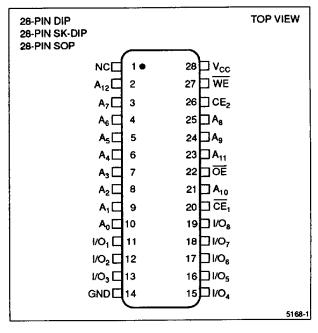
LH5168

FEATURES

- 8,192 × 8 bit organization
- Access times: 80/100 ns (MAX.)
- Low-power consumption:
 Operating:
 303 mW (MAX.) LH5168/D/N
 @ 80 ns
 248 mW (MAX.) LH5168/D/N/T/TR
 @ 100 ns
 275 mW (MAX.) LH5168H/HD/HN
 @ 100 ns
 Standby:
 5.5 μW (MAX.) LH5168/D/N/T/TR
 16.5 μW (MAX.) LH5168H/HD/HN
- Fully-static operation
- Three-state outputs
- Single +5 V power supply
- TTL compatible I/O
- Pin compatible to 64K bit EPROM
- Wide temp. range available
 LH5168: -10 to +70°C
 LH5168H: -40 to +85°C
- Packages:
 28-pin, 600-mil DIP
 28-pin, 300-mil SK-DIP
 28-pin, 450-mil SOP
 28-pin, 8 × 13 mm² TSOP (Type I)


CMOS 64K (8K × 8) Static Ram

DESCRIPTION

The LH5168 is a static RAM organized as $8,192 \times 8$ bits. It is fabricated using silicon-gate CMOS process technology.

The LH5168H is designed for wide temperature range from -40 to $+85^{\circ}$ C.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP, SK-DIP, and SOP Packages

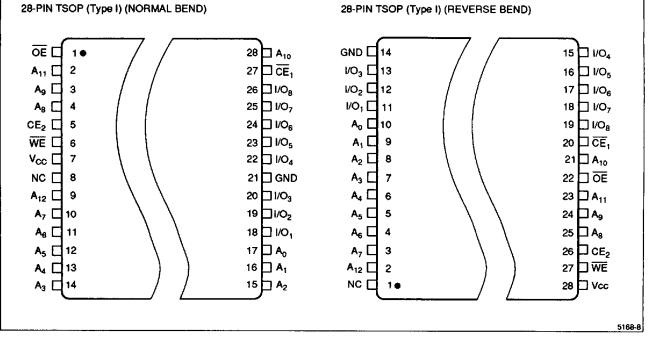


Figure 2. Pin Connections for TSOP Packages

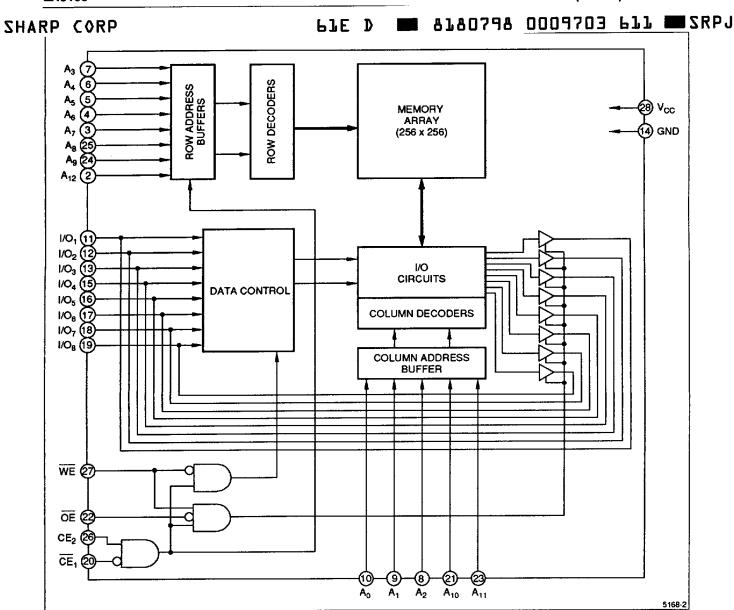


Figure 3. LH5168 Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	
A0 - A12	Address inputs	
CE1 - CE2	Chip Enable input	
WE	Write Enable input	
ŌĒ	Output Enable input	

SIGNAL	PIN NAME
1/O ₁ - 1/O ₈	Data inputs and outputs
Vcc	Power supply
GND	Ground
NC	Non-connection

