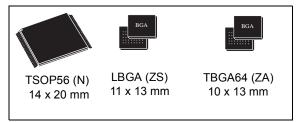
M29DW256G


256-Mbit (x16, multiple bank, page, dual boot) 3 V supply flash memory

Features

- Supply voltage
 - V_{CC} = 2.7 to 3.6 V for program, erase, read
 - V_{CCO} = 1.65 to 3.6 V for I/O buffers
 - V_{PPH} = 9 V for fast program (optional)
- Asynchronous random/page read
 - Page size: 8 words
 - Page access: 25, 30 ns
 - Random access: 60 (only available upon customer request) or 70, 80 ns
- Fast program commands: 32 words
- Enhanced buffered program commands: 256 words
- Programming time
 - 16 µs per byte/word typical
 - Chip program time: 10 s with V_{PPH} and 16 s without V_{PPH}
- Memory organization
 - Quadruple bank memory array:
 - 32Mbit+96Mbit+96Mbit+32Mbit

Parameter blocks (at top and bottom)

- Dual operation: while program or erase in one bank, read in any of the other banks
- Program/erase controller
 - Embedded word program algorithms
- Program/ erase suspend and resume
 - Read from any block during program suspend
 - Read and program another block during erase suspend

- Unlock Bypass/Block Erase/Chip Erase/Write to Buffer/Enhanced Buffer Program commands
 - Faster production/batch programming
 - Faster block and chip erase
- V_{PP}/WP pin for fast program and write: write protect of the 4 outermost parameter blocks
- Software protection:
 - Volatile protection
 - Non-volatile protection
 - Password protection
- Common flash interface
 - 64-bit security code
- Extended memory block
- Extra block (128-word factory locked and 128-word customer lockable)
 - Used as security block or to store additional information
- Low power consumption
 - Standby and automatic standby
- Minimum 100,000 program/erase cycles per block
- RoHS compliant packages
- Automotive device grade: Temperature -40 °C to 85 °C (Automotive grade certified)

Table 1. Device summary

Root part number	Device code
M29DW256G	227Eh + 223Ch + 2202

May 2009 1/84

Contents M29DW256G

Contents

1	Desc	cription	7
2	Sign	al descriptions	12
	2.1	Address inputs (A0-A23)	12
	2.2	Data inputs/outputs (DQ0-DQ15)	12
	2.3	Chip enable (E)	12
	2.4	Output enable (G)	12
	2.5	Write enable (\overline{W})	12
	2.6	V_{PP} /write protect (V_{PP}/\overline{WP})	12
	2.7	Reset (RP)	14
	2.8	Ready/busy output (RB)	14
	2.9	V _{CC} supply voltage	14
	2.10	V _{CCQ input/output} supply voltage	14
	2.11	V _{ss} ground	
3	Bus	operations	15
	3.1	Bus read	15
	3.2	Bus write	15
	3.3	Output disable	15
	3.4	Standby	15
	3.5	Reset	16
	3.6	Automatic standby	16
	3.7	Auto select mode	16
		3.7.1 Read electronic signature	17
		3.7.2 Verify extended memory block protection indicator	17
		3.7.3 Verify block protection status	17
4	Hard	Iware protection	19
	4.1	Write protect	19
5	Soft	ware protection	20
	5.1	Volatile protection mode	20

N numonyx

2/84

	5.2	Non-vo	platile protection mode	. 21
		5.2.1	Non-volatile protection bits	21
		5.2.2	Non-volatile protection bit lock bit	21
	5.3	Passw	ord protection mode	. 22
	5.4	Lock re	egister	. 23
		5.4.1	Extended block protection bit (DQ0)	23
		5.4.2	Non-volatile protection mode lock bit (DQ1)	24
		5.4.3	Password protection mode lock bit (DQ2)	
		5.4.4	Volatile lock boot bit (DQ4)	24
		5.4.5	DQ15 to DQ5 and DQ3 reserved	24
6	Com	mand ir	nterface	. 26
	6.1	Standa	ırd commands	. 26
		6.1.1	Read/Reset command	26
		6.1.2	Auto Select command	26
		6.1.3	Read CFI Query command	26
		6.1.4	Chip Erase command	27
		6.1.5	Block Erase command	27
		6.1.6	Erase Suspend command	28
		6.1.7	Erase Resume command	29
		6.1.8	Program command	29
		6.1.9	Program Suspend command	30
		6.1.10	Program Resume command	30
	6.2	Unlock	Bypass command	. 32
		6.2.1	Unlock Bypass Program command	32
		6.2.2	Unlock Bypass Block Erase command	32
		6.2.3	Unlock Bypass Chip Erase command	33
		6.2.4	Unlock Bypass Write to Buffer Program command	33
		6.2.5	Unlock Bypass Reset command	33
		6.2.6	Unlock Bypass CFI command	34
	6.3	Fast pr	ogram commands	. 34
		6.3.1	Write to Buffer Program command set	34
		6.3.2	Enhanced Buffered Program command set	37
	6.4	Protect	tion commands	. 39
		6.4.1	Lock Register Command Set	39
		6.4.2	Extended Memory Block	39

		6.4.3	Volatile protection mode command set	41
		6.4.4	Non-volatile protection mode command set	41
		6.4.5	NVPB lock bit command set	43
		6.4.6	Password protection mode command set	43
		6.4.7	Exit Protection Command Set command	44
7	Stat	us registe	er	. 47
	7.1	Data po	lling bit (DQ7)	. 47
	7.2	Toggle b	oit (DQ6)	. 47
	7.3		(DQ5)	
	7.4		mer bit (DQ3)	
	7.5		ive toggle bit (DQ2)	
	7.6		d program abort bit (DQ1)	
8	Dua	l operatio	ons and multiple bank architecture	. 52
9	Max	imum rat	ings	. 53
10	DC a	and AC p	arameters	. 54
11	Pac	kage med	hanical	. 65
12	Ord	ering info	ormation	. 68
Appendix	A	Block add	dresses and read/modify protection groups	. 69
Appendix	В	Common	flash interface (CFI)	. 74
Appendix	C	Extended	memory block	. 79
	C.1	Factory	locked extended memory block	. 79
	C.2	Custom	er lockable extended memory block	. 80
Appendix	D	Flowchar	ts	. 81
13	Rev	ision hist	orv	83

4/84

M29DW256G List of tables

List of tables

Table 1.	Device summary	1
Table 2.	Block size	8
Table 3.	Signal names	8
Table 4.	V _{PP} /WP functions	. 13
Table 5.	Bus operations	
Table 6.	Read electronic signature - auto select mode - programmer method	
Table 7.	Block protection	
Table 8.	Lock register bits	
Table 9.	Block protection status	
Table 10.	Standard commands	
Table 11.	Unlock Bypass commands	. 34
Table 12.	Write to buffer commands	
Table 13.	Enhanced buffered program commands	
Table 14.	Block protection commands	
Table 15.	Program/erase times and program/erase endurance cycles	
Table 16.	Status register bits	
Table 17.	Dual operations allowed in other banks	
Table 18.	Absolute maximum ratings	
Table 19.	Operating and AC measurement conditions	
Table 20.	Power-up waiting timings	
Table 21.	Device capacitance	
Table 22.	DC characteristics	
Table 23.	Read AC characteristics	
Table 24.	Write AC characteristics, write enable controlled	
Table 25.	Write AC characteristics, chip enable controlled	
Table 26.	Reset AC characteristics	
Table 27.	Accelerated program and data polling/data toggle AC characteristics	
Table 28.	TSOP56 – 56 lead plastic thin small outline, 14 x 20 mm, package mechanical data	
Table 29.	TBGA64 10 x 13 mm - 8 x 8 active ball array, 1 mm pitch, package mechanical data	
Table 30.	LBGA64 11 x 13 mm—8 x 8 active ball array, 1 mm pitch, package mechanical data	
Table 31.	Ordering information scheme	
Table 32.	Block Addresses, Bank A	
Table 33.	Block Addresses, Bank B	
Table 34.	Block Addresses, Bank C	
Table 35.	Query structure overview	
Table 36.	CFI query identification string	
Table 37.	CFI query system interface information	
Table 38.	Device geometry definition	
Table 39.	Primary algorithm-specific extended query table	. 77
Table 40.	Security code area	
Table 41.	Extended memory block address and data	
Table 42.	Document revision history	. 83

List of figures M29DW256G

List of figures

Figure 1.	Logic diagram	8
Figure 2.	TSOP connections	9
Figure 3.	TBGA and LBGA connections (top view through package)	10
Figure 4.	Block addresses	11
Figure 5.	Software protection scheme	23
Figure 6.	Lock register program flowchart	
Figure 7.	NVPB program/erase algorithm	
Figure 8.	Data polling flowchart	50
Figure 9.	Data toggle flowchart	
Figure 10.	AC measurement load circuit	
Figure 11.	AC measurement I/O waveform	55
Figure 12.	Power-up waiting timings	
Figure 13.	Random read AC waveforms	
Figure 14.	Page read AC waveforms	
Figure 15.	Write enable controlled program waveforms	
Figure 16.	Chip enable controlled program waveforms	
Figure 17.	Reset AC waveforms (no program/erase ongoing)	
Figure 18.	Reset during program/erase operation AC waveforms	
Figure 19.	Accelerated program timing waveforms	
Figure 20.	Data polling AC waveforms	
Figure 21.	Toggle/alternative toggle bit polling AC waveforms	
Figure 22.	TSOP56 – 56 lead plastic thin small outline, 14 x 20 mm, package outline	
Figure 23.	TBGA64 10 x 13 mm - 8 x 8 active ball array, 1 mm pitch, package outline	
Figure 24.	LBGA64 11 x 13 mm—8 x 8 active ball array, 1 mm pitch, package outline	
Figure 25.	Write to buffer program flowchart and pseudocode	
Figure 26.	Enhanced buffered program flowchart and pseudocode	82

M29DW256G Description

1 Description

The M29DW256G is a 256-Mbit (16 Mbit x16) non-volatile flash memory device that can be read, erased, and reprogrammed. These operations can be performed using a single low voltage (2.7 to 3.6 V) supply. On power-up the memory defaults to its read mode.

The M29DW256G features an asymmetrical block architecture with 8 parameter and 248 main blocks divided into four banks (A, B, C, D) providing multiple bank operations. While programming or erasing in one bank, read operations are possible in any other bank. The bank architecture is summarized in Table 2. Four of the parameter blocks are at the top of the memory address space, and four are at the bottom.

Program and Erase commands are written to the command interface of the memory. An onchip program/erase controller simplifies the process of programming or erasing the memory by taking care of all of the special operations that are required to update the memory contents. The end of a program or erase operation can be detected and any error conditions identified. The command set required to control the memory is consistent with JEDEC standards.

Chip Enable, Output Enable and Write Enable signals control the bus operation of the memory. They allow simple connection to most microprocessors, often without additional logic.

The M29DW256G supports asynchronous random read and page read from all blocks of the memory array. The devices also feature a write to buffer program capability that improves the programming throughput by programming in one shot a buffer of 32 words/64 bytes. The enhanced buffered program feature is also available to speed up the programming throughput, allowing to program 256 words in one shot. The V_{PP}/\overline{WP} signal can be used to enable faster programming of the device.

The M29DW256G has an extra block, the extended block, of 128 words that can be accessed using a dedicated command. The extended block can be protected and so is useful for storing security information. However the protection is not reversible, once protected the protection cannot be undone.

The device features different levels of hardware and software block protection to avoid unwanted program or erase (modify):

- Hardware protection:
 - The VPP/WP provides a hardware protection of the four outermost parameter blocks (two at the top and two at the bottom of the address space)
- Software protection:
 - Volatile protection
 - Non-volatile protection
 - Password protection

The M29DW256G is offered in TSOP56 (14 \times 20 mm), TBGA64 (10 \times 13 mm, 1 mm pitch), and LBGA (11 \times 13 mm) packages. The memories are delivered with all the bits erased (set to '1').

Description M29DW256G

Table 2. Block size

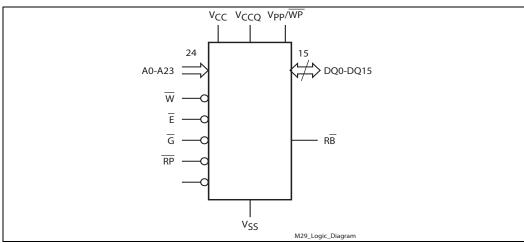
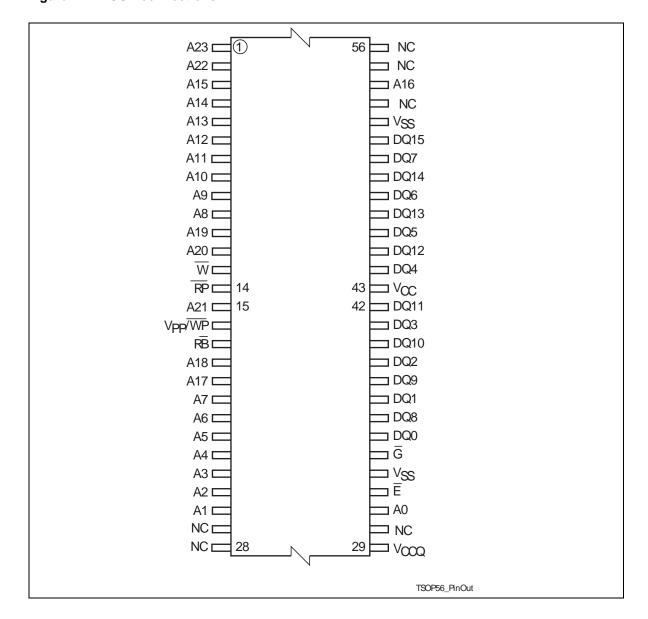
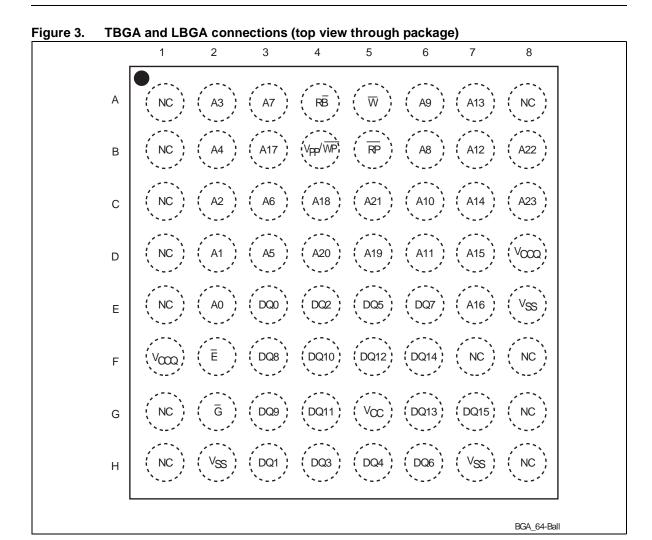

Bonk Bonk o	Bank size	Parameter b	locks	Main blocks			
Bank	Bank Size	Number of blocks	Block size	Number of blocks	Block size		
Α	32-Mbit	4	32 Kwords	15	128 Kwords		
В	96-Mbit	_	_	48	128 Kwords		
С	96-Mbit	_	_	48	128 Kwords		
D	32-Mbit	4	32 Kwords	15	128 Kwords		

Table 3. Signal names

Name	Description	Direction
A0-A23	Address inputs	Inputs
DQ0-DQ15	Data inputs/outputs	I/O
Ē	Chip enable	Input
G	Output enable	Input
W	Write enable	Input
RP	Reset	Input
RB	Ready/busy output	Output
V _{CCQ}	Input/output buffer supply voltage	Supply
V _{CC}	Supply voltage	Supply
V _{PP} /WP ⁽¹⁾	V _{PP} /write protect	Supply/Input
V _{SS}	Ground	-
NC	Not connected	-

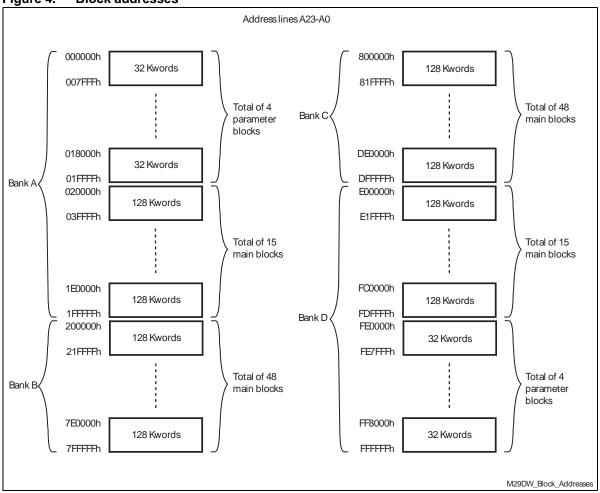
V_{PP}/WP may be left floating because it is internally connected to a pull-up resistor that enables program/erase operations.


Figure 1. Logic diagram


Also see Section Appendix A: Block addresses and read/modify protection groups on page 69 for a full listing of the block addresses.

 M29DW256G Description

Figure 2. TSOP connections



Description M29DW256G

 M29DW256G Description

Figure 4. Block addresses

Signal descriptions M29DW256G

2 Signal descriptions

See Figure 1: Logic diagram, and Table 3: Signal names, for a brief overview of the signals connected to this device.

2.1 Address inputs (A0-A23)

The address inputs select the cells in the memory array to access during bus read operations. During bus write operations they control the commands sent to the command interface of the program/erase controller.

2.2 Data inputs/outputs (DQ0-DQ15)

The data I/O outputs the data stored at the selected address during a bus read operation. During bus write operations they represent the commands sent to the command interface of the internal state machine. During bus write operations the command register does not use DQ8-DQ15 bits that should be also ignored when reading the status register.

2.3 Chip enable (E)

The chip enable pin, \overline{E} , activates the memory, allowing bus read and bus write operations to be performed. When chip enable is High, V_{IH} , all other pins are ignored.

2.4 Output enable (G)

The output enable pin, \overline{G} , controls the bus read operation of the memory.

2.5 Write enable (\overline{W})

The write enable pin, \overline{W} , controls the bus write operation of the memory's command interface.

2.6 V_{PP} /write protect (V_{PP}/\overline{WP})

The V_{PP} /write protect pin provides two functions. The V_{PPH} function allows the memory to use an external high voltage power supply to reduce the time required for program operations. This is achieved by bypassing the unlock cycles.

The write protect function provides a hardware method of protecting the four outermost blocks, that is the two 32-kword blocks at the top and the two 32-kword blocks at the bottom of the address space (see 1: Description).

When VPP/write protect is Low, VIL, the four outermost blocks are protected. Program and erase operations on this block are ignored while VPP/write protect is Low.

When VPP/write protect is High, VIH, the memory reverts to the previous protection status of the four outermost blocks. Program and erase operations can now modify the data in these blocks unless the blocks are protected using block protection.

Signal descriptions

When V_{PP}/write protect is raised to V_{PPH} the memory automatically enters the unlock bypass mode (see *Section 6.2: Unlock Bypass command*).

When V_{PP} /write protect is raised to V_{PPH} , the execution time of the command is lower (see *Table 15: Program/erase times and program/erase endurance cycles*).

When V_{PP} /write protect returns to V_{IH} or V_{IL} normal operation resumes. During unlock bypass program operations the memory draws I_{PP} from the pin to supply the programming circuits. See the description of the Unlock Bypass command in the command interface section. The transitions from V_{IH} to V_{PPH} and from V_{PPH} to V_{IH} must be slower than t_{VHVPP} (see *Figure 19: Accelerated program timing waveforms*).

Never raise V_{PP} /write protect to V_{PPH} from any mode except read mode, otherwise the memory may be left in an indeterminate state. A 0.1 μ F capacitor should be connected between the VPP/write protect pin and the V_{SS} ground pin to decouple the current surges from the power supply. The PCB track widths must be sufficient to carry the currents required during unlock bypass program (see I_{PP1} , I_{PP2} , I_{PP3} , I_{PP4} in *Table 22: DC characteristics*).

The V_{PP} /write protect pin may be left floating or unconnected because it features an internal pull-up.

Refer to *Table 4* for a summary of V_{PP}/\overline{WP} functions.

Table 4. V_{PP}/\overline{WP} functions

V _{PP} /WP	Function
V _{IL}	Four outermost parameter blocks (first two and last two) are protected from program/erase operations.
V _{IH}	Four outermost parameter blocks (first two and last two) are unprotected unless a software protection is activated (see Section 4: Hardware protection).
V _{PPH}	Unlock bypass mode. It supplies the current needed to speed up programming.

Signal descriptions M29DW256G

2.7 Reset (RP)

The reset pin can be used to apply a hardware reset to the memory.

A hardware reset is achieved by holding reset Low, V_{IL} , for at least t_{PLPX} . After reset goes High, V_{IH} , the memory will be ready for bus read and bus write operations after t_{PHEL} or t_{RHEL} , whichever occurs last. See Section 2.8: Ready/busy output (RB), Table 26: Reset AC characteristics, Figure 17 and Figure 18 for more details.

2.8 Ready/busy output (\overline{RB})

The ready/busy pin is an open-drain output that can be used to identify when the device is performing a program or erase operation. During program or erase operations ready/busy is Low, V_{OL} (see *Table 16: Status register bits*). Ready/busy is high-impedance during read mode, auto select mode and erase suspend mode.

After a hardware reset, bus read and bus write operations cannot begin until ready/busy becomes high-impedance. See *Table 26: Reset AC characteristics*, *Figure 17* and *Figure 18*.

The use of an open-drain output allows the ready/busy pins from several memories to be connected to a single pull-up resistor. A Low will then indicate that one, or more, of the memories is busy.

2.9 V_{CC} supply voltage

V_{CC} provides the power supply for all operations (read, program and erase).

The command interface is disabled when the V_{CC} supply voltage is less than the lockout voltage, V_{LKO} . This prevents bus write operations from accidentally damaging the data during power-up, power-down and power surges. If the program/erase controller is programming or erasing during this time then the operation aborts and the memory contents being altered will be invalid.

A 0.1 μ F capacitor should be connected between the V_{CC} supply voltage pin and the V_{SS} ground pin to decouple the current surges from the power supply. The PCB track widths must be sufficient to carry the currents required during program and erase operations (see I_{CC1}, I_{CC2}, I_{CC3} in *Table 22: DC characteristics*).

2.10 V_{CCQ} input/output supply voltage

 V_{CCQ} provides the power supply to the I/O pins and enables all outputs to be powered independently from $V_{CC}. \\$

V_{ss} ground

 V_{SS} is the reference for all voltage measurements. The device features two V_{SS} pins both of which must be connected to the system ground.

M29DW256G Bus operations

3 Bus operations

There are five standard bus operations that control the device. These are bus read (random and page modes), bus write, output disable, standby and automatic standby. Dual operations are possible in the M29DW256G, thanks to its multiple bank architecture. While programming or erasing in one bank, read operations are possible in any of the other banks. Write operations are only allowed in one bank at a time. SeeTable 5: Bus operations for a summary. Typical glitches of less than 5 ns on chip enable, write enable, and reset pins are ignored by the memory and do not affect bus operations.

3.1 Bus read

Bus read operations read from the memory cells, or specific registers in the command interface. To speed up the read operation the memory array can be read in page mode where data is internally read and stored in a page buffer. The page has a size of 8 words and each word in the page is addressed by the address inputs A2-A0.

A valid bus read operation involves setting the desired address on the address inputs, applying a Low signal, V_{IL} , to chip enable and output enable and keeping write enable High, V_{IH} . The data inputs/outputs will output the value, see *Figure 14: Page read AC waveforms*, and *Table 23: Read AC characteristics*, for details of when the output becomes valid.

3.2 Bus write

Bus write operations write to the command interface. A valid bus write operation begins by setting the desired address on the address inputs. The address inputs are latched by the command interface on the falling edge of chip enable or write enable, whichever occurs last. The Data inputs/outputs are latched by the command interface on the rising edge of chip enable or write enable, whichever occurs first. Output enable must remain High, V_{IH} , during the whole bus write operation.

3.3 Output disable

The data inputs/outputs are in the high impedance state when output enable is High, V_{IH}.

3.4 Standby

Driving chip enable High in read mode, causes the memory to enter standby mode and the data inputs/outputs pins are placed in the high-impedance state. To reduce the supply current to the standby supply current, I_{CC2} , chip enable should be held within $V_{CC} \pm 0.3$ V. For the standby current level see *Table 22: DC characteristics*.

During program or erase operations the memory will continue to use the program/erase supply current, I_{CC3} , for program or erase operations until the operation completes.

Bus operations M29DW256G

3.5 Reset

During reset mode the memory is deselected and the outputs are high impedance. The memory is in reset mode when RP is at VIL. The power consumption is reduced to the standby level, independently from the chip enable, output enable or write enable inputs.

3.6 Automatic standby

Automatic standby allows the memory to achieve low power consumption during read mode.

After a read operation, if CMOS levels ($V_{CC} \pm 0.3 \text{ V}$) are used to drive the bus and the bus is inactive for $t_{AVQV} + 30$ ns or more, the memory enters automatic standby where the internal supply current is reduced to the standby supply current, I_{CC2} (see *Table 22: DC characteristics*). The data inputs/outputs will still output data if a bus read operation is in progress.

The power supplier of data bus, V_{CCQ} , can have a null consumption (depending on load circuits connected with data bus) when the memory enters automatic standby.

3.7 Auto select mode

The auto select mode allows the system or the programming equipment to read the electronic signature, verify the protection status of the extended memory block, and apply/remove block protection. For example, this mode can be used by a programming equipment to automatically match a device and the application code to be programmed.

There are two methods to enter auto select mode:

programmer method:

Additional bus operations are used. They require V_{ID} to be applied to address pin A9. Refer to *Table 5: Bus operations*, and *Table 6: Read electronic signature - auto select mode - programmer method* for a description of the bus operations required to read the electronic signature using the programmer method

in-system method:

The auto select mode is entered by issuing the Auto Select command (see Section 6.1.2). It is not necessary to apply V_{ID} to A9.

At power-up, the device is in read mode, and can then be put in auto select mode by using one of the methods described above.

The device cannot enter auto select mode when a program or erase operation is ongoing (RB Low). However, auto select mode can be entered if the erase operation has been suspended by issuing an Erase Suspend command (see Section 6.1.6).

The auto select mode is exited by performing a reset. The device is returned to read mode, except if the auto select mode was entered after an Erase Suspend or a Program Suspend command. In this case, it returns to the erase or program suspend mode.

M29DW256G Bus operations

3.7.1 Read electronic signature

The memory has two codes, the manufacturer code and the device code used to identify the memory. These codes can be accessed by performing read operations with control signals and addresses set as shown in *Table 6: Read electronic signature - auto select mode - programmer method*.

These codes can also be accessed by issuing an Auto Select command (see Section 6.1.2: Auto Select command).

3.7.2 Verify extended memory block protection indicator

The extended memory block is either factory locked or customer lockable.

The protection status of the extended memory block (factory locked or customer lockable) can be accessed by reading the extended memory block protection indicator. It can be read in auto select mode using either the programmer (*Table 7.: Block protection*) or the insystem method (*Table 10.: Standard commands*).

The protection status of the extended memory block is then output on bit DQ7 of the data input/outputs. (See *Table 5.: Bus operations*.)

3.7.3 Verify block protection status

The protection status of a block can be directly accessed by performing a read operation with control signals and addresses set as shown in *Table 7.: Block protection*.

If the block is protected, then 0001h is output on data input/outputs DQ0-DQ15, otherwise 0000h is output.

Table	5	Ruc	opera	tione
Table	ວ.	Bus	opera	tions

Operation ⁽¹⁾	Ē	G	w	RP	V _{PP} /WP	Address inputs	Data inputs/outputs
Operation			**	KF	A bb/ AAL	A23, A0	DQ15-DQ0
Bus read	V _{IL}	V_{IL}	V_{IH}	V_{IH}	Х	Cell address	Data output
Bus write	V _{IL}	V_{IH}	V _{IL}	V_{IH}	X ⁽²⁾	Command address	Data input ⁽³⁾
Standby	V _{IH}	Х	Х	V_{IH}	Х	X	Hi-Z
Output disable	V _{IL}	V_{IH}	V_{IH}	V _{IH}	Х	X	Hi-Z
Reset	Х	Х	Х	V_{IL}	Х	X	Hi-Z

^{1.} $X = V_{IL}$ or V_{IH} .

^{2.} If $\overline{\text{WP}}$ is Low, V_{IL} , the outermost block remains protected.

^{3.} Data input as required when issuing a command sequence, performing data polling or block protection.

Bus operations M29DW256G

Table 6. Read electronic signature - auto select mode - programmer method

Read cycle ⁽¹⁾ E G W				Address inputs								Data inputs/outputs		
Read Cycle	_	G	VV	A23-A10	A9-A8	A7-A5	A4	А3	A2	A 1	Α0	DQ15-DQ0		
Manufacturer code								V _{IL}	V _{IL}	V _{IL}	V _{IL}	0020h		
Device code (cycle 1)		, ,			V	V	.,		V _{IL}	V _{IL}	V _{IL}	V _{IH}	227Eh	
Device code (cycle 2)	V _{IL}	V _{IL}	V _{IH}	Х	Х	V _{IL}	X	V _{IH}	V _{IH}	V _{IH}	V _{IL}	223Ch		
Device code (cycle 3)										V _{IH}	V _{IH}	V _{IH}	V _{IH}	2202h

^{1.} $X = V_{IL}$ or V_{IH} .

Table 7. Block protection

Operation				_	V/				Add	ress	nput	s				Data inputs/outputs
(1)	Ē	G	w	RP	V _{PP} / WP	A23- A12	A11- A10	А9	A8	A7	A6	A5- A4	A3- A2	A 1	A0	DQ15-DQ0
Verify extended memory block indicator bit	V _{IL}	V _{IL}	V _{IH}	V _{IH}	V _{IH}	вка	X	x	x	V _{IL}	V _{IL}	V_{IL}	V_{IL}	V _{IH}	V_{IH}	DQ15-DQ8=0 DQ7: 1=factory locked DQ6: 1=customer locked, 0=customer lockable DQ5: 1=reserved, 0=standard DQ4, DQ3-Hardware write protection: 00=WP protects 4 outermost blocks, 11=No WP protection DQ2-DQ0=0
Verify block protection status						BAd									V _{IL}	0000h (unprotected) 0001h (protected)

^{1.} $X = V_{IL}$ or V_{IH} . BAd any address in the block, BKA bank address.

4 Hardware protection

The M29DW256G features hardware protection/unprotection. Refer to *Table 4.: VPP/WP functions* for details on hardware block protection/unprotection using VPP/WP and RP pins.

4.1 Write protect

The VPP/WP pin can be used to protect the four outermost parameter blocks (refer to Section 2: Signal descriptions for a detailed description of the signals). When VPP/WP is at VIL the four outermost parameter blocks are protected and remain protected regardless of the block protection status or the reset pin state.

Software protection M29DW256G

5 Software protection

The M29DW256G has three different software protection modes:

- Volatile protection
- Non-volatile protection
- Password protection

On first use all parts default to operate in non-volatile protection mode and the customer is free to activate the non-volatile or the password protection mode.

The desired protection mode is activated by setting either the one-time programmable non-volatile protection mode lock bit, or the password protection mode lock bit of the lock register (see Section 5.4: Lock register). Programming the non-volatile protection mode lock bit or the password protection mode lock bit, to '0' will permanently activate the non-volatile or the password protection mode, respectively. These two bits are one-time programmable and non-volatile: once the protection mode has been programmed, it cannot be changed and the device will permanently operate in the selected protection mode. It is recommended to activate the desired software protection mode when first programming the device.

The non-volatile and password protection modes both provide non-volatile protection. Volatilely protected blocks and non-volatilely protected blocks can co-exist within the memory array. However, the volatile protection only control the protection scheme for blocks that are not protected using the non-volatile or password protection.

If the user attempts to program or erase a protected block, the device ignores the command and returns to read mode.

The device is shipped with all blocks unprotected. The block protection status can be read either by performing a read electronic signature (see *Table 6*) or by issuing an Auto Select command (see *Table 9: Block protection status*).

For the four outermost blocks (that is the two blocks at the top and the two at the bottom of the address space), an even higher level of block protection can be achieved by locking the blocks using the non-volatile protection and then by holding the VPP/WP pin Low.

For the lowest and highest blocks, an even higher level of block protection can be a chieved by locking the blocks using the non-volatile protection and then by holding the V_{PP}/\overline{WP} pin Low.

5.1 Volatile protection mode

The volatile protection allows the software application to easily protect blocks against inadvertent change. However, the protection can be easily disabled when changes are needed. Volatile protection bits, VPBs, are volatile and unique for each block and can be individually modified. VPBs only control the protection scheme for unprotected blocks that have their non-volatile protection bits, NVPBs, cleared (erased to '1') (see Section 5.2: Non-volatile protection mode and Section 6.4.4: Non-volatile protection mode command set).

By issuing the VPB Program or VPB Clear commands, the VPBs are set (programmed to '0') or cleared (erased to '1'), thus placing each block in the protected or unprotected state respectively. The VPBs can be set (programmed to '0') or cleared (erased to '1') as often as needed.

M29DW256G Software protection

When the parts are first shipped, or after a power-up or hardware reset, the VPBs can be set or cleared depending upon the ordering option chosen:

- If the option to clear the VPBs after power-up is selected, then the blocks can be programmed or erased depending on the NVPBs state (see *Table 9: Block protection status*)
- If the option to set the VPBs after power-up is selected, the blocks default to be protected.

Refer to Section 6.4.3 for a description of the volatile protection mode command set.

5.2 Non-volatile protection mode

5.2.1 Non-volatile protection bits

A non-volatile protection bit (NVPB) is assigned to each block.

When a NVPB is set to '0', the associated block is protected, preventing any program or erase operations in this block.

The NVPB bits are set individually by issuing a NVPB Program command. They are non-volatile and will remain set through a hardware reset or a power-down/power-up sequence.

The NVPBs cannot be cleared individually, they can only be cleared all at the same time by issuing a Clear all Non-volatile Protection bits command.

The NVPBs can be protected all at a time by setting a volatile bit, the NVPB lock bit (see Section 5.2.2: Non-volatile protection bit lock bit).

If one of the non-volatile protected blocks needs to be unprotected (corresponding NVPB set to '1'), a few more steps are required:

- First, the NVPB lock bit must be cleared by either putting the device through a power cycle, or hardware reset
- 2. The NVPBs can then be changed to reflect the desired settings
- The NVPB lock bit must be set once again to lock the NVPBs. The device operates normally again.

Note:

- To achieve the best protection, it is recommended to execute the NVPB Lock <u>Bit Program</u> command early in the boot code and to protect the boot code by holding V_{PP}/WP Low, V_{II}.
- 2 The NVPBs and VPBs have the same function when V_{PP}/\overline{WP} pin is High, V_{IH} , as they do when V_{PP}/\overline{WP} pin is at the voltage for program acceleration (V_{PPH}).

Refer to *Table 9: Block protection status* and *Figure 5: Software protection scheme* for details on the block protection mechanism, and to *Section 6.4.4* for a description of the non-volatile protection mode command set.

5.2.2 Non-volatile protection bit lock bit

The non-volatile protection bit lock bit (NVPB lock bit) is a global volatile bit for all blocks.

When set (programmed to '0'), it prevents changing the state of the NVPBs. When cleared (programmed to '1'), the NVPBs can be set and reset using the NVPB Program command and Clear all NVPBs command, respectively.

There is only one NVPB lock bit per device.

N numonyx

21/84

Software protection M29DW256G

Refer to Section 6.4.5 for a description of the NVPB lock bit command set.

Note:

- No software command unlocks this bit unless the device is in password protection mode; it can be cleared only by taking the device through a hardware reset or a power-up.
- 2 The NVPB lock bit must be set (programmed to '0') only after all NVPBs are configured to the desired settings.

5.3 Password protection mode

The password protection mode provides an even higher level of security than the non-volatile protection mode by requiring a 64-bit password for unlocking the device NVPB lock bit.

In addition to this password requirement, the NVPB lock bit is set '0' after power-up and reset to maintain the device in password protection mode. Successful execution of the Password Unlock command by entering the correct password clears the NVPB lock bit, allowing for block NVPBs to be modified.

If the password provided is not correct, the NVPL lock bit remains locked and the state of the NVPBs cannot be modified.

To place the device in password protection mode, the following steps are required:

- Prior to entering the password protection mode, it is necessary to set a 64-bit password and to verify it (see *Password protection mode command set on page 43*). Password verification is only allowed during the password programming operation
- 2. The password protection mode is then activated by programming the password protection mode lock bit to '0'. This operation is not reversible and once the bit is programmed it cannot be erased, the device permanently remains in password protection mode, and the 64-bit password can neither be retrieved nor reprogrammed. Moreover, all commands to the address where the password is stored, are disabled. Refer to *Table 9: Block protection status* and *Figure 5: Software protection scheme* for details on the block protection scheme.

Refer to Section 6.4.6 for a description of the password protection mode command set.

Note:

There is no means to verify the password after it is set. If the password is lost after setting the password mode lock bit, there is no way to clear the NVPB lock bit.

M29DW256G Software protection

Parameter block or main block

Volatile protection

Non-volatile protection

Non-volatile protection mode

Password protection mode

Al13676

Figure 5. Software protection scheme

- NVPBs default to '1' (block unprotected) after power-up and hardware reset. A block is protected or unprotected when its NVPB is set to '0' and '1', respectively. NVPBs are programmed individually and cleared collectively.
- 2. VPB default status depends on ordering option. A block is protected or unprotected when its VPB is set to '0' and '1', respectively. VPBs are programmed and cleared individually. For the volatile protection to be effective, the NVPB lock bit must be set to '0' (NVPB bits unlocked) and the block NVPB must be set to '1' (block unprotected).
- The NVPB lock bit is volatile and default to '1' (NVPB bits unlocked) after power-up and hardware reset. NVPB bits are
 locked by setting the NVPB lock bit to '0'. Once programmed to '0', the NVPB lock bit can be reset to '1' only be taking the
 device through a power-up or hardware reset.

5.4 Lock register

The lock register is a 16-bit one-time programmable register. The bits in the lock register are summarized in *Table 8: Lock register bits*.

The lock register allows configuration of memory blocks and extended memory block protection (see *Table 9: Block protection status*).

See Section 6.4.1: Lock Register Command Set for a description of the commands allowing to read and program the lock register.

5.4.1 Extended block protection bit (DQ0)

If the device has not been shipped with the extended memory block factory locked, the block can be protected by setting the extended memory block protection bit, DQ0, to '0'. However, this bit is one-time programmable and once protected the extended memory block cannot be unprotected.

The extended memory block protection status can be read in auto select mode either by applying V_{ID} to A9 (see *Table 7: Block protection*) or by issuing an Auto Select command (see *Table 10: Standard commands*).

Software protection M29DW256G

5.4.2 Non-volatile protection mode lock bit (DQ1)

The non-volatile protection mode lock bit (DQ1) is one-time programmable. Programming this bit (change the first apex to '0') permanently places the device in non-volatile protection mode.

By default the memory operates in non-volatile protection mode independently whether the non-volatile protection mode lock bit, DQ1, is programmed. From Factory the memory blocks can be either unprotected (change the first apex to '1') or protected (change the first apex to '0'), according to the ordering option that has been chosen.

Any attempt to program the non-volatile protection mode lock bit when the password protection mode bit is programmed causes the operation to abort and the device to return to read mode.

5.4.3 Password protection mode lock bit (DQ2)

The password protection mode lock bit, DQ2, is one-time programmable. Programming this bit (setting to '0') permanently places the device in password protection mode. Any attempt to program the password protection mode lock bit when the non-volatile protection mode bit is programmed causes the operation to abort and the device to return to read mode.

5.4.4 Volatile lock boot bit (DQ4)

DQ4 sets the default values for volatile block protection: when programmed, the blocks are protected at power-up.

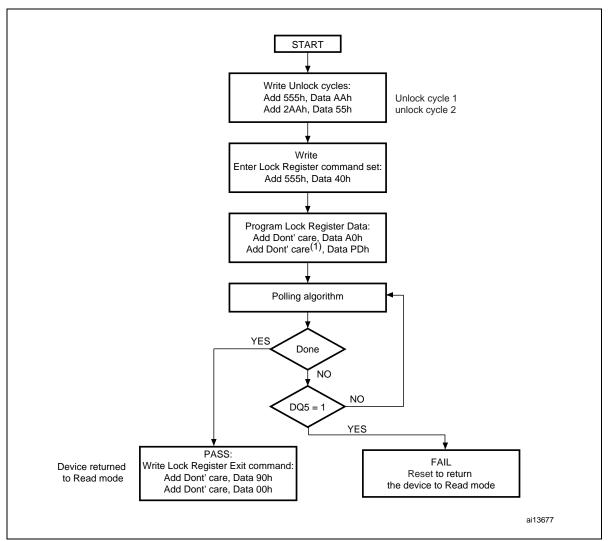
5.4.5 DQ15 to DQ5 and DQ3 reserved

DQ15 to DQ5 and DQ3 are reserved and during programming they must be held at '1'.

Table 8. Lock register bits⁽¹⁾

DQ15-5	DQ4	DQ3	DQ2	DQ1	DQ0
Don't care	Volatile lock boot bit	Don't care	Password protection mode lock bit	Non-volatile protection mode lock bit	Extended block protection bit

^{1.} DQ0, DQ1, DQ2 and DQ4 are set to '1' when shipped from the factory.


Table 9. Block protection status

NVPB lock bit ⁽¹⁾	Block NVPB ⁽²⁾	Block VPB ⁽³⁾	Block protection status	Block protection status
0	0	х	01h	Block protected (non-volatile protection through NVPB)
0	1	1	00h	Block unprotected
0	1	0	00h	Block protected (volatile protection through VPB)
1	0	х	01h	Block protected (non-volatile protection through NVPB)
1	1	0	01h	Block protected (volatile protection through VPB)
1	1	1	00h	Block unprotected

- 1. If the NVPB lock bit is set to '0', all NVPBs are locked. If the NVPB lock bit is set to '1', all NVPBs are unlocked.
- 2. If the block NVPB is set to '0', the block is protected, if set to '1', it is unprotected.
- 3. If the block VPB is set to '0', the block is protected, if set to '1', it is unprotected.

M29DW256G Software protection

Figure 6. Lock register program flowchart

- 1. PD is the programmed data (see Table 8: Lock register bits).
- 2. The lock register can only be programmed once.

Command interface M29DW256G

6 Command interface

All bus write operations to the memory are interpreted by the command interface. Commands consist of one or more sequential bus write operations. Failure to observe a valid sequence of bus write operations will result in the memory returning to read mode. The long command sequences are imposed to maximize data security.

6.1 Standard commands

See either *Table 10* for a summary of the standard commands.

6.1.1 Read/Reset command

The device is in read mode after reset or after power-up.

The Read/Reset command returns the memory to read mode. It also resets the errors in the status register. Either one or three bus write operations can be used to issue the Read/Reset command.

The Read/Reset command can be issued, between bus write cycles before the start of a program or erase operation, to return the device to read mode. If the Read/Reset command is issued during the timeout of a block erase operation, the memory will take up to 10 µs to abort. During the abort period no valid data can be read from the memory.

The Read/Reset command will not abort an erase operation when issued while in erase suspend.

6.1.2 Auto Select command

The Auto Select command puts the device in auto select mode, when using the in-system method (see *Section 3.7: Auto select mode*). When in auto select mode, the system can read the manufacturer code, the device code, the protection status of each block (block protection status) and the extended memory block protection indicator.

Three consecutive bus write operations are required to issue the Auto Select command. Once the Auto Select command is issued, bus read operations output the following to specific addresses:

- the manufacturer code
- the device code
- the extended memory block protection indicator
- a block protection status.

The memory remains in auto select mode until a Read/Reset or CFI Query command is issued. (See *Table 10.: Standard commands* in conjunction with *Table 7.: Block protection*.)

6.1.3 Read CFI Query command

The memory contains an information area, named CFI data structure, which contains a description of various electrical and timing parameters, density information and functions supported by the memory. See *Appendix B*, *Table 35*, *Table 36*, *Table 37*, *Table 38*, *Table 39* and *Table 40* for details on the information contained in the common flash interface (CFI) memory area.

M29DW256G Command interface

The Read CFI Query command is used to put the memory in read CFI query mode. Once in read CFI query mode, bus read operations to the memory will output data from the common flash interface (CFI) memory area. One bus write cycle is required to issue the Read CFI Query command. This command is valid only when the device is in the read array or auto select mode.

The Read/Reset command must be issued to return the device to the previous mode (the read array mode or auto select mode). A second Read/Reset command is required to put the device in read array mode from auto select mode.

6.1.4 Chip Erase command

The Chip Erase command can be used to erase the entire chip. Six bus write operations are required to issue the Chip Erase command and start the program/erase controller.

If some block are protected, then these are ignored and all the other blocks are erased. If all of the blocks are protected the Chip Erase operation appears to start but will terminate within about 100 μ s, leaving the data unchanged. No error condition is given when protected blocks are ignored.

During the erase operation the memory will ignore all commands, including the Erase Suspend command. It is not possible to issue any command to abort the operation. Typical chip erase times are given in *Table 15*. All bus read operations during the chip erase operation will output the status register on the data inputs/outputs. See *Section 7: Status register* for more details.

After the chip erase operation has completed the memory will return to the read mode, unless an error has occurred. When an error occurs the memory will continue to output the status register. A Read/Reset command must be issued to reset the error condition and return to read mode.

The Chip Erase command sets all of the bits in unprotected blocks of the memory to '1'. All previous data is lost.

The chip erase operation is aborted by performing a reset or powering down the device. In this case, data integrity cannot be ensured, and it is recommended to erase again the entire chip.

6.1.5 Block Erase command

The Block Erase command can be used to erase a list of one or more blocks. It sets all of the bits in the unprotected selected blocks to '1'. All previous data in the selected blocks is lost.

Six bus write operations are required to select the first block in the list. Each additional block in the list can be selected by repeating the sixth bus write operation using the address of the additional block. After the command sequence is written, a block erase timeout occurs.

During the timeout period, additional sector addresses and sector erase commands may be written. Once the program/erase controller has started, it is not possible to select any more blocks. Each additional block must therefore be selected within the timeout period of the last block. The timeout timer restarts when an additional block is selected. After the sixth bus write operation, a bus read operation outputs the status register (bus reading operations from banks different from those including the blocks being erased, output the memory array content). See *Figure 15.: Write enable controlled program waveforms* for details on how to identify if the program/erase controller has started the block erase operation.

Command interface M29DW256G

After the block erase operation has completed, the memory returns to the read mode, unless an error has occurred. When an error occurs, bus read operations will continue to output the status register. A Read/Reset command must be issued to reset the error condition and return to read mode.

If any selected blocks are protected then these are ignored and all the other selected blocks are erased. If all of the selected blocks are protected the block erase operation appears to start but will terminate within about $100 \mu s$, leaving the data unchanged. No error condition is given when protected blocks are ignored.

During the block erase operation the memory ignores all commands except the Erase Suspend command and the Read/Reset command which is only accepted during the timeout period. Typical block erase time and block erase timeout are given in *Table 15*.

The block erase operation is aborted by performing a reset or powering down the device. In this case, data integrity cannot be ensured, and it is recommended to erase again the blocks aborted.

6.1.6 Erase Suspend command

The Erase Suspend command can be used to temporarily suspend a block erase operation. One bus write operation is required to issue the command together with the block address.

After the command sequence is written, a minimum block erase timeout occurs. During the timeout period, additional block addresses and block erase commands can be written.

The program/erase controller suspends the erase operation within the erase suspend latency time of the Erase Suspend command being issued. However, when the Erase Suspend command is written during the block erase timeout, the device immediately terminates the timeout period and suspends the erase operation.

Once the program/erase controller has stopped, the memory operates in read mode and the erase is suspended.

During erase suspend it is possible to read and execute program or write to buffer program operations in blocks that are not suspended; both read and program operations behave as normal on these blocks. Reading from blocks that are suspended will output the status register. If any attempt is made to program in a protected block or in the suspended block then the Program command is ignored and the data remains unchanged. In this case the status register is not read and no error condition is given.

It is also possible to issue the Auto Select (after entering Autoselect mode), Read CFI Query and Unlock Bypass commands during an erase suspend. The Read/Reset command must be issued to return the device to read array mode before the Resume command will be accepted.

During erase suspend a bus read operation to the extended memory block will output the extended memory block data. Once in the extended block mode, the Exit Extended Block command must be issued before the erase operation can be resumed.

The Erase Suspend command is ignored if written during chip erase operations.

Refer to *Table 15: Program/erase times and program/erase endurance cycles* for the values of block erase timeout and block erase suspend latency time.

If the erase suspend operation is aborted by performing a reset or powering down the device, data integrity cannot be ensured, and it is recommended to erase again the blocks suspended.

M29DW256G Command interface

6.1.7 Erase Resume command

The Erase Resume command is used to restart the program/erase controller after an erase suspend.

The device must be in read array mode before the Resume command will be accepted. An erase can be suspended and resumed more than once.

6.1.8 Program command

The Program command can be used to program a value to one address in the memory array at a time. The command requires four bus write operations, the final write operation latches the address and data in the internal state machine and starts the program/erase controller.

Programming can be suspended and then resumed by issuing a Program Suspend command and a Program Resume command, respectively (see Section 6.1.9: Program Suspend command and Section 6.1.10: Program Resume command).

If the address falls in a protected block then the program command is ignored, the data remains unchanged. The status register is never read and no error condition is given.

After programming has started, bus read operations output the status register content (bus reading operations from banks different from those including the block being programmed, output the memory array content). See See Figure 17: Write enable controlled program waveforms for more details. Typical program times are given inTable 21: Program, erase times and program, erase endurance cycles.

After the program operation has completed the memory will return to the read mode, unless an error has occurred. When an error occurs, bus read operations to the memory continue to output the status register. A Read/Reset command must be issued to reset the error condition and return to read mode.

One of the erase commands must be used to set all the bits in a block or in the whole memory from '0' to '1'.

The program operation is aborted by performing a reset or powering-down the device. In this case data integrity cannot be ensured, and it is recommended to reprogram the word or byte aborted.

Command interface M29DW256G

6.1.9 Program Suspend command

The Program Suspend command allows the system to interrupt a program operation so that data can be read from any block. When the Program Suspend command is issued during a program operation, the device suspends the program operation within the program suspend latency time (see *Table 15: Program/erase times and program/erase endurance cycles*) and updates the status register bits.

After the program operation has been suspended, the system can read array data from any address. However, data read from program-suspended addresses is not valid.

The Program Suspend command may also be issued during a program operation while an erase is suspended. In this case, data may be read from any addresses not in erase suspend or program suspend. If a read is needed from the extended memory block area (one-time program area), the user must use the proper command sequences to enter and exit this region.

The system may also issue the Auto Select command sequence when the device is in the program suspend mode. The system can read as many auto select codes as required. When the device exits the auto select mode, the device reverts to the program suspend mode, and is ready for another valid operation. See Auto Select command sequence for more information.

If the program suspend operation is aborted by performing a reset or powering down the device, data integrity cannot be ensured, and it is recommended to program again the words or bytes aborted.

6.1.10 Program Resume command

After the Program Resume command is issued, the device reverts to programming. The controller can determine the status of the program operation using the DQ7 or DQ6 status bits, just as in the standard program operation. Refer to *Figure 15: Write enable controlled program waveforms* for details.

The system must issue a Program Resume command, to exit the program suspend mode and to continue the programming operation.

Further issuing of the Resume command is ignored. Another Program Suspend command can be written after the device has resumed programming.

M29DW256G Command interface

Table 10. Standard commands

			Bus operations ⁽¹⁾													
Command		Length	1s	t	2n		3r	d	4th		5th		6	th		
			Add	Data	Add	Data	Add	Data	Add	Data	Add	Data	Add	Data		
Read/Reset		1	Х	F0												
		3	555	AA	2AA	55	Х	F0								
	Manufacturer code							90 (2	(2)(3) (2)(3)							
	Device code			AA	2AA	55	(BKA) 555									
Auto Select	Extended memory block protection indicator	3	555							(2)(3)						
	Block protection status															
Prograi	m ⁽⁴⁾	4	555	AA	2AA	55	555	A0	PA	PD						
Chip E	rase	6	555	AA	2AA	55	555	80	555	AA	2AA	55	555	10		
Block E	Block Erase		555	AA	2AA	55	555	80	555	AA	2AA	55	BAd	30		
Erase/Program Suspend		1	BKA	В0												
Erase/Program Resume		1	ВКА	30												
Read C	CFI Query	1	(BKA) 555	98												

X don't care, PA program address, PD program data, BKA bank address, BAd any address in the block. All values in the table are in hexadecimal.

^{2.} These cells represent read cycles. The other cells are write cycles.

^{3.} The auto select addresses and data are given in *Table 6: Read electronic signature - auto select mode - programmer method*, and *Table 7: Block protection*, except for A9 that is 'don't care'.

^{4.} In unlock bypass, the first two unlock cycles are no more needed.

Command interface M29DW256G

6.2 Unlock Bypass command

The Unlock Bypass command is used to place the device in unlock bypass mode. When the device enters the unlock bypass mode, the two initial unlock cycles required in the standard program command sequence are no more needed, and only two write cycles are required to program data, instead of the normal four cycles (See Note 4 below *Table 10.: Standard commands.*) This results in a faster total programming time.

Unlock Bypass command is consequently used in conjunction with the Unlock Bypass Program command to program the memory faster than with the standard program commands. When the cycle time to the device is long, considerable time saving can be made by using these commands. Three bus write operations are required to issue the Unlock Bypass command. When in unlock bypass mode, only the Unlock Bypass Program, Unlock Bypass Block Erase, Unlock Bypass Chip Erase, and Unlock Bypass Reset commands are valid:

- The Unlock Bypass Program command can be issued to program addresses within the memory.
- The Unlock Bypass Block Erase command can then be issued to erase one or more memory blocks.
- The Unlock Bypass Chip Erase command can be issued to erase the whole memory array.
- The Unlock Bypass Write to Buffer Program command can be issued to speed up programming operation.
- The Unlock Bypass CFI command can be issued to read the CFI when the memory is in the unlock bypass mode
- The Unlock Bypass Reset command can be issued to return the memory to read mode. In unlock bypass mode the memory can be read as if in read mode.

6.2.1 Unlock Bypass Program command

The Unlock Bypass Program command can be used to program one address in the memory array at a time. The command requires two bus write operations, the final write operation latches the address and data and starts the program/erase controller.

The program operation using the Unlock Bypass Program command behaves identically to the program operation using the Program command. The operation cannot be aborted, a bus read operation to the memory outputs the status register, bus reading operations from banks different from those including the block being programmed, output the memory array content. (See *Section 6.1.8: Program command* for details on the behavior.)

6.2.2 Unlock Bypass Block Erase command

The Unlock Bypass Block Erase command can be used to erase one or more memory blocks at a time. The command requires two bus write operations instead of six using the standard Block Erase command. The final bus write operation latches the address of the block and starts the program/erase controller.

To erase multiple block (after the first two bus write operations have selected the first block in the list), each additional block in the list can be selected by repeating the second bus write operation using the address of the additional block.

The Unlock Bypass Block Erase command behaves in the same way as the Block Erase command: the operation cannot be aborted, and a bus read operation to the memory

M29DW256G Command interface

outputs the status register (bus reading operations from banks different from those including the blocks being erased, output the memory array content). (See Section 6.1.5: Block Erase command for details).

6.2.3 Unlock Bypass Chip Erase command

The Unlock Bypass Chip Erase command can be used to erase all memory blocks at a time. The command requires two bus write operations only instead of six using the standard Chip Erase command. The final bus write operation starts the program/erase controller. The Unlock Bypass Chip Erase command behaves in the same way as the Chip Erase command: the operation cannot be aborted, and a bus read operation to the memory outputs the status register (see Section 6.1.4: Chip Erase command for details).

6.2.4 Unlock Bypass Write to Buffer Program command

The Unlock Bypass Write to Buffer command can be used to program the memory in fast program mode (see *Section 6.3.1: Write to Buffer Program command set* set for details). The command requires two bus write operations less than the standard Write to Buffer Program command.

The Unlock Bypass Write to Buffer Program command behaves in the same way as the Write to Buffer Program command: the operation cannot be aborted and a bus read operation to the memory outputs the status register (bus reading operations from banks different from those including the blocks being programmed output the memory array content).

The Write to Buffer Program Confirm command is used to confirm an Unlock Bypass Write to Buffer Program command and to program the N+1 words loaded in the write buffer by this command.

6.2.5 Unlock Bypass Reset command

The Unlock Bypass Reset command can be used to return to read/reset mode from unlock bypass mode. Two bus write operations are required to issue the Unlock Bypass Reset command. Read/Reset command does not exit from unlock bypass mode.

Command interface M29DW256G

6.2.6 Unlock Bypass CFI command

The Unlock Bypass CFI command allows to use any address in the bank to perform a CFI query when the memory is in the unlock bypass mode.

Table 11. Unlock Bypass commands

		Bus write operations ⁽¹⁾										
Command	Length	1	st	2	nd	3rd						
		Add	Data	Add	Data	Add	Data					
Unlock Bypass	3	555	AA	2AA	55	555	20					
Unlock Bypass Program	2	Х	A0	PA	PD							
Unlock Bypass Block Erase	2+	Х	80	BAd	30							
Unlock Bypass Chip Erase	2	Х	80	Х	10							
Unlock Bypass CFI	1	BKA	98									
Unlock Bypass Reset	2	Х	90	Х	0							

X don't care, PA program address, PD program data, BKA bank address, BAd any address in the block, WBL write buffer location. All values in the table are in hexadecimal.

6.3 Fast program commands

The M29DW256G offers a set of fast program commands to improve the programming throughput:

- Write to Buffer Program
- Enhanced Buffered Program

See either *Table 12* or *Table 13* for a summary of the fast program commands. After programming has started, bus read operations in the memory output the status register content (bus reading operations from banks different from those including the blocks being programmed output the memory array content). Write to Buffer Program command can be suspended and then resumed by issuing a Program Suspend command and a Program Resume command, respectively (see *Section 6.1.9: Program Suspend command* and *Section 6.1.10: Program Resume command*).

6.3.1 Write to Buffer Program command set

The Write to Buffer Program command set makes use of the device's 32-word write buffer to speed up programming. 32 words can be loaded into the write buffer.

Each write buffer has the same A23-A5 addresses. The Write to Buffer Program command dramatically reduces system programming time compared to the standard non-buffered Program command. When issuing a Write to Buffer Program command, the VPP/WP pin can be either held High, VIH, or raised to VPPH.

See Table 12 or Table 13 for details on typical write to buffer program times in both cases.

M29DW256G Command interface

Write to Buffer Program command

Five successive steps are required to issue the Write to Buffer Program command:

- The Write to Buffer Program command starts with two unlock cycles
- 2. The third bus write cycle sets up the Write to Buffer Program command. The setup code can be addressed to any location within the targeted block.
- The fourth bus write cycle sets up the number of words/bytes to be programmed. Value
 N is written to the same block address, where N+1 is the number of words/bytes to be
 programmed. N+1 must not exceed the size of the write buffer or the operation will
 abort.
- 4. The fifth cycle loads the first address and data to be programmed.
- 5. Use N bus write cycles to load the address and data for each word/byte into the write buffer. Addresses must lie within the range from the start address+1 to the start address +N-1. Optimum performance is obtained when the start address corresponds to a 32-word/ 64-byte boundary. If the start address is not aligned to a 32-word/64-byte boundary, the total programming time is doubled.

All the addresses used in the write to buffer program operation must lie within the same page.

To program the content of the write buffer, this command must be followed by a Write to Buffer Program Confirm command.

If an address is written several times during a write to buffer program operation, the address/data counter will be decremented at each data load operation and the data will be programmed to the last word loaded into the buffer.

Invalid address combinations or failing to follow the correct sequence of bus write cycles will abort the write to buffer program.

The status register bits DQ1, DQ5, DQ6, DQ7 can be used to monitor the device status during a write to buffer program operation.

It is possible to detect program operation fails when changing programmed data from '0' to '1', that is when reprogramming data in a portion of memory already programmed. The resulting data will be the logical OR between the previous value and the current value.

After the write to buffer program operation has completed, the memory will return to read mode, unless an error has occurred. When an error occurring bus read operations to the bank being programmed will continue to output the status register (a bus reading operations from banks different from those including the blocks being programmed output the memory array content).

Command interface M29DW256G

Table 12. Write to buffer commands

	ч	Bus write operations ⁽¹⁾												
Command		ength		2nd		3rd		4th		5th		6th		
	نا	Add	Data	Add	Data	Add	Data	Add	Data	Add	Data	Add	Data	
Write to Buffer Program	N+5	555	AA	2AA	55	BAd	25	BAd	N ⁽²⁾	PA ⁽³⁾	PD	WBL ⁽⁴⁾	PD	
Unlock Bypass Write to Buffer Program	N+3	BAd	25	BAd	N ⁽²⁾	PA (3)	PD	WBL (6)	PD					
Write to Buffer Program Confirm	1	BAd (5)	29											
Buffered Program Abort Reset	3	555	AA	2AA	55	555	F0							

X don't care, PA program address, PD program data, BAd any address in the block, WBL write buffer location. All values in the table are in hexadecimal.

- 3. Each buffer has the same A23-A5 addresses. A0-A4 are used to select a word within the N+1 word page.
- 4. The 6th cycle has to be issued N time. WBL scans the word inside the page.
- 5. BAd must be identical to the address loaded during the write to buffer program 3rd and 4th cycles.
- 6. The 4th cycle has to be issued N time. WBL scans the word inside the page.

Buffered Program Abort Reset command

A Buffered Program Abort Reset command must be issued to reset the error condition and return to read mode. One of the erase commands must be used to set all the bits in a block or in the whole memory from '0' to '1'.

The write to buffer programming sequence can be aborted in the following ways:

- Load a value that is greater than the page buffer size during the number of locations to program step in the Write to Buffer Program command.
- Write to an address in a block different than the one specified during the write-buffer load command.
- Write an address/data pair to a different write-buffer-page than the one selected by the starting address during the write buffer data loading stage of the operation.
- Write data other than the Confirm command after the specified number of data load cycles.
- Load address/data pairs in an incorrect sequence during the enhanced buffered program.

The abort condition is indicated by DQ1 = 1, DQ6 = toggle, and DQ5 = 0 (all of which are status register bits). A Buffered Program Abort and Reset command sequence must be written to reset the device for the next operation. Note that the full 3-cycle Buffered Program Abort and Reset command sequence is required when using write to buffer and enhanced buffered programming features in unlock bypass mode.

See Appendix D, Figure 25: Write to buffer program flowchart and pseudocode, for a suggested flowchart on using the Write to Buffer Program command.

^{2.} The maximum number of cycles in the command sequence is 36. N+1 is the number of words to be programmed during the write to buffer program operation.

M29DW256G Command interface

6.3.2 Enhanced Buffered Program command set

Enhanced Buffered Entry command

Enhanced Buffered Entry command is used in order to allow the execution of the Enhanced Buffered Program. Once issued the Enhanced Buffered Entry Command, it is possible to execute Enhanced Buffered Program Command more then one time; there is no need to repeat it again.

After an Enhanced Buffered Entry Command only the commands belonging to the Enhanced Buffered Program command set are accepted. Enhanced Buffered Program command set is listed below:

- Enhanced Buffered Program command
- Enhanced Buffered Program Abort Reset
- Enhanced Buffered Program Exit

After these commands any other command is ignored.

In order to be sure that the Entry procedure has successfully completed and the device is ready to receive one of the commands listed above it is recommended to monitor toggle bit (DQ6), see *Figure 9: Data toggle flowchart*.

Enhanced Buffered Exit command

The Enhanced Buffered Exit command is used to return the device to read mode; before this command any other command, except the Enhanced Buffered Program command set, is ignored. Two bus write operations are required to issue the command.

Enhanced Buffered Program command

The Enhanced Buffered Program command makes use of the device's 256-word write buffer to speed up programming. 256 words can be loaded into the write buffer. Each write buffer has the same A23-A8 addresses. The Enhanced Buffered Program command dramatically reduces system programming time compared to both the standard non-buffered Program command and the Write to Buffer command.

When issuing an Enhanced Buffered Program command, the VPP/WP pin can be either held High, VIH, or raised to VPPH (see *Table 15: Program/erase times and program/erase endurance cycles* for details on typical enhanced buffered program times in both cases).

- Enhanced Buffered Program command is accepted only after Enhanced Buffered Entry command.
- Only one bus write cycle is needed to set up the Enhanced Buffered Program command. The setup code can be addressed to any location within the targeted block.
- The second bus write cycle loads the first address and data to be programmed. There a total of 256 address and data loading cycles.
- Once the 256 words are loaded to the buffer a further bus write is needed to program the content of the write buffer.
- Once Enhanced Buffered Program is completed Enhanced Buffered Exit command is required to return to read mode.

(See Table 13: Enhanced buffered program commands for more details);

Note that address/data cycles must be loaded in an increasing address order (from ADD[7:0]=00000000 to ADD[7:0]=11111111) and completely (all 256 words). Invalid address

Command interface M29DW256G

combinations or failing to follow the correct sequence of bus write cycles will abort the enhanced buffered program.

The status register bits DQ1, DQ5, DQ6, and DQ7 can be used to monitor the device status during an enhanced buffered program operation.

An external supply (12 V) can be used to improve programming efficiency.

It is possible to detect program operation fails when changing programmed data from '0' to '1', that is when reprogramming data in a portion of memory already programmed. The resulting data will be the logical OR between the previous and the current value.

See *Appendix D* and *Figure 26: Enhanced buffered program flowchart and pseudocode*, for a suggested flowchart on using the Enhanced Buffered Program command.

Enhanced Buffered Program Abort Reset command

After an enhanced buffered program abort the memory does not accept any other command; in order to reset the device from the abort must be issued an Enhanced Buffered Program Abort Reset. After the Enhanced Buffered Program Abort Reset command the memory waits for one of the Enhanced Buffered Program command set.

The enhanced buffered programming sequence can be aborted in the following ways:

- Write to an address in a block different than the one specified during the buffer load.
- Write an address/data pair to a different buffer-page than the one selected by the starting address during the buffer data loading stage of the operation
- Write data other than the Confirm command after the 256 data load cycles.
- Load address/data pairs in an incorrect sequence during the enhanced buffered program.
- Load a number of data that is less or greater than 256 during the program step.

Bus write operations Length Command 1st 2nd 3rd 256th 257th 258th Add Data Enter Enhanced Buffered Program 555 555 38 3 AA 2AA 55 Command Set Enhanced Buffered BAd BAd BAd BAd BAd 258 BAd 29 33 Data Data Data Data (00)(01)(FE) (00)Program (FF) Exit Enhanced **Buffered Program** 2 90 00 Х Х Command Set Enhanced Buffered 555 555 AΑ 2AA 55 Program Abort Reset

Table 13. Enhanced buffered program commands

The abort condition is indicated by DQ1 = 1, DQ6 = toggle, and DQ5 = 0 (all of which are status register bits).

M29DW256G Command interface

6.4 Protection commands

Blocks can be protected individually against accidental program, erase operations. The device block protection scheme is shown in *Figure 5: Software protection scheme*. See either or *Table 14* for a summary of the block protection commands.

The memory block and extended memory block protection is configured through the lock register (see Section 5.4: Lock register).

The program commands referred to in the following sections must be used according to all the Program command timings listed here:

- Figure 15.: Write enable controlled program waveforms,
- Figure 16.: Chip enable controlled program waveforms.

6.4.1 Lock Register Command Set

The M29DW256G offers a set of commands to access the lock register and to configure and verify its content. See the following sections in conjunction with Section 5.4: Lock register and Table 14.

Enter Lock Register Command Set command

Three bus write cycles are required to issue the Enter Lock Register Command Set command. Once the command has been issued, all bus read or program operations are issued to the lock register.

An Exit Protection Command Set command must then be issued to return the device to read mode (see Section 6.4.7: Exit Protection Command Set command).

Lock Register Program and Lock Register Read command

The Lock Register Program command allows to configure the lock register. The programmed data can then be checked by issuing a Lock Register Read command.

6.4.2 Extended Memory Block

The M29DW256G has one extra 128-word block (extended memory block) that can only be accessed using the Enter Extended Memory Block command.

The extended memory block cannot be erased, and is one-time programmable (OTP) memory.

In extended block mode, Erase, Chip Erase, Erase Suspend and Erase Resume commands are not allowed.

To exit from the extended memory block mode the Exit Extended Memory Block command must be issued.

Command interface M29DW256G

The device remains in extended memory block mode until the Exit Extended Memory Block command is issued or power is removed from the device. After power-up or an hardware reset, the device reverts to read mode, and the commands issued to block 0 addresses will properly address block 0.

The extended memory block can be protected by setting the extended memory block protection bit to '0' (see *Section 5.4: Lock register*); however once protected the protection cannot be undone.

Note:

When the device is in the extended memory block mode, the VPP/WP pin cannot be used for fast programming and the unlock bypass mode is not available (see Section 2.8: VPP/write protect (VPP/WP)).

Enter Extended Memory Block command

The M29DW256G has one extra 128-word block (extended memory block) that can only be accessed using the Enter Extended Memory Block command.

Three bus write cycles are required to issue the Extended Memory Block command. Once the command has been issued the device enters the extended memory block mode where all bus read or program operations are conducted on the extended memory block. Once the device is in the extended block mode, the extended memory block is addressed by using the addresses occupied by block 0 in the other operating modes (see *Table 32: Block Addresses, Bank B*, and *Table 34: Block Addresses, Bank C*).

The device remains in extended memory block mode until the Exit Extended Memory Block command is issued or power is removed from the device. After power-up or a hardware reset, the device reverts to read mode, and the commands issued to block 0 addresses will properly address block 0.

The extended memory block cannot be erased, and can be treated as one-time programmable (OTP) memory.

In extended block mode, Erase, Chip Erase, Erase Suspend and Erase Resume commands are not allowed.

To exit from the extended memory block mode the Exit Extended Memory Block command must be issued.

The extended memory block can be protected by setting the extended memory block protection bit to '1' (see *Section 5.4: Lock register*); however once protected the protection cannot be undone.

Note:

When the device is in the extended memory block mode, the V_{PP}/\overline{WP} pin cannot be used for fast programming and the unlock bypass mode is not available (see Section 2.6: $VPP/write\ protect\ (VPP/WP)$).

Exit Extended Memory Block command

The Exit Extended Memory Block command is used to exit from the extended memory block mode and return the device to read mode. Four bus write operations are required to issue the command.

M29DW256G Command interface

6.4.3 Volatile protection mode command set

Enter Volatile Protection Command Set command

Three bus write cycles are required to issue the Enter Volatile Protection Command Set command. Once the command has been issued, only the commands related to the volatile protection mode and the Exit Protection Command Set can be issued to the device.

Volatile Protection Bit Program command (VPB Program)

The VPB Program command individually sets a VPB to '0' for a given block.

If the NVPB for the same block is set, the block is locked regardless of the value of the VPB bit. (see *Table 9: Block protection status*).

Read VPB Status command

The status of a VPB for a given block can be read by issuing a Read VPB Status command along with the block address.

VPB Clear command

The VPB Clear command individually clears (sets to '1') the VPB for a given block.

If the NVPB for the same block is set, the block is locked regardless of the value of the VPB bit (see *Table 9: Block protection status*).

6.4.4 Non-volatile protection mode command set

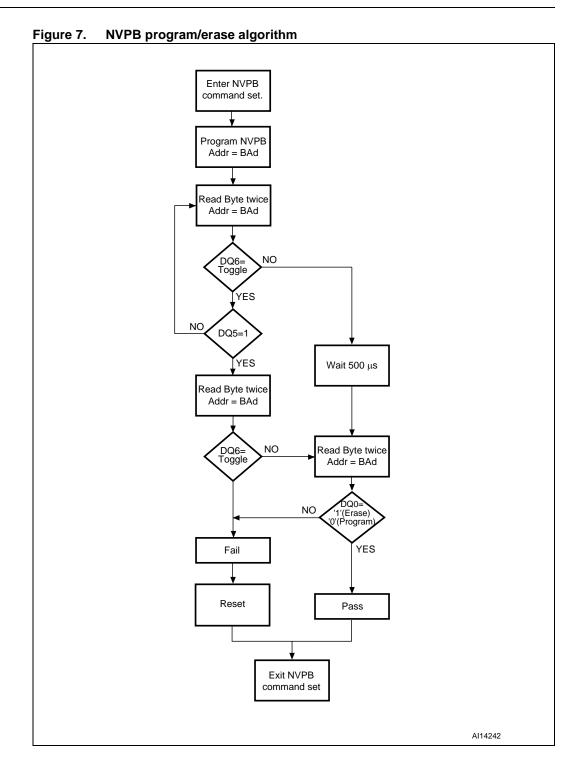
Enter Non-volatile Protection Command Set command

Three bus write cycles are required to issue the Enter Non-volatile Protection Command Set command. Once the command has been issued, only the commands related to the non-volatile protection mode and the Exit Protection Command Set can be issued to the device.

Non-volatile Protection Bit Program command (NVPB Program)

A block can be protected from program or erase by issuing a Non-volatile Protection Bit command along with the block address. This command sets the NVPB to '0' for a given block.

The Non-volatile Bit Program command is a special kind of Program command and must be used according to all the Program command timings. The result from this command can be verified by checking the status register.


Read Non-volatile Protection Bit Status command (Read NVPB Status)

The status of a NVPB for a given block or group of blocks can be read by issuing a Read Non-Volatile Modify Protection Bit command along with the block address.

Clear all Non-volatile Protection Bits command (Clear all NVPBs)

The NVPBs are erased simultaneously by issuing a Clear all Non-volatile Protection Bits command. No specific block address is required. If the NVPB lock bit is set to '0', the command fails.

Command interface M29DW256G

M29DW256G Command interface

6.4.5 NVPB lock bit command set

Enter NVPB Lock Bit Command Set command

Three bus write cycles are required to issue the Enter NVPB Lock Bit Command Set command. Once the command has been issued, the only commands allowing to set the NVPB lock bit and the Exit Protection Command Set can be issued to the device. Any other command is ignored. See Section 5.2.2: Non-volatile protection bit lock bit.

NVPB Lock Bit Program command

This command is used to set the NVPB lock bit to '0' thus locking the NVPBs, and preventing them from being modified.

Read NVPB Lock Bit Status command

This command is used to read the status of the NVPB lock bit.

6.4.6 Password protection mode command set

The device accepts the commands belonging to the Password protection mode commands set if and only if the Password protection mode lock bit (DQ2) has been set to '0', (see section Section 6.4.6: Password protection mode command set) otherwise the password commands are ignored.

Enter Password Protection Command Set command

Three bus write cycles are required to issue the Enter Password Protection Command Set command. Once the command has been issued, only the commands related to the password protection mode and the Exit Protection Command Set can be issued to the device. Any other command is ignored.

Password Program command

The Password Program command is used to program the 64-bit password used in the password protection mode.

To program the 64-bit password, the complete command sequence must be entered four times at four consecutive addresses selected by A1-A0. The Password Program command is a special kind of Program command and must be used according to all the Program command timings. The result from this command can be verified by checking the status register.

The password can be checked by issuing a Password Read command.

Once password program operation has completed, an Exit Protection Command Set command must be issued to return the device to read mode. The password protection mode can then be selected.

By default, all password bits are set to '1'.

Password Read command

The Password Read command is used to verify the password used in password protection mode.

To verify the 64-bit password, the complete command sequence must be entered four times at four consecutive addresses selected by A1-A0.

Command interface M29DW256G

If the password mode lock bit is programmed and the user attempts to read the password, the device will output FFh onto the I/O data bus.

An Exit Protection Command Set command must be issued to return the device to read mode.

Password Unlock command

The Password Unlock command is used to clear the NVPB lock bit allowing to modify the NVPBs.

The Password Unlock command must be issued along with the correct password.

There must be a 1 µs delay between successive password unlock commands in order to prevent hackers from cracking the password by trying all possible 64-bit combinations. If this delay is not respected, the latest command will be ignored.

Approximately 1 μ s is required for unlocking the device after the valid 64-bit password has been provided.

6.4.7 Exit Protection Command Set command

The Exit Protection Command Set command is used to exit from the lock register, password protection, non-volatile protection, volatile protection, and NVPB lock bit command set mode. It returns the device to read mode.

M29DW256G Command interface

Table 14. Block protection commands⁽¹⁾⁽²⁾⁽³⁾

								Bus o	peratio	ons						
	Command	Length		1st	21	nd	3	rd		4th		5th		6th	-	7th
			Ad	Data	Ad	Data	Ad	Data	Ad	Data	Ad	Data	Ad	Data	Ad	Data
ster	Enter Lock Register Command Set ⁽⁴⁾	3	555	AA	2AA	55	555	40								
ock register	Lock Register Program	2	Х	A0	Х	DATA (5)										
۲	Lock Register Read	1	Х	DATA ⁽⁵⁾												
_	Enter Volatile Protection Command Set	3	555	AA	2AA	55	(BKA) 555	E0								
Protection	VPB Program	2	х	A0	(BKA) BAd	00										
Volatile P	Read VPB Status	1	(BKA) BAd	RD(0)												
×	VPB Clear	2	Х	A0	(BKA) BAd	01										
Protection	Enter Non-volatile Protection Command Set ⁽⁴⁾	3	555	AA	2AA	55	(BKA) BAd	C0								
tile Prot	NVPB Program ⁽⁶⁾	2	Х	A0	(BKA) BAd	00										
Non-Volatile	Clear all NVPBs ⁽⁷⁾	2	Х	80	00	30										
Non	Read NVPB Status	1	(BKA) BAd	RD(0)												
Lock bit	Enter NVPB Lock Bit Command Set	3	555	AA	2AA	55	555	50								
3 Loc	NVPB Lock Bit Program	2	Х	A0	Х	00										
NVPB	Read NVPB Lock Bit Status	1	ВКА	RD(0)												
Protection	Enter Password Protection Command Set ⁽⁴⁾	3	555	AA	2AA	55	555	60								
	Password Program ⁽⁸⁾⁽⁹⁾	2	Х	A0	PWAn	PWDn										
Password	Password Read	4	00	PWD0	01	PWD1	02	PWD2	03	PWD3						
Pass	Password Unlock ⁽⁷⁾	7	00	25	00	03	00	PWD0	01	PWD1	02	PWD2	03	PWD3	00	29
	it Protection Command t ⁽¹⁰⁾	2	х	90	х	00										
En	ter Extended Block ⁽⁴⁾	3	555	AA	2AA	55	555	88								
Ex	it Extended Block	4	555	AA	2AA	55	555	90	Х	00						

Ad address, Dat data, BAd any address in the block, RD read data, PWDn password word 0 to 3, PWAn password address (n = 0 to 3), X don't care. All values in the table are in hexadecimal.

- 2. Grey cells represent read cycles. The other cells are write cycles.
- 3. DQ15 to DQ8 are 'don't care' during unlock and command cycles. A23 to A16 are 'don't care' during unlock and command cycles unless an address is required.
- An Enter command sequence must be issued prior to any operation; it disables read and write operations from and to block 0. Read and write operations from any other block are allowed.
- DATA = lock register content.
- 6. Protected and unprotected states correspond to 00 and 01, respectively.
- 7. The Clear all NVPBs command programs all NVPBs before erasure in order to prevent the over-erasure of previously cleared non-volatile modify protection bits.
- 8. Only one portion of password can be programmed or read by each Password Program command.
- 9. The password portion can be entered or read in any order as long as the entire 64-bit password is entered or read.
- 10. If an Entry Command Set command is issued, an Exit Protection Command Set command must be issued to return the device to read mode.

N numonyx

45/84

Command interface M29DW256G

Table 15. Program/erase times and program/erase endurance cycles

	Parameter		Min	Typ ⁽¹⁾⁽²⁾	Max ⁽²⁾	Unit
Chip Erase				145	400 ⁽³⁾	s
Chip Erase	VPP/WP = VppH			125	400 ⁽³⁾	s
Block Erase (128 kw	ord) ⁽⁴⁾			1	4	s
Block Erase (32 kwo	rd)			0.37	1.5	s
Erase Suspend later	ncy time			25	35	μs
Block Erase timeout			50			μs
	Single Word Program			16		μs
Word Program	Write to Buffer Program	$V_{PP}/\overline{WP} = V_{PPH}$		50	200 ⁽³⁾	
	(32 words at-a-time)	$V_{PP}/\overline{WP} = V_{IH}$		70		μs
Chip Program (word	by word)	•		270	400 ⁽³⁾	s
Chip Program (Write	to Buffer Program) ⁽⁵⁾			25	200 ⁽³⁾	s
Chip Program (Write	to Buffer Program with V _{PP} /WF	= V _{PPH}) ⁽⁵⁾		13	50 ⁽³⁾	s
Chip Program (Enha	nced Buffered Program) ⁽⁵⁾			15	60	s
Chip Program (Enha	nced Buffered Program with V _F	$_{PP}/\overline{WP} = V_{PP})^{(5)}$		10	40	s
Program Suspend la	tency time			5	15	μs
Program/Erase cycle	es (per block)		100,000			Cycles
Data retention			20			Years

^{1.} Typical values measured at room temperature and nominal voltages and for not cycled devices.

^{2.} Sampled, but not 100% tested.

^{3.} Maximum value measured at worst case conditions for both temperature and V_{CC} after 100,000 program/erase cycles.

^{4.} Block erase polling cycle time (see Figure 20: Data polling AC waveforms).

^{5.} Intrinsic program timing, that means without the time required to execute the bus cycles to load the program commands.

M29DW256G Status register

7 Status register

The M29DW256G has one status register. The various bits convey information and errors on the current and previous program/erase operation. Bus read operations from any address within the memory, always read the status register during program and erase operations. It is also read during erase suspend when an address within a block being erased is accessed.

The bits in the status register are summarized in *Table 16: Status register bits*.

7.1 Data polling bit (DQ7)

The data polling bit can be used to identify whether the program/erase controller has successfully completed its operation or if it has responded to an erase suspend. The data polling bit is output on DQ7 when the status register is read.

During program operations the data polling bit outputs the complement of the bit being programmed to DQ7. After successful completion of the program operation the memory returns to read mode and bus read operations, from the address just programmed, output DQ7, not its complement.

During erase operations the data polling bit outputs '0', the complement of the erased state of DQ7. After successful completion of the erase operation the memory returns to read mode.

In erase suspend mode the data polling bit will output a '1' during a bus read operation within a block being erased. The data polling bit will change from '0' to '1' when the program/erase controller has suspended the erase operation.

Figure 8: Data polling flowchart, gives an example of how to use the data polling bit. A valid address is the address being programmed or an address within the block being erased.

7.2 Toggle bit (DQ6)

The toggle bit can be used to identify whether the program/erase controller has successfully completed its operation or if it has responded to an erase suspend. The toggle bit is output on DQ6 when the status register is read.

During a program/erase operation the toggle bit changes from '0' to '1' to '0', etc., with successive bus read operations at any address. After successful completion of the operation the memory returns to read mode.

During erase suspend mode the toggle bit will output when addressing a cell within a block being erased. The toggle bit will stop toggling when the program/erase controller has suspended the erase operation.

Figure 9: Data toggle flowchart, gives an example of how to use the toggle bit.

Status register M29DW256G

7.3 Error bit (DQ5)

The error bit can be used to identify errors detected by the program/erase controller. The error bit is set to '1' when a program, block erase or chip erase operation fails to write the correct data to the memory. If the error bit is set a Read/Reset command must be issued before other commands are issued. The error bit is output on DQ5 when the status register is read.

Note that the Program command cannot change a bit set to '0' back to '1' and attempting to do so will set DQ5 to '1'. A bus read operation to that address will show the bit is still '0'. One of the erase commands must be used to set all the bits in a block or in the whole memory from '0' to '1'.

7.4 Erase timer bit (DQ3)

The erase timer bit can be used to identify the start of program/erase controller operation during a Block Erase command. Once the program/erase controller starts erasing the erase timer bit is set to '1'. Before the program/erase controller starts the erase timer bit is set to '0' and additional blocks to be erased may be written to the command interface. The erase timer bit is output on DQ3 when the status register is read.

7.5 Alternative toggle bit (DQ2)

The alternative toggle bit can be used to monitor the program/erase controller during erase operations. The alternative toggle bit is output on DQ2 when the status register is read.

During chip erase and block erase operations the toggle bit changes from '0' to '1' to '0', etc., with successive bus read operations from addresses within the blocks being erased. A protected block is treated the same as a block not being erased. Once the operation completes the memory returns to read mode.

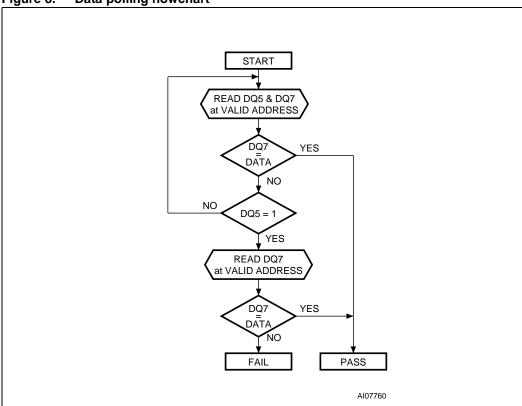
During erase suspend the alternative toggle bit changes from '0' to '1' to '0', etc. with successive bus read operations from addresses within the blocks being erased. Bus read operations to addresses within blocks not being erased will output the memory array data as if in read mode.

After an erase operation that causes the error bit to be set, the alternative toggle bit can be used to identify which block or blocks have caused the error. The alternative toggle bit changes from '0' to '1' to '0', etc. with successive bus read operations from addresses within blocks that have not erased correctly. The alternative toggle bit does not change if the addressed block has erased correctly.

7.6 Buffered program abort bit (DQ1)

The buffered program abort bit, DQ1, is set to '1' when a write to buffer program or enhanced buffered program operation aborts. The Buffered Program Abort Reset command must be issued to return the device to read mode (see *Buffered Program Abort Reset command* and *Enhanced Buffered Program Abort Reset command* in *Section 6.3: Fast program commands*).

M29DW256G Status register


Table 16. Status register bits⁽¹⁾

Operation	Address	DQ7	DQ6	DQ5	DQ3	DQ2	DQ1	RB
Program	Any address	DQ7	Toggle	0	_	-	0	0
Program during erase suspend	Any address	DQ7	Toggle	0	_	-	_	0
Enhanced Buffered Program Entry	Any address	-	Toggle	0	-	-	-	0
Buffered program abort	Any address	DQ7	Toggle	0	-	-	1	0
Program error	Any address	DQ7	Toggle	1	-	-	_	Hi-Z
Chip erase	Any address	0	Toggle	0	1	Toggle	_	0
	Erasing block	0	Toggle	0	0	Toggle	_	0
Block erase before timeout	Non-erasing block	0	Toggle	0	0	No toggle	-	0
	Erasing block	0	Toggle	0	1	Toggle	_	0
Block erase	Non-erasing block	0	Toggle	0	1	No toggle	-	0
Erase suspend	Erasing block	1	No Toggle	0	-	Toggle	-	Hi-Z
Erase suspenu	Non-erasing block		Data rea	ad as r	ormal		-	Hi-Z
Erase error	Good block address	0	Toggle	1	1	No toggle	_	Hi-Z
Liase citoi	Faulty block address	0	Toggle	1	1	Toggle	_	Hi-Z

^{1.} Unspecified data bits should be ignored.

Status register M29DW256G

Figure 8. Data polling flowchart

 M29DW256G Status register

Figure 9. Data toggle flowchart

8 Dual operations and multiple bank architecture

The multiple bank architecture of the M29DW256G gives greater flexibility for software developers to split the code and data spaces within the memory array. The dual operations feature simplifies the software management of the device by allowing code to be executed from one bank while another bank is being programmed or erased.

The dual operations feature means that while programming or erasing in one bank, read operations are possible in another bank with zero latency.

Only one bank at a time is allowed to be in program or erase mode. However, certain commands can cross bank boundaries, which means that during an operation only the banks that are not concerned with the cross bank operation are available for dual operations. For example, if a Block Erase command is issued to erase blocks in both bank A and bank B, then only banks C or D are available for read operations while the erase is being executed.

If a read operation is required in a bank, which is programming or erasing, the program or erase operation can be suspended.

Also if the suspended operation was erase then a program command can be issued to another block, so the device can have one block in erase suspend mode, one programming and other banks in read mode.

By using a combination of these features, read operations are possible at any moment.

Dual operations that are allowed in other banks and in the same bank are shown here. Note that only the commonly used commands are represented in these tables.

Table 17. Dual operations allowed in other banks⁽¹⁾

			С	ommand	s allowed in	n another	bank	
Status of bank	Read	Read Status Register (2)	Read CFI Query	Auto Select	Program	Erase	Program/Erase Suspend	Program/Erase Resume
Idle	Yes	Yes ⁽³⁾	Yes	Yes	Yes	Yes	Yes ⁽³⁾	Yes ⁽⁴⁾
Programming	Yes	No	No	No	-	_	No	No
Erasing	Yes	No	No	No	-	=	No	No
Program suspended	Yes	No	Yes	Yes	No	No	_	No
Erase suspended	Yes	No	Yes	Yes	Yes	No	-	Yes ⁽⁵⁾

^{1.} If several banks are involved in a program or erase operation, then only the banks that are not concerned with the operation are available for dual operations.

- 2. Read Status Register is not a command. The status register can be read during a block program or erase operation.
- 3. Only after a program or erase operation in that bank.
- 4. Only after a Program or Erase Suspend command in that bank.
- $5. \quad \text{Only an erase resume is allowed if the bank was previously in erase suspend mode}.$

M29DW256G Maximum ratings

9 Maximum ratings

Stressing the device above the rating listed in *Table 18: Absolute maximum ratings* may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied.

Table 18. Absolute maximum ratings

Symbol	Parameter	Min	Max	Unit
T _{BIAS}	Temperature under bias	-50	125	°C
T _{STG}	Storage temperature	-65	150	°C
V _{IO}	Input or output voltage ⁽¹⁾⁽²⁾	-0.6	V _{CC} + 0.6	٧
V _{CC}	Supply voltage	-0.6	4	V
V _{CCQ}	Input/output supply voltage	-0.6	4	V
V _{PPH} ⁽³⁾	Program voltage	-0.6	10.5	V

^{1.} Minimum voltage may undershoot to -2 V during transition and for less than 20 ns during transitions.

^{2.} Maximum voltage may overshoot to V_{CC} + 2 V during transition and for less than 20 ns during transitions.

^{3.} V_{PPH} must not remain at 9 V for more than a total of 80 hrs.

10 DC and AC parameters

This section summarizes the operating measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and AC characteristics tables that follow, are derived from tests performed under the measurement conditions summarized in *Table 19: Operating and AC measurement conditions*. Designers should check that the operating conditions in their circuit match the operating conditions when relying on the quoted parameters.

Table 19. Operating and AC measurement conditions

		M29	DW256G		
Parameter	70 or 6	60 ⁽¹⁾ ns	80	Unit	
	Min	Max	Min	Max	
V _{CC} supply voltage	2.7	3.6	2.7	3.6	V
V_{CCQ} supply voltage $(V_{CCQ} \le V_{CC})$	2.7	3.6	1.65	3.6	V
Ambient operating temperature (temperature range 1)	0	70	0	70	°C
Ambient operating temperature (temperature range 6)	- 40	85	- 40	85	°C
Load capacitance (C _L)	3	0	3	0	pF
Input rise and fall times		10		10	ns
Input pulse voltages	0 to '	V _{CCQ}	0 to '	V _{CCQ}	V
Input and output timing ref. voltages	V _C	_{CQ} /2	V _C	V	

^{1.} Only available upon customer request.

Figure 10. AC measurement load circuit

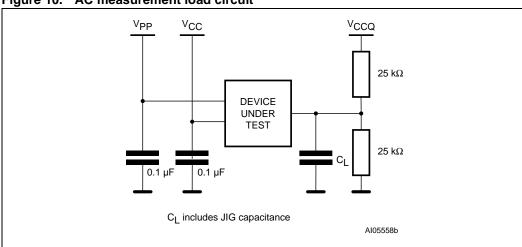


Figure 11. AC measurement I/O waveform

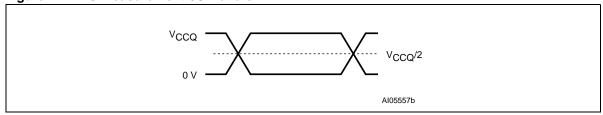
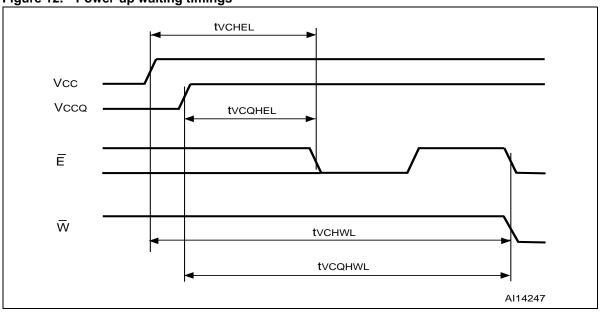



Table 20. Power-up waiting timings

Cumbal	Dozomotor		M29DW256	G	l lmit
Symbol	Parameter	•	70 or 60 ⁽¹⁾ ns	80 ns	Unit
t _{VCHEL}	V _{CC} ⁽²⁾ High to Chip Enable Low	Min	55		μs
t _{VCQHEL}	V _{CCQ} ⁽²⁾ High to Chip Enable Low	Min	55		μs
t _{VCHWL}	V _{CC} High to Write Enable Low	Min	500		μs
t _{VCQHWL}	V _{CCQ} High to Write Enable Low	Min	500		μs

^{1.} Only available upon customer request.

Figure 12. Power-up waiting timings

^{2.} $\,\,V_{CC}$ and V_{CCQ} ramps must be synchronized during power-up.

Table 21. Device capacitance⁽¹⁾

Symbol	Parameter	Test condition	Min	Max	Unit
C _{IN}	Input capacitance	V _{IN} = 0 V		6	pF
C _{OUT}	Output capacitance	V _{OUT} = 0 V		12	pF

^{1.} Sampled only, not 100% tested.

Table 22. DC characteristics

Symbol	Para	meter	Test condition		Min	Тур	Max	Unit				
I _{LI} ⁽¹⁾	Input leakage cu	urrent	$0 \text{ V} \leq V_{IN} \leq V_{CC}$				±1	μΑ				
I _{LO}	Output leakage	current	0 V ≤ V _O	$0 \text{ V} \leq \text{V}_{\text{OUT}} \leq \text{V}_{\text{CC}}$		0 V ≤ V _{OUT} ≤ V _{CC}		$0 \text{ V} \leq \text{V}_{\text{OUT}} \leq \text{V}_{\text{CC}}$			±1	μΑ
1	Read current	Random read	Ē = V _{IL} , f = 6			10	mA					
I _{CC1}	Page read E = \		·-	G = V _{IH} ,) MHz			1	mA				
I _{CC2}	Supply current (standby)		_Q ± 0.2 V, _{CQ} ± 0.2 V			100	μA				
I _{CC3} ⁽²⁾	Supply current (program/erase)	Program/erase controller active	Program/erase V _{PP} /WP = V _{IL} or V _{IH}			20	mA				
		Τ	$V_{PP}/\overline{WP} = V_{PPH}$				15	mA				
I _{PP1}	December	Read or standby	$V_{PP}/\overline{WP} \le V_{CC}$			1	5	μΑ				
I _{PP2}	Program current	Reset	RP = V _S	_S ± 0.2 V		1	5	μΑ				
	(program)	Program	V _{PP} /WP = VppH ± 5%			1	10	mA				
I _{PP3}		operation ongoing	$V_{PP}/\overline{WP} = V_{CC}$			1	5	mA				
	Program	Erase	$V_{PP}/\overline{WP} =$	VppH ± 5%		3	10	mA				
I _{PP4}	current (erase)	operation ongoing	V _{PP} /WI	= V _{CC}		1	5	mA				
V _{IL}	Input Low voltag	je	V _{CC} ≥	2.7 V	-0.5		0.3V _{CCQ}	V				
V _{IH}	Input High voltage	ge	V _{CC} ≥	2.7 V	0.7V _{CCQ}		V _{CCQ} +0.4	V				
V _{OL}	Output Low volta	age	I _{OL} = 100 μA, V _{CCQ} = V	I_{OL} = 100 μ A, V_{CC} = $V_{CC(min)}$, V_{CCQ} = $V_{CCQ(min)}$			0.15V _{CCQ}	٧				
V _{OH}	Output High volt	tage	1 - 400 \ \ / - \ /		0.85V _{CCQ}			٧				
V _{PPH}	Voltage for V _{PP} /\(\bar{V}\) acceleration	WP program				8.5	9.5	٧				
V _{LKO} ⁽²⁾	Program/erase l voltage	lockout supply			1.8		2.5	٧				

^{1.} The maximum input leakage current is $\pm 5~\mu A$ on the V_{PP}/\overline{WP} pin.

^{2.} Sampled only, not 100% tested.

Figure 13. Random read AC waveforms

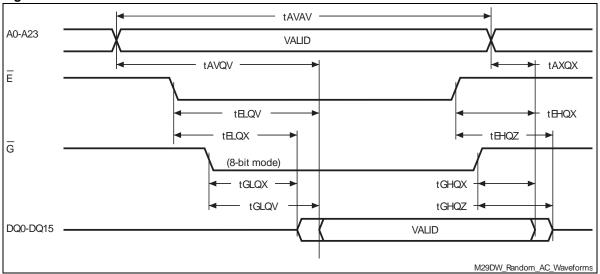


Figure 14. Page read AC waveforms

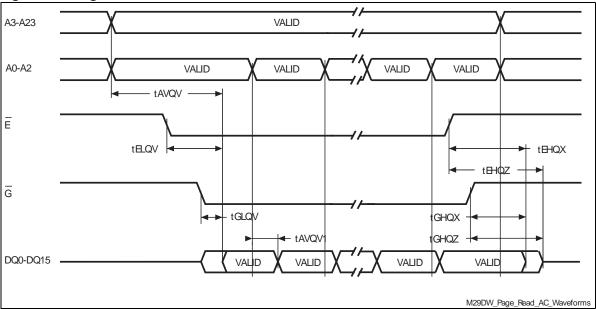


Table 23. Read AC characteristics

						M29DW2	56G	
Symbol	Alt.	Parameter	Test condition		60 ns ⁽¹⁾ V _{CCQ} =V _{CC}	70 ns V _{CCQ} =V _{CC}	80 ns V _{CCQ} =1.65 V to V _{CC}	Unit
t _{AVAV}	t _{RC}	Address Valid to Next Address Valid	$\overline{E} = V_{IL}$ $\overline{G} = V_{IL}$	Min	60	70	80	ns
t _{AVQV}	t _{ACC}	Address Valid to Output Valid	$\overline{E} = V_{IL}$ $\overline{G} = V_{IL}$	Max	60	70	80	ns
t _{AVQV1}	t _{PAGE}	Address Valid to Output Valid (page)	$\overline{E} = V_{IL}$ $\overline{G} = V_{IL}$	Max	25	25	30	ns
t _{ELQX} ⁽²⁾	t _{LZ}	Chip Enable Low to Output transition	G = V _{IL}	Min	0	0	0	ns
t _{ELQV}	tĒ	Chip Enable Low to Output Valid	G = V _{IL}	Max	60	70	80	ns
t _{GLQX} ⁽²⁾	t _{OLZ}	Output Enable Low to Output transition	E = V _{IL}	Min	0	0	0	ns
t _{GLQV}	t _{OE}	Output Enable Low to Output Valid	E = V _{IL}	Max	25	25	30	ns
t _{EHQZ} ⁽²⁾	t _{HZ}	Chip Enable High to Output Hi-Z	G = V _{IL}	Max	25	25	30	ns
t _{GHQZ} ⁽²⁾	t _{DF}	Output Enable High to Output Hi-Z	E = V _{IL}	Max	25	25	30	ns
t _{EHQX} t _{GHQX} t _{AXQX}	t _{OH}	Chip Enable, Output Enable or Address transition to Output transition		Min	0	0	0	ns

^{1.} Only available upon customer request.

^{2.} Sampled only, not 100% tested.

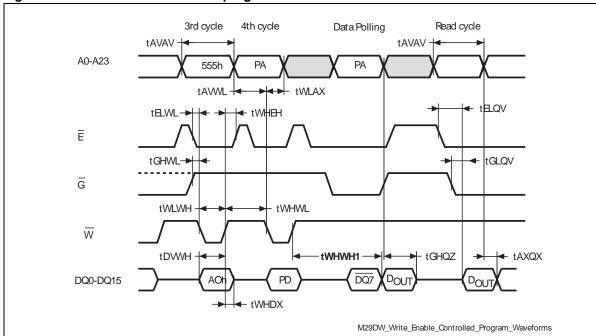


Figure 15. Write enable controlled program waveforms

- Only the third and fourth cycles of the Program command are represented. The Program command is followed by the check
 of status register data polling bit and by a read operation that outputs the data, DOUT, programmed by the previous
 Program command.
- 2. PA is the address of the memory location to be programmed. PD is the data to be programmed.
- 3. DQ7 is the complement of the data bit being programmed to DQ7 (see Section 7.1: Data polling bit (DQ7)).
- 4. See Table 24: Write AC characteristics, write enable controlled, Table 25: Write AC characteristics, chip enable controlled and Table 23: Read AC characteristics for details on the timings.

Table 24. Write AC characteristics, write enable controlled

0	A.1.	P	Parameter				
Symbol	Alt	Parameter	60 ns ⁽¹⁾	70 ns	80 ns	Unit	
t _{AVAV}	t _{WC}	Address Valid to Next Address Valid	Min	65	70	80	ns
t _{ELWL}	t _{CS}	Chip Enable Low to Write Enable Low	Min	0	0	0	ns
t _{WLWH}	t _{WP}	Write Enable Low to Write Enable High	Min	35	35	35	ns
t _{DVWH}	t _{DS}	Input Valid to Write Enable High	Min	45	45	45	ns
t _{WHDX}	t _{DH}	Write Enable High to Input transition	Min	0	0	0	ns
t _{WHEH}	t _{CH}	Write Enable High to Chip Enable High	Min	0	0	0	ns
t _{WHWL}	t _{WPH}	Write Enable High to Write Enable Low	Min	30	30	30	ns
t _{AVWL}	t _{AS}	Address Valid to Write Enable Low	Min	0	0	0	ns
t _{WLAX}	t _{AH}	Write Enable Low to Address transition	Min	45	45	45	ns
t _{GHWL}		Output Enable High to Write Enable Low	Min	0	0	0	ns
t _{WHGL}	t _{OEH}	Write Enable High to Output Enable Low	Min	0	0	0	ns
t _{WHRL} (2)	t _{BUSY}	Program/Erase Valid to RB Low	Max	30	30	30	ns
t _{VCHEL}	t _{VCS}	V _{CC} High to Chip Enable Low	Min	50	50	50	μs

^{1.} Only available upon customer request.

^{2.} Sampled only, not 100% tested.

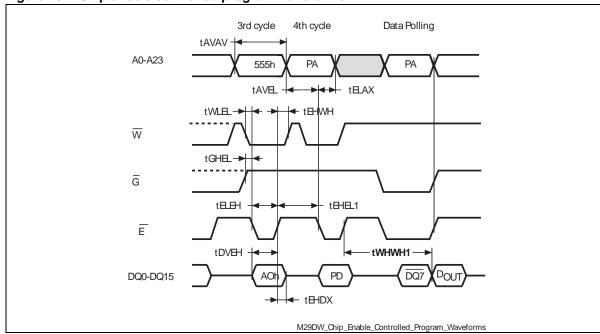


Figure 16. Chip enable controlled program waveforms

- Only the third and fourth cycles of the Program command are represented. The Program command is followed by the check of status register data polling bit.
- 2. PA is the address of the memory location to be programmed. PD is the data to be programmed.
- 3. DQ7 is the complement of the data bit being programmed to DQ7 (see Section 7.1: Data polling bit (DQ7)).
- 4. See Table 24: Write AC characteristics, write enable controlled, Table 25: Write AC characteristics, chip enable controlled and Table 23: Read AC characteristics for details on the timings.

Table 25. Write AC characteristics, chip enable controlled

Comple al	A 14	Description		N	129DW256	G	11:4
Symbol	Alt.	Parameter	60 ns ⁽¹⁾	70 ns	80 ns	Unit	
t _{AVAV}	t _{WC}	Address Valid to Next Address Valid	Min	65	75	85	ns
t _{WLEL}	t _{WS}	Write Enable Low to Chip Enable Low	Min	0	0	0	ns
t _{ELEH}	t _{CP}	Chip Enable Low to Chip Enable High	Min	35	35	35	ns
t _{DVEH}	t _{DS}	Input Valid to Chip Enable High	Min	45	45	45	ns
t _{EHDX}	t_{DH}	Chip Enable High to Input transition	Min	0	0	0	ns
t _{EHWH}	t_{WH}	Chip Enable High to Write Enable High	Min	0	0	0	ns
t _{EHEL}	t _{CPH}	Chip Enable High to Chip Enable Low	Min	30	30	30	ns
t _{AVEL}	t _{AS}	Address Valid to Chip Enable Low	Min	0	0	0	ns
t _{ELAX}	t _{AH}	Chip Enable Low to Address transition	Min	45	45	45	ns
t _{GHEL}		Output Enable High Chip Enable Low	Min	0	0	0	ns

^{1.} Only available upon customer request.

Figure 17. Reset AC waveforms (no program/erase ongoing)

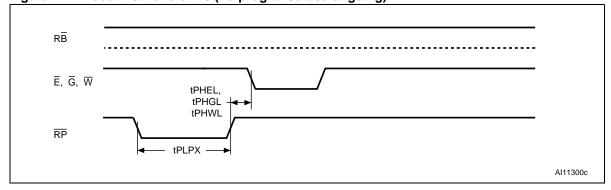


Figure 18. Reset during program/erase operation AC waveforms

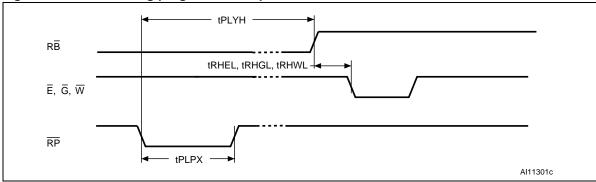


Table 26. Reset AC characteristics

Symbol	Alt.	Parameter		M29DW256G			Unit
Symbol	Symbol Ait. Farameter			60 ⁽¹⁾ ns	70 ns	80 ns	Offic
t _{PLYH} ⁽²⁾	t _{READ}	RP Low to read mode, during program or erase Max		55	55	55	μs
t _{PLPX}	t _{RP}	RP pulse width Min		20	20	20	μs
t _{PHEL} , t _{PHGL} , t _{PHWL} (2)	t _{RH}	RP High to Write Enable Low, Chip Enable Low, Dutput Enable Low		55	55	55	ns
	t	RP Low to standby mode, during read mode	Min	20	20	20	μs
t _{RPD}		RP Low to standby mode, during program or erase	Min	55	55	55	μs
t _{RHEL} , t _{RHGL} , t _{RHWL} (2)	t _{RB}	RB High to Write Enable Low, Chip Enable Low, Output Enable Low		0	0	0	ns

- 1. Only available upon customer request.
- 2. Sampled only, not 100% tested.

Figure 19. Accelerated program timing waveforms

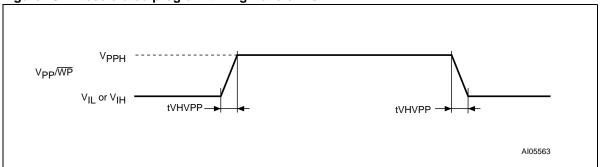


Figure 20. Data polling AC waveforms

- 1. DQ7 returns valid data bit when the ongoing Program or Erase command is completed.
- 2. See Table 27: Accelerated program and data polling/data toggle AC characteristics and Table 23: Read AC characteristics for details on the timings.

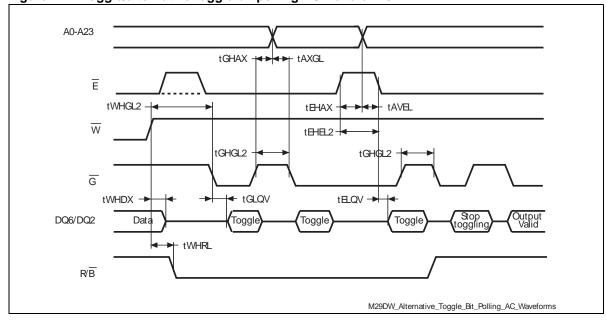


Figure 21. Toggle/alternative toggle bit polling AC waveforms

Table 27. Accelerated program and data polling/data toggle AC characteristics

Symbol Alt		Parameter			M29DW256G			
Syllibol	Ait	Parameter			70 ns	80 ns	Unit	
t _{VHVPP}		V _{PP} /WP raising and falling time Min		250	250	250	ns	
t _{AXGL}	t _{ASO}	Address setup time to Output Enable Low during toggle bit polling	Min	10	10	10	ns	
t _{GHAