RENESAS

R1LV0408D Series

4M SRAM (512-kword × 8-bit)

REJ03C0310-0100 Rev.1.00 May.24.2007

Description

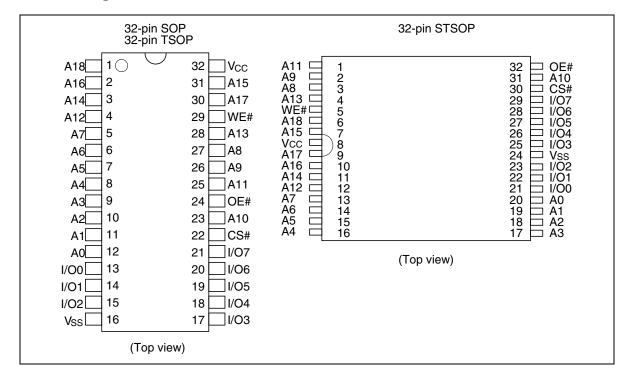
The R1LV0408D is a 4-Mbit static RAM organized 512-kword \times 8-bit, fabricated by Renesas's highperformance 0.15µm CMOS and TFT technologies. R1LV0408D Series has realized higher density, higher performance and low power consumption. The R1LV0408D Series offers low power standby power dissipation; therefore, it is suitable for battery backup systems. It has packaged in 32-pin SOP, 32pin TSOP II and 32-pin STSOP.

Features

- Single 3 V supply: 2.7 V to 3.6 V
- Access time: 55/70 ns (max)
- Power dissipation:
 - Standby: $3 \mu W$ (typ)
- Equal access and cycle times
- Common data input and output.
 Three state output
- Directly TTL compatible.
 - All inputs and outputs
- Battery backup operation.

Rev.1.00, May.24.2007, page 1 of 12

Ordering Information

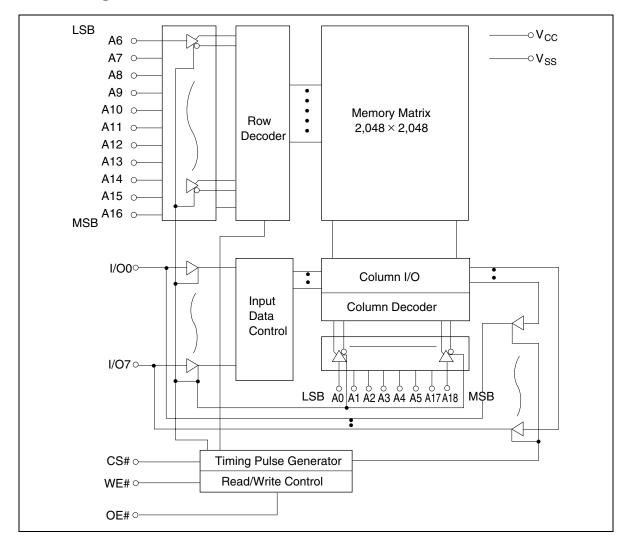

Type No.	Access time	Package
R1LV0408DSP-5S%	55 ns	525-mil 32-pin plastic SOP (32P2M-A)
R1LV0408DSP-7L%	70 ns	
R1LV0408DSB-5S%	55 ns	400-mil 32-pin plastic TSOP II (32P3Y-H)
R1LV0408DSB-7L%	70 ns	
R1LV0408DSA-5S%	55 ns	8mm × 13.4mm STSOP (32P3K-B)
R1LV0408DSA-7L%	70 ns	

%: Temperature version; see table below.