TRUTH TABLE

CE1	CE2	WE	OE	MODE	I/O ₁ - I/O ₈	SUPPLY CURRENT	NOTE
н	X	Х	X	Deselect	High-Z	Standby (I _{SB})	1
Х	L	Х	Х	Deselect	High-Z	Standby (I _{SB})	1
L	н	L	X	Write	DIN	Operating (Icc)	
L	н	н	L	Read	DOUT	Operating (Icc)	
L	н	н	Н	Output disable	High-Z	Operating (Icc)	

NOTE:

1. X = H or L

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SANDO	YMBOL RATING RATING		UNIT	NOTE
FANAMETER	SIMBOL			UNIT	NOTE
Supply voltage Vcc		-0.3 to +7.0	-0.3 to +7.0	٧	1
Input voltage	ViN	-0.5 to Vcc +0.5	-0.3 to Vcc +0.3	v	1
Operating temperature	Topr	-10 to +70	-10 to +70	°C	2
Operating temperature	торі		-40 to +85	°C	3
Storage temperature	Tstg	-55 to +150	-55 to +150	°C	

NOTES:

1. The maximum applicable voltage on any pin with respect to GND.

2. LH5168/D/N

3. LH5168H/HD/HN

RECOMMENDED OPERATING CONDITIONS (Note 1)

PARAMETER S	SYMBOL	80 ns			1.	UNIT		
	OTMOOL	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNIT
Supply voltage	Vcc	4.5	5.0	5.5	4.5	5.0	5.5	V
Input voltage V	VIH	2.2		Vcc + 0.5	2.2		Vcc + 0.3	V
	VIL	-0.5		0.8	-0.3	· · · · ·	0.8	V

NOTE:

1. $T_A = -10$ to $+70^{\circ}C$ (LH5168/D/N), $T_A = -40$ to $+85^{\circ}C$ (LH5168H/HD/HN).

DC CHARACTERISTICS ¹ (V_{CC} = 5 V \pm 10%)

PARAMETER	SYMBOL	CONDITIONS	MIN.	MAX.	UNIT	NOTE	
Input leakage current	ILI	VIN = 0 to VCC			1.0	μA	
Output leakage current	lιo	$\overline{CE}_{1} = V_{IH} \text{ or } CE_{2} = V_{IL}$ or $\overline{OE} = V_{IH} \text{ or } \overline{WE} = V_{IL}$ $V_{I/O} = 0 \text{ to } V_{CC}$			1.0	μA	
		$\overline{CE}_1 = V_{IL}, V_{IN} = V_{IL}$ to V_{IH} $CE_2 = V_{IH}$, Outputs open	t _{CYCLE} = 80 ns		55	mA	
	lcc	$\overline{CE}_1 = V_{IL}, V_{IN} = V_{IL}$ to V_{IH}	tcycle =		45		2
Operating current		$CE_2 = V_{IH}$, Outputs open	100 ns		50		3
		$\overline{CE}_1 = V_{IL}, V_{IN} = 0.2 V$ to $V_{CC} - 0.2 V$ $CE_2 = V_{IH}$, Outputs open	tcycLe = 1.0 μs		10	mA	
	I _{SB1}	$\overline{CE}_1 = V_{IH} \text{ or } CE_2 =$	$\overline{CE}_1 = V_{IH} \text{ or } CE_2 = V_{IL}$			mA	
Standby current	ISB	CE ₂ ≤ 0.2 V or	T _A ≤ 70°C		1.0	μA	2
	ISB	\overline{CE}_1 , $CE_2 \ge V_{CC} - 0.2 V$	T _A ≤ 85°C		3.0	μA	3
Output voltage	VoL	I _{OL} = 2.1 mA			0.4	V	
Super voltage	Voh	l _{он} = -1 mA		2.4		V	

NOTES:

1. $T_A = -10$ to 70°C (LH5168/D/N/T/TR), $T_A = -40$ to +85°C (LH5168H/HD/HN)

2. LH5168/D/N/T/TR

3. LH5168H/HD/HN

SHARP

LH5168

AC CHARACTERISTICS ¹

(1) READ CYCLE (V_{CC} = $5 V \pm 10\%$)

PARAMETER		SYMBOL	80	กร	10) ns	UNIT	NOTE
		STMBOL	MIN.	MAX.	MIN.	MAX.		
Read cycle		tac	80		100		ns	
Address access time)	taa		80		100	ns	
Chip enable	(CE1)	tACE1		80		100	ns	
access time	(CE ₂)	tace2		80		100	ns	
Output enable acces	s time	toe		40		40	ns	
Output hold time		tон	10		10		ns	
Chip enable to	(CE ₁)	tLZ1	10		10		ns	2
output in Low-Z	(CE ₂)	tLZ2	10		10		กร	2
Output enable to out Low-Z	put in	tolz	5		5		กร	2
Chip enable to	(CE1)	tHZ1	0	30	0	30	ns	2
output in High-Z	(CE ₂)	tHZ2	0	30	0	30	ns	2
Output disable to ou High-Z	tput in	tонz	0	20	0	20	ns	2

NOTES:

1. $T_{A} = -10$ to $+70^{\circ}$ C (LH5168/D/N/T/TR), $T_{A} = -40$ to $+85^{\circ}$ C (LH5168H/HD/HN)

 Active output to high-impedance and high-impedance to output active tests specified for a ±500 mV transition from steady state levels into the test load. CLOAD = 5 pF.

PARAMETER	SYMBOL	80 ns		100) ns		NOTE
FANAMEIEN	SIMBOL	MIN.	MAX.	MIN.	MAX.		
Write cycle time	twc	80		100		ns	
Chip enable to end of write	tcw	70		80		ns	
Address valid to end of write	taw	70		80		ns	
Address setup time	tas	0		0		ns	
Write pulse width	twp	60		60		ns	
Write recovery time	twr	0		0		ns	
Data valid to end of write	tow	40		40		ns	
Data hold time	tон	0		0		ns	
Output active from end of write	tow	10		10		ns	1
WE to output in High-Z	twz	0	30	0	30	ns	1
OE to output in High-Z	tонz	0	20	0	20	ns	1

(2) WRITE CYCLE (Vcc = 5 V \pm 10%)

NOTE:

1. Active output to high-impedance and high-impedance to output active tests specified for a ±500 mV transition from steady state levels into the test load. CLOAD = 5 pF.

AC TEST CONDITIONS

PARAMETER	MODE
Input voltage amplitude	0.6 to 2.4 V
Input rise/fall time	10 ns
Timing reference level	1.5 V
Output load conditions	$(1TTL + C_{L} = 100 \text{ pF})$

SHARP CORP

61E D 🖿 8180798 0009706 320 🎟 SRPJ CAPACITANCE 1 (T_A = 25°C, f = 1MHz)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input capacitance	CIN	V _{IN} = 0 V			7	рF
Input/output capacitance	C _{VO}	$V_{VO} = 0 V$			10	рF

NOTE:

1. This parameter is sampled and not production tested.

DATA RETENTION CHARACTERISTICS¹

PARAMETER	SYMBOL	CONDITIONS	MIN.	MAX.	UNIT	NOTE
Data retention voltage	VCCDR	$\frac{CE_2 \le 0.2 \text{ V or}}{CE_1, CE_2 \ge V_{CC} - 0.2 \text{ V}}$	2.0		v	
Data retention current		$V_{CCDR} = 3 V_{,}$		0.6	μA	2
	ICCDR	$CE_2 \le 0.2 V \text{ or } \overline{CE}_1,$ $CE_2 \ge V_{CCDR} - 0.2 V$		1.5	μA	3
Chip disable to data retention	tCDR		0		ns	
Recovery time	t _{RDR}		t _{RC}		ns	4

NOTES:

1. $T_A = -10$ to +70°C (LH5168/D/N/T/TR), $T_A = -40$ to +85°C (LH5168H/HD/HN)

2. LH5168/D/N/T/TR at $T_A \leq 70^{\circ}$ C

3. LH5168H/HD/HN at $T_A \leq 85^{\circ}C$

4. tRC = Read cycle time

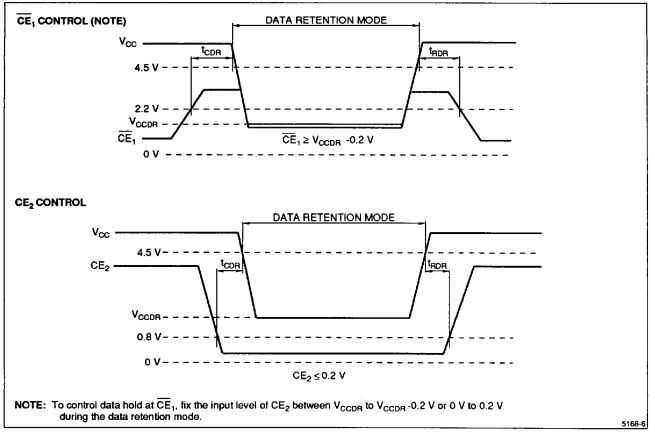


Figure 4. Low Voltage Data Retention

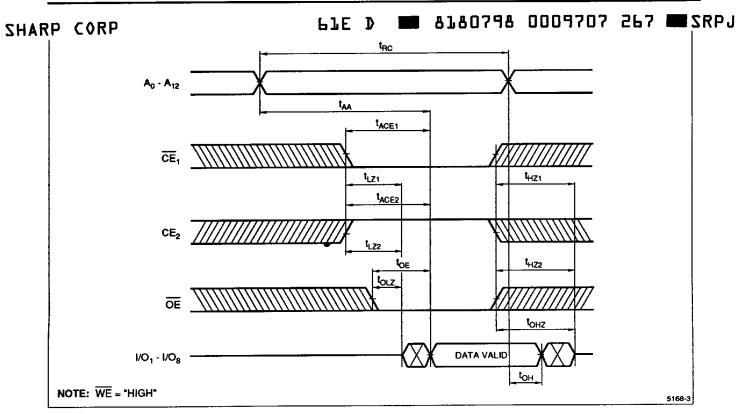


Figure 5. Read Cycle

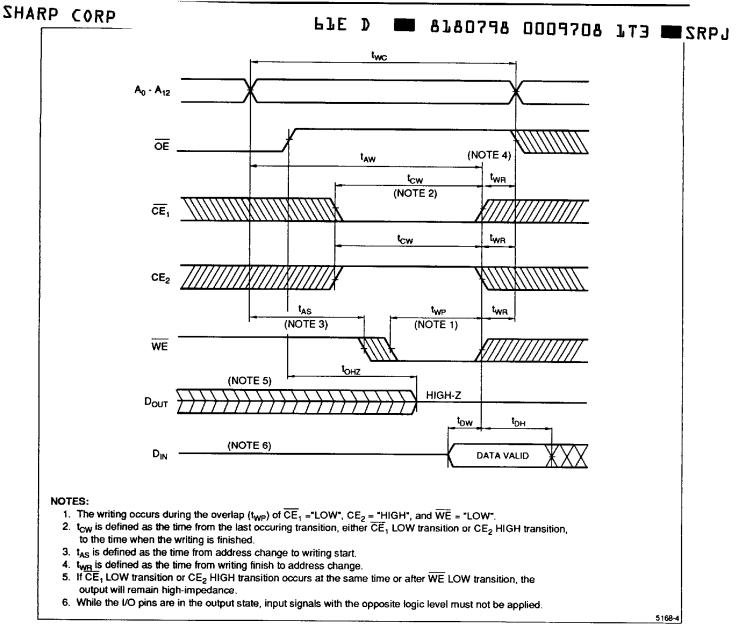
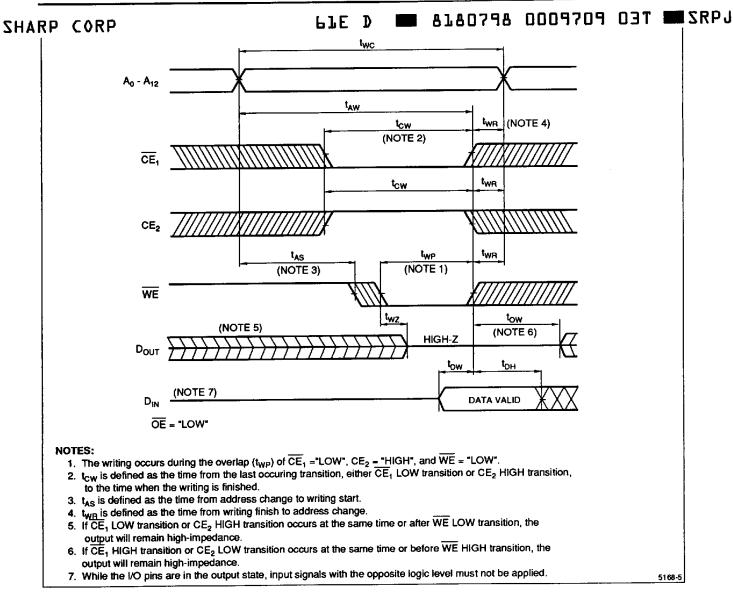
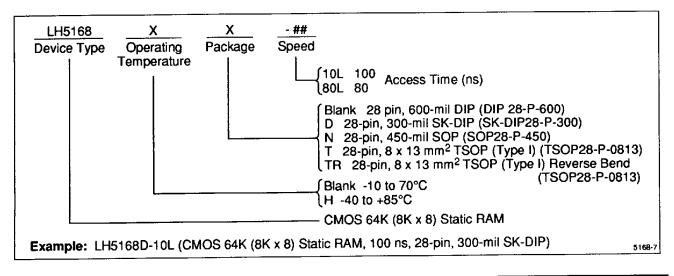




Figure 6. Write Cycle 1

ORDERING INFORMATION

