

	Versions			6XD-85	Units
Sym	Parameter	Notes	Min	Max	
t _{PRWC}	Fast page mode read-modify-write cycle time	10	145		ns

Refresh Cycle

Versions			28F016XD-85		Units
Sym	Parameter	Notes	Min	Max	
t _{CSR}	CAS# set-up time (CAS#-before-RAS# refresh)	10	10		ns
t _{CHR}	CAS# hold time (CAS#-before-RAS# refresh)	10	10		ns
t _{WRP}	WE# setup time (CAS#-before-RAS# refresh)	10	10		ns
t _{WRH}	WE# hold time (CAS#-before-RAS# refresh)	10	10		ns
t _{RPC}	RAS# precharge to CAS# hold time	10	10		ns
t _{RASS}	RAS# pulse width (self-refresh mode)	10	0		ns
t _{RPS}	RAS# precharge time (self-refresh mode)	10	10		ns
t _{CPN}	CAS# precharge time (self-refresh mode)	10	10		ns
t _{CHS}	CAS# hold time (self-refresh mode)	10	0		ns

Refresh

Versions			28F016XD-85		Units
Sym	Parameter	Notes	Min	Max	
t _{REF}	Refresh period	10		∞	ms

Misc. Specifications

Versions			28F016XD-85	
Parameter	Notes	Min	Max	
RP# high to RAS# going low	10	300		ns
RP# set-up to WE# going low	10	300		ns
V _{PP} set-up to CAS# high at end of write cycle	10	100		ns
WE# high to RY/BY# going low	10		100	ns
RP# hold from valid status register data and RY/BY# high	10	0		ns
V _{PP} hold from valid status register data and RY/BY# high	10	0		ns

NOTES:

- $1. \quad \text{Operation within the $t_{RCD(max)}$ limit insures that $t_{RAC(max)}$ can be met. $t_{RCD(max)}$ is specified as a reference point.}$
- Assumes that t_{RCD}≥t_{RCD(max)}.
- 3. t_{AR} , t_{WCR} , t_{DHR} are referenced to $t_{RAD(max)}$.
- 4. $t_{OFF(max)}$ defines the time at which the output achieves the open circuit condition and is not referenced to V_{OH} or V_{OL} .
- 5. t_{WCS} , t_{RWD} , t_{CWD} and t_{AWD} are non restrictive operating parameters. They are included in the datasheet as electrical characteristics only. If $t_{WCS} \ge t_{WCS(min)}$ the cycle is an early write cycle and the data output will remain high impedance for the duration of the cycle. If $t_{CWD} \ge t_{CWD(min)}$, $t_{RWD} \ge t_{RWD(min)}$, $t_{AWD} \ge t_{AWD(min)}$, then the cycle is a read-write cycle and the data output will contain the data read from the selected address. If neither of the above conditions are satisfied, the condition of the data out is indeterminate.
- 6. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- These parameters are referenced to the CAS# leading edge in early write cycles and to the WE# leading edge in readwrite cycles.
- 8. Operation within the t_{RAD(max)} limit ensures that t_{RAC(max)} can be met, t_{RAD(max)} is specified as a reference point only. If t_{RAD} is greater than the specified t_{RAD(max)} limit, then the access time is controlled by t_{AA}.
- 9. Refer to command definition tables for valid address and data values.
- 10. Sampled, but not 100% tested. Guaranteed by design.
- 11. See AC Input/Output Reference Waveforms for timing measurements.

5.8 AC Waveforms

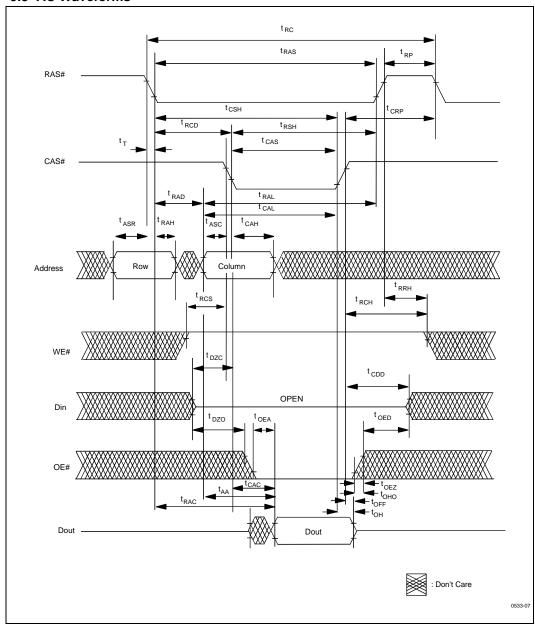


Figure 7. AC Waveforms for Read Operations

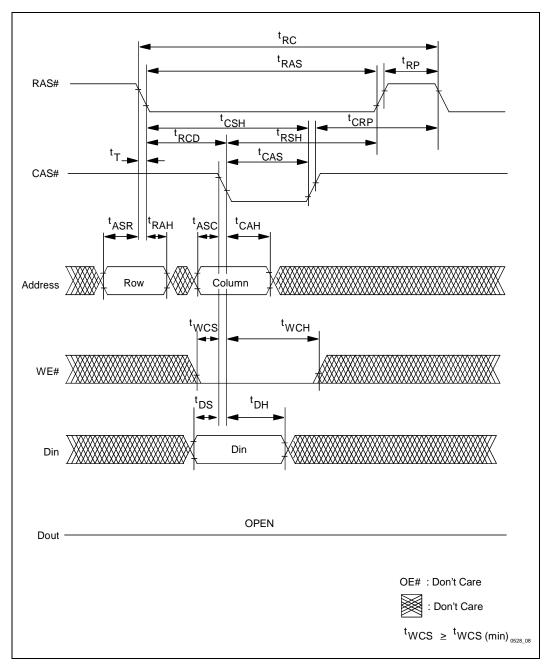


Figure 8. AC Waveforms for Early Write Operations

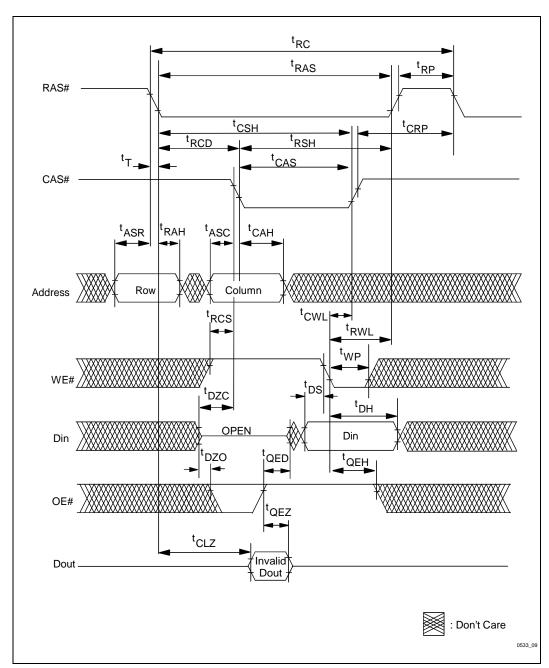


Figure 9. AC Waveforms for Delayed Write Operations

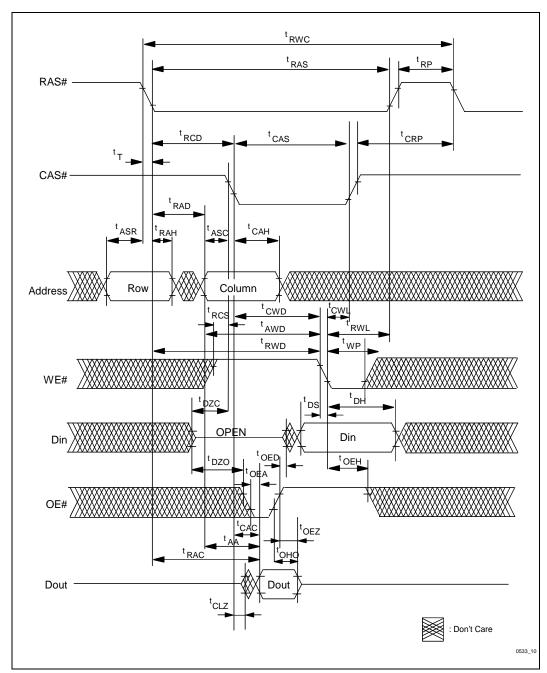


Figure 10. AC Waveforms for Read-Modify-Write Operations

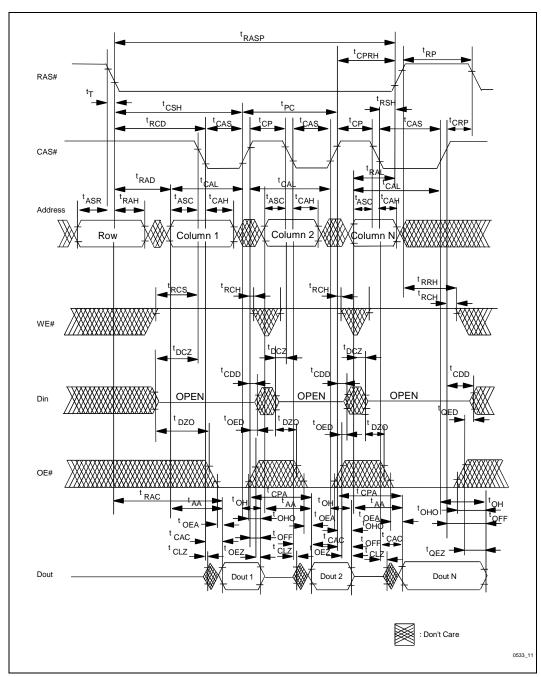


Figure 11. AC Waveforms for Fast Page Mode Read Operations

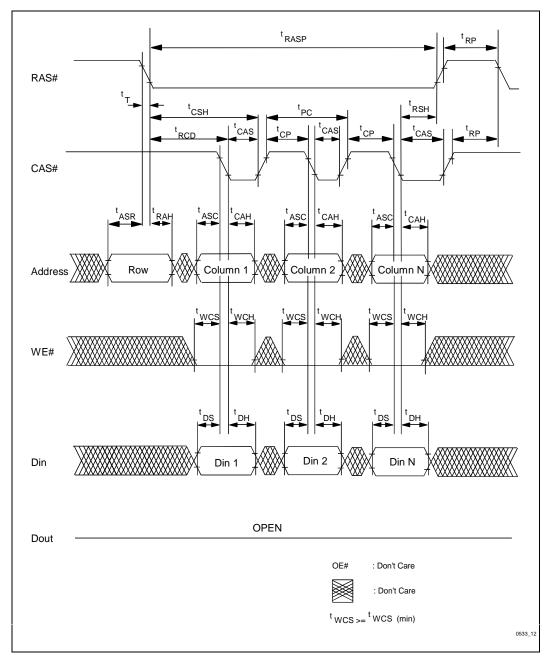


Figure 12. AC Waveforms for Fast Page Mode Early Write Operations

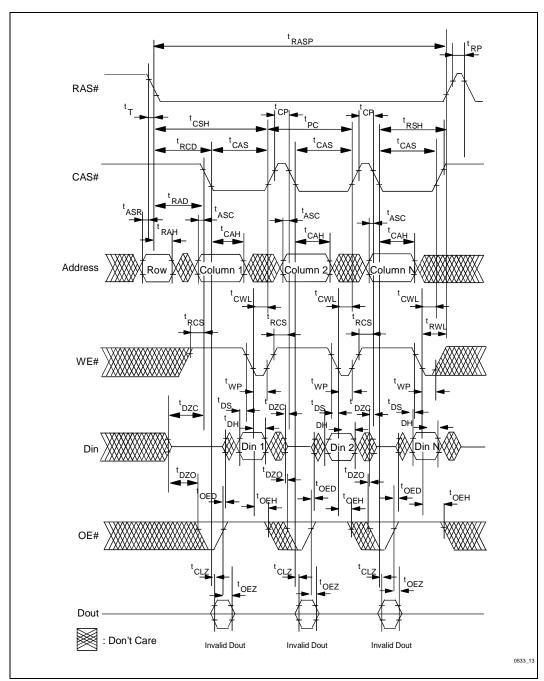


Figure 13. AC Waveforms for Fast Page Mode Delayed Write Operations

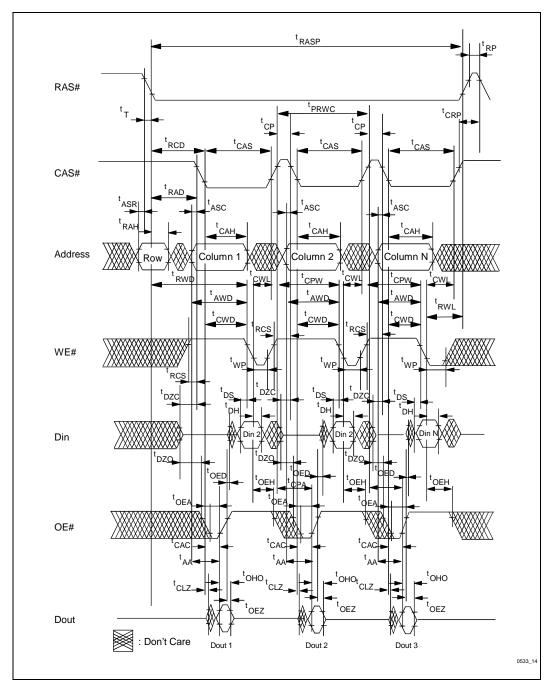


Figure 14. AC Waveforms for Fast Page Mode Read-Modify-Write Operations

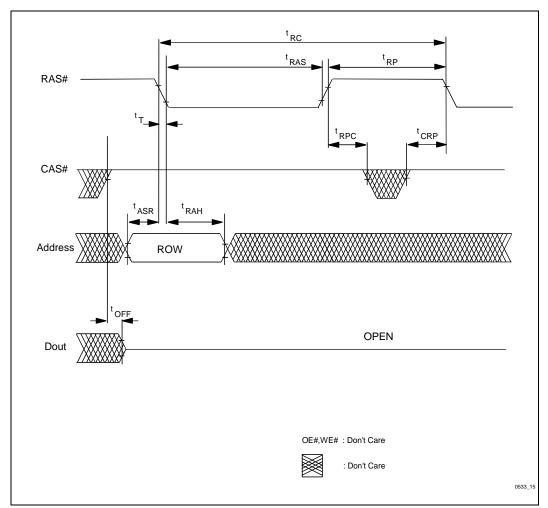


Figure 15. AC Waveforms for RAS#-Only Refresh Operations

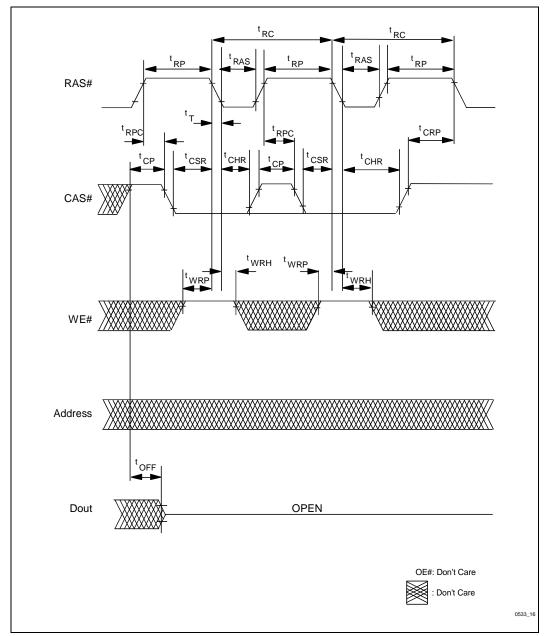


Figure 16. AC Waveforms for CAS#-before-RAS# Refresh Operations

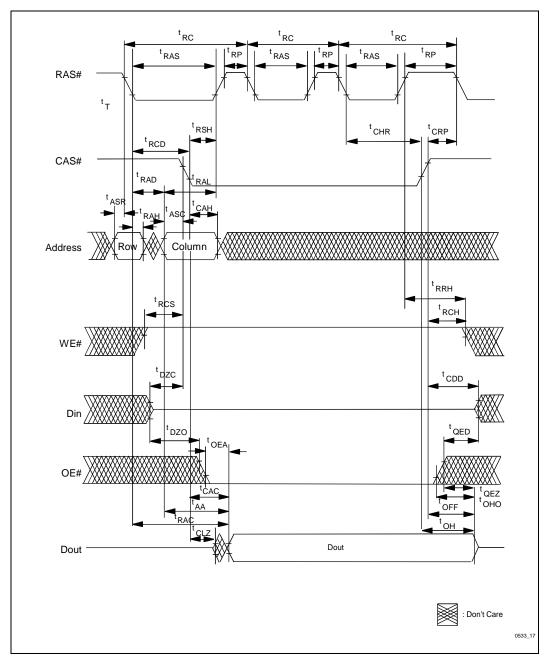


Figure 17. AC Waveforms for Hidden Refresh Operations

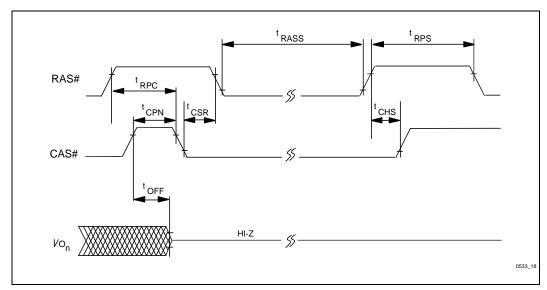


Figure 18. AC Waveforms for Self-Refresh Operations

5.9 Power-Up and Reset Timings

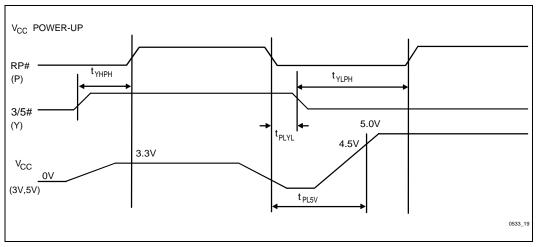


Figure 19. V_{CC} Power-Up and RP# Reset Waveforms

Symbol	Parameter	Notes	Min	Max	Units
t _{PLYL}	RP# Low to 3/5# Low (High)		0		μs
t _{PLYH}					
t _{YLPH}	3/5# Low (High) to RP# High		0		μs
t _{YHPH}					
t _{PL5V} t _{PL3V}	RP# Low to V_{CC} at 4.5V (Minimum) RP# Low to V_{CC} at 3.0V (Min) or 3.6V (Max)	2	0		μs

NOTES:

For Read Timings following Reset, see sections 5.6 and 5.7.

- 1. The t_{YLPH} and/or t_{YHPH} times must be strictly followed to guarantee all other read and write specifications for the 28F016XD
- 2. The power supply may start to switch concurrently with RP# going low.

5.10 Erase and Word Program Performance(3,4)

 V_{CC} = 3.3V ± 0.3V, V_{PP} = 5.0V ± 0.5V, T_A = 0°C to +70°C

Symbol	Parameter	Notes	Min	Typ ⁽¹⁾	Max	Units
t _{WHRH} 1	Word Program Time	2,5	TBD	35.0	TBD	μs
t _{WHRH} 3	Block Program Time	2,5	TBD	1.2	TBD	sec
	Block Erase Time	2,5	TBD	1.4	TBD	sec
	Erase Suspend Latency Time to Read		1.0	12.0	75.0	μs

 V_{CC} = 3.3V ± 0.3V, V_{PP} = 12.0V ± 0.6V, T_A = 0°C to +70°C

Symbol	Parameter	Notes	Min	Typ ⁽¹⁾	Max	Units
t _{WHRH} 1	Word Program Time	2,5	5	9	TBD	μs
t _{WHRH} 3	Block Program Time	2,5	TBD	0.3	1.0	sec
	Block Erase Time	2	0.3	0.8	10	sec
	Erase Suspend Latency Time to Read		1.0	9.0	55.0	μs

 $V_{CC} = 5.0V \pm 0.5V$, $V_{PP} = 5.0V \pm 0.5V$, $T_A = 0^{\circ}C$ to +70°C

Symbol	Parameter	Notes	Min	Typ ⁽¹⁾	Max	Units
t _{WHRH} 1	Word Program Time	2,5	TBD	25.0	TBD	μs
t _{WHRH} 3	Block Program Time	2,5	TBD	0.85	TBD	sec
	Block Erase Time	2,5	TBD	1.0	TBD	sec
	Erase Suspend Latency Time to Read		1.0	9.0	55.0	μs

 $V_{CC} = 5.0V \pm 0.5V$, $V_{PP} = 12.0V \pm 0.6V$, $T_A = 0^{\circ}C$ to +70°C

Symbol	Parameter	Notes	Min	Typ ⁽¹⁾	Max	Units
t _{WHRH} 1	Word Program Time	2,5	4.5	6	TBD	μs
t _{WHRH} 3	Block Program Time	2,5	TBD	0.2	1.0	sec
	Block Erase Time	2	0.3	0.6	10	sec
	Erase Suspend Latency Time to Read		1.0	7.0	40.0	μs

NOTES:

- 1. +25°C, and nominal voltages.
- 2. Excludes system-level overhead.
- 3. These performance numbers are valid for all speed versions.
- 4. Sampled, but not 100% tested. Guaranteed by design.
- 5. Please contact Intel's Application Hotline or your local sales office for more information for current TBD information.

6.0 MECHANICAL SPECIFICATIONS

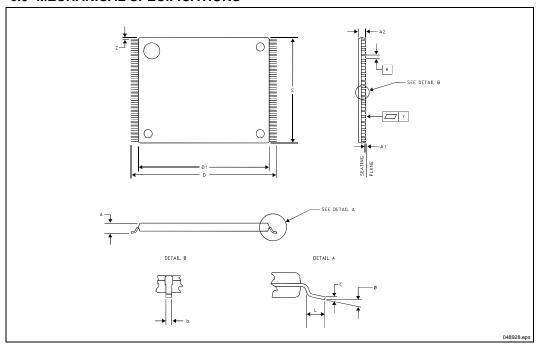
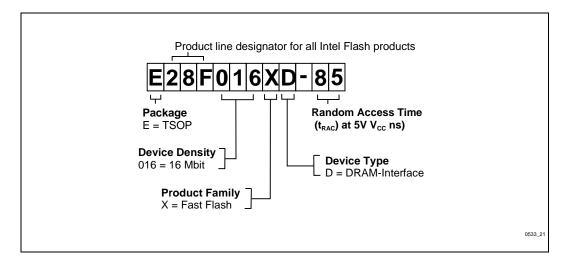



Figure 20. Mechanical Specifications of the 28F016XD 56-Lead TSOP Type I Package

	Family: Thin Small Out-Line Package					
Symbol	Millimeters			Notes		
	Minimum	Nominal	Maximum			
Α			1.20			
A1	0.050					
A ₂	0.965	0.995	1.025			
b	0.100	0.150	0.200			
С	0.115	0.125	0.135			
D1	18.20	18.40	18.60			
E	13.80	14.00	14.20			
е		0.50				
D	19.80	20.00	20.20			
L	0.500	0.600	0.700			
N		56				
Ø	0°	3°	5°			
Υ			0.100			
Z	0.150	0.250	0.350			

APPENDIX A DEVICE NOMENCLATURE AND ORDERING INFORMATION

	Valid Combinations				
Order Code	V _{CC} = 3.3V ± 0.3V, 50 pF load, 1.5V I/O Levels ⁽¹⁾	V _{CC} = 5.0V ± 10%, 100 pF load, TTL I/O Levels ⁽¹⁾			
E28F016XD 85	E28F016XD-95	E28F016XD-85			

NOTE:

1. See Section 5.3 for Transient Input/Output Reference Waveforms.

APPENDIX B ADDITIONAL INFORMATION(1,2)

Order Number	Document/Tool
297372	16-Mbit Flash Product Family User's Manual
292092	AP-357 Power Supply Solutions for Flash Memory
292123	AP-374 Flash Memory Write Protection Techniques
292126	AP-377 16-Mbit Flash Product Family Software Drivers, 28F016SA/SV/XD/XS
292131	AP-384 Designing with the 28F016XD
292163	AP-610 Flash Memory In-System Code and Data Update Techniques
292168	AP-614 Adapting DRAM Based Designs for the 28F016XD
292152	AB-58 28F016XD-Based SIMM Designs
292165	AB-62 Compiled Code Optimizations for Flash Memories
294016	ER-33 ETOX™ Flash Memory Technology—Insight to Intel's Fourth Generation Process Innovation
297508	FLASHBuilder Utility
Contact Intel/Distribution Sales Office	28F016XD Benchmark Utility
Contact Intel/Distribution Sales Office	Flash Cycling Utility
Contact Intel/Distribution Sales Office	28F016XD iBIS Models
Contact Intel/Distribution Sales Office	28F016XD VHDL/Verilog Models
Contact Intel/Distribution Sales Office	28F016XD TimingDesigner* Library Files
Contact Intel/Distribution Sales Office	28F016XD Orcad and ViewLogic Schematic Symbols

NOTE:

- Please call the Intel Literature Center at (800) 548-4725 to request Intel documentation. International customers should contact their local Intel or distribution sales office.
- 2. Visit Intel's World Wide Web home page at http://www.Intel.com for technical documentation and tools.