%	Temperature Range
R	0 to +70°C
I	–40 to +85°C

Rev.1.00, May.24.2007, page 2 of 12

Pin Arrangement



Pin Description

Pin name	Function
A0 to A18	Address input
I/O0 to I/O7	Data input/output
CS# (CS)	Chip select
OE# (OE)	Output enable
WE# (WE)	Write enable
V _{cc}	Power supply
V _{ss}	Ground

Rev.1.00, May.24.2007, page 3 of 12

Block Diagram

Rev.1.00, May.24.2007, page 4 of 12

RENESAS

Operation Table

WE#	CS#	OE#	Mode	V _{cc} current	I/O0 to I/O7	Ref. cycle
×	Н	×	Not selected	I _{SB} , I _{SB1}	High-Z	_
Н	L	Н	Output disable	I _{cc}	High-Z	_
Н	L	L	Read	I _{cc}	Dout	Read cycle
L	L	Н	Write	I _{cc}	Din	Write cycle (1)
L	L	L	Write	I _{cc}	Din	Write cycle (2)

Note: H: V_{H} , L: V_{L} , \times : V_{H} or V_{L}

Absolute Maximum Ratings

Parameter	Symbol		Value	Unit
Power supply voltage relative to V_{ss}	V _{cc}		–0.5 to +4.6	V
Terminal voltage on any pin relative to ${\rm V}_{\rm ss}$	V _T	-0.	5^{*1} to V _{cc} + 0.5 ^{*2}	V
Power dissipation	P _T		0.7	W
Operating temperature	Topr	R ver.	0 to +70	°C
		l ver.	-40 to +85	
Storage temperature range	Tstg	-65 to +150		°C
Storage temperature range under bias	Tbias	R ver.	0 to +70	°C
		l ver.	-40 to +85	1

Notes: 1. V_{T} min: -3.0 V for pulse half-width \leq 30 ns.

2. Maximum voltage is +4.6 V.

DC Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit	
Supply voltage	V_{cc}	2.7	3.0	3.6	V	
	V _{ss}	0	0	0	V	
Input high voltage	V	2.2	—	V _{cc} + 0.3	V	
Input low voltage		V	-0.3* ¹	—	0.6	V
Ambient temperature range	ent temperature range R ver.		0	—	+70	°C
	l ver.		-40	—	+85	

Note: 1. V_{IL} min: -3.0 V for pulse half-width \leq 30 ns.

Rev.1.00, May.24.2007, page 5 of 12

DC Characteristics

	Para	meter	Symbol	Min	Тур	Max	Unit	Test conditions
Input leakage current			I _L	—		1	μA	$Vin = V_{ss} to V_{cc}$
Output le	akage cui	rent	I _{lo}	—	—	1	μA	$CS\# = V_{H} \text{ or } OE\# = V_{H} \text{ or}$ $WE\# = V_{IL} \text{ or } V_{IO} = V_{SS} \text{ to } V_{CC}$
Operating	g current		I _{cc}	—	—	10	mA	$\begin{array}{l} \text{CS\#} = \text{V}_{\text{\tiny IL}}, \\ \text{Others} = \text{V}_{\text{\tiny IH}}/\text{V}_{\text{\tiny IL}}, \text{I}_{\text{\tiny VO}} = 0 \text{ mA} \end{array}$
Average operating current			I _{cc1}	—		25		
			I _{CC2}	—	_	5	mA	$\begin{array}{l} \mbox{Cycle time} = 1 \ \mu s, \\ \mbox{duty} = 100\%, \\ \mbox{I}_{_{I/O}} = 0 \ mA, \ CS\# \leq 0.2 \ V, \\ \mbox{V}_{_{IH}} \geq V_{_{CC}} - 0.2 \ V, \ V_{_{IL}} \leq 0.2 \ V \end{array}$
Standby	current		I _{SB}	—	0.1 * ¹	0.3	mA	CS# = V _⊮
Standby	-5S%	to +85°C	I _{SB1}	—	_	10	μA	$Vin \ge 0 \text{ V}, \text{ CS} \# \ge \text{V}_{cc} - 0.2 \text{ V}$
current		to +70°C	I _{SB1}	_		8	μA	Average values
		to +40°C	I _{SB1}	_		3	μA	
		to +25°C	I _{SB1}		1 * ¹	2.5	μA	
	-7L%	to +85°C	I _{SB1}		—	20	μA	
		to +70°C	I _{SB1}	_	—	16	μA	
		to +40°C	I _{SB1}			10	μA	
		to +25°C	I _{SB1}	_	1 * ¹	10	μA	
Output low voltage		V _{ol}			0.4	V	I _{oL} = 2.1 mA	
		V _{OL2}			0.2	V	I _{oL} = 100 μA	
Output high voltage			V _{OH}	2.4			V	I _{он} = -1.0 mA
			V _{OH2}	$V_{\rm cc} - 0.2$			V	I _{он} = -0.1 mA

Note: 1. Typical values are at $V_{cc} = 3.0 \text{ V}$, Ta = +25°C and specified loading, and not guaranteed.

Capacitance

 $(Ta = +25^{\circ}C, f = 1.0 \text{ MHz})$

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions	Note
Input capacitance	Cin	_	_	8	pF	Vin = 0 V	1
Input/output capacitance	C _{I/O}	—	_	10	pF	$V_{_{I/O}} = 0 V$	1

Note: 1. This parameter is sampled and not 100% tested.

Rev.1.00, May.24.2007, page 6 of 12

AC Characteristics

(Ta = 0 to +70°C / -40 to +85°C, V_{cc} = 2.7 V to 3.6 V)

Test Conditions

- Input pulse levels: $V_{IL} = 0.4 \text{ V}, V_{IH} = 2.4 \text{ V}$
- Input rise and fall time: 5 ns
- Input and output timing reference levels: 1.5 V
- Output load: 1 TTL Gate + C_{L} (50 pF) (R1LV0408D-5S%)
 - 1 TTL Gate + C_{L} (100 pF) (R1LV0408D-7L%)

(Including scope and jig)

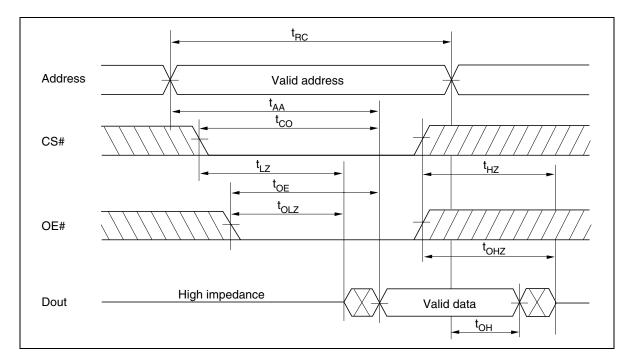
Note: Temperature range depends on R/I-version. Please see table on page 2.

Read Cycle

		R1LV0408D					
		-5	S%	-7L%			
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Read cycle time	t _{RC}	55	—	70		ns	
Address access time	t _{AA}	—	55	_	70	ns	
Chip select access time	t _{co}	—	55	_	70	ns	
Output enable to output valid	t _{oe}	—	30	_	35	ns	
Chip select to output in low-Z	t _{LZ}	10	—	10	_	ns	2
Output enable to output in low-Z	t _{oLZ}	5	_	5		ns	2
Chip deselect to output in high-Z	t _{HZ}	0	20	0	25	ns	1, 2
Output disable to output in high-Z	t _{onz}	0	20	0	25	ns	1, 2
Output hold from address change	t _{oH}	10		10		ns	

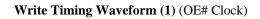
Write Cycle

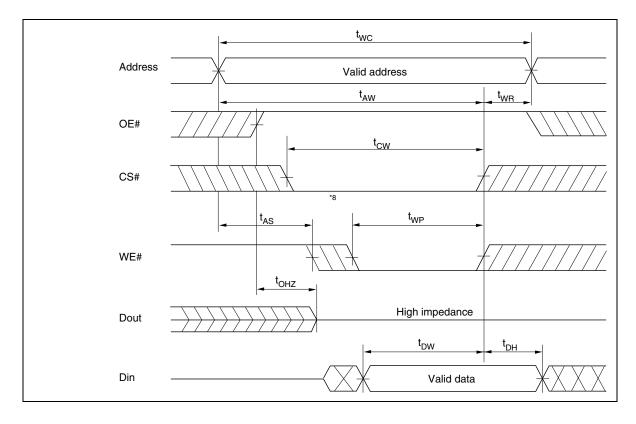
				R1LV0408D						
		-5	S%	-7L%						
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes			
Write cycle time	t _{wc}	55		70		ns				
Chip selection to end of write	t _{cw}	50		60		ns	4			
Address setup time	t _{AS}	0		0		ns	5			
Address valid to end of write	t _{AW}	50		60		ns				
Write pulse width	t _{wP}	40		50		ns	3, 12			
Write recovery time	t _{wR}	0		0		ns	6			
Write to output in high-Z	t _{wHZ}	0	20	0	25	ns	1, 2, 7			
Data to write time overlap	t _{ow}	25		30		ns				
Data hold from write time	t _{DH}	0	—	0		ns				
Output active from end of write	t _{ow}	5		5		ns	2			
Output disable to output in high-Z	t _{oHZ}	0	20	0	25	ns	1, 2, 7			

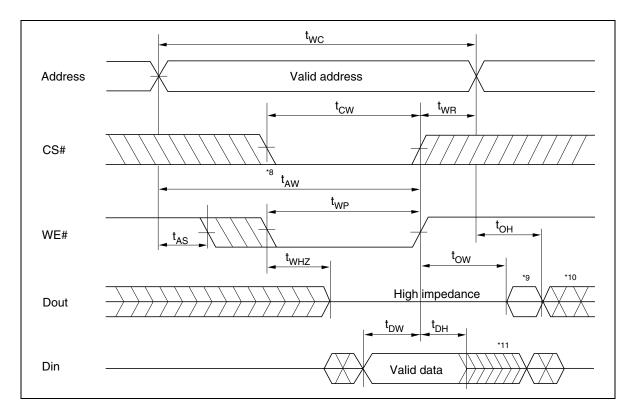

Notes: 1. t_{HZ} , t_{OHZ} and t_{WHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referred to output voltage levels.

- 2. This parameter is sampled and not 100% tested.
- 3. A write occurs during the overlap (t_{wP}) of a low CS# and a low WE#. A write begins at the later transition of CS# going low or WE# going low. A write ends at the earlier transition of CS# going high or WE# going high. t_{wP} is measured from the beginning of write to the end of write.
- 4. t_{cw} is measured from CS# going low to the end of write.
- 5. t_{AS} is measured from the address valid to the beginning of write.
- 6. t_{WR} is measured from the earlier of WE# or CS# going high to the end of write cycle.
- 7. During this period, I/O pins are in the output state so that the input signals of the opposite phase to the outputs must not be applied.
- 8. If the CS# low transition occurs simultaneously with the WE# low transition or after the WE# transition, the output remain in a high impedance state.
- 9. Dout is the same phase of the write data of this write cycle.
- 10. Dout is the read data of next address.
- 11. If CS# is low during this period, I/O pins are in the output state. Therefore, the input signals of the opposite phase to the outputs must not be applied to them.
- 12. In the write cycle with OE# low fixed, $t_{_{WP}}$ must satisfy the following equation to avoid a problem of data bus contention. $t_{_{WP}} \ge t_{_{DW}} \min + t_{_{WHZ}} \max$

Rev.1.00, May.24.2007, page 8 of 12


Timing Waveform

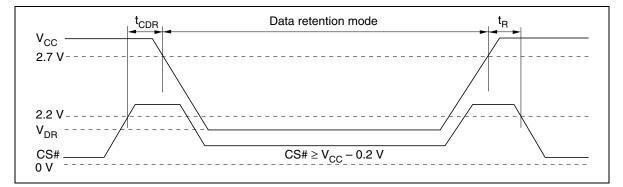

Read Timing Waveform (WE# = V_{III})


Rev.1.00, May.24.2007, page 9 of 12

Rev.1.00, May.24.2007, page 10 of 12

Write Timing Waveform (2) (OE# Low Fixed)

Rev.1.00, May.24.2007, page 11 of 12


Low V_{CC} Data Retention Characteristics

 $(Ta = 0 \text{ to } +70^{\circ}C / -40 \text{ to } +85^{\circ}C)$

Parameter			Min	Тур	Max	Unit	Test conditions
V_{cc} for data retention		V _{DR}	2	_	—	V	$\text{CS\#} \geq \text{V}_{\text{cc}} - 0.2 \text{ V}, \text{ Vin} \geq 0 \text{ V}$
-5S%	to +85°C	I _{CCDR}		_	10	μA	V_{cc} = 3.0 V, Vin \ge 0 V
	to +70°C	I _{CCDR}		_	8	μA	$CS\# \ge V_{cc} - 0.2 V$
	to +40°C	I _{CCDR}	—		3	μA	Average values
	to +25°C	I _{CCDR}		1 * ¹	2.5	μA	
-7L%	to +85°C	I _{CCDR}		_	20	μA	
	to +70°C	I _{CCDR}	—		16	μA	
	to +40°C	I _{CCDR}		_	10	μA	
	to +25°C	I _{CCDR}	—	1 * ¹	10	μA	
Chip deselect to data retention time		t _{cdr}	0	_	—	ns	See retention waveform
Operation recovery time		t _R	5	_	—	ms	
	retention -5S% -7L%	retention $ \begin{array}{c} -5S\% & \text{to } +85^{\circ}\text{C} \\ \hline \text{to } +70^{\circ}\text{C} \\ \hline \text{to } +25^{\circ}\text{C} \\ \hline -7L\% & \text{to } +85^{\circ}\text{C} \\ \hline \text{to } +70^{\circ}\text{C} \\ \hline \text{to } +40^{\circ}\text{C} \\ \hline \text{to } +25^{\circ}\text{C} \\ \hline \text{ext to data retention time} \\ \end{array} $	V_{DR} V_{DR} retention V_{DR} -5S%to +85°C I_{CCDR} to +40°C I_{CCDR} to +25°C I_{CCDR} to +85°C I_{CCDR} to +70°C I_{CCDR} to +40°C I_{CCDR} to +40°C I_{CCDR} to +40°C I_{CCDR} to +25°C I_{CCDR} to +25°C I_{CCDR} to +25°C I_{CCDR} to +25°C I_{CCDR} to to data retention time t_{CDR}	retention V _{DR} 2 -5S% to +85°C I_{CCDR} to +70°C I_{CCDR} to +40°C I_{CCDR} to +25°C I_{CCDR} -7L% to +85°C I_{CCDR} to +70°C I_{CCDR} to +70°C I_{CCDR} to +40°C I_{CCDR} to +25°C I_{CCDR}	retention V 2 -5S% to +85°C I to +70°C I to +40°C I to +25°C I 1*1 -7L% to +85°C I to +70°C I to +70°C I to +40°C I to +40°C I to +25°C I to +25°C I to +25°C I to +25°C I 1*1 ect to data retention time t 0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	retention V _{DR} 2 — V -5S% to +85°C I_{CCDR} — — 10 μ A to +70°C I_{CCDR} — — 8 μ A to +40°C I_{CCDR} — — 3 μ A to +25°C I_{CCDR} — — 3 μ A -7L% to +85°C I_{CCDR} — — 20 μ A to +70°C I_{CCDR} — — 16 μ A to +70°C I_{CCDR} — — 16 μ A to +40°C I_{CCDR} — — 10 μ A to +25°C I_{CCDR} — — 10 μ A to +25°C I_{CCDR} — — 10 μ A to +25°C I_{CDR} 0 — — ns

Note: 1. Typical values are at $V_{cc} = 3.0 \text{ V}$, Ta = +25°C and specified loading, and not guaranteed.

Revision History

R1LV0408D Series Data Sheet

Rev.	Date		Contents of Modification			
		Page	Description			
0.01	Dec. 25, 2006	—	Initial issue			
1.00	May. 24, 2007	6	DC Characteristics			
			I _{SB1} (-5S%) (to +25°C) max: 3 μA to 2.5 μA			
		12	Low V _{CC} Data Retention Characteristics			
			I _{CCDR} (-5S%) (to +25°C) max: 3 μA to 2.5 μA			
			Deletion of note 2			

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- <section-header>

 Image: States

 Present States

 States

 Present State

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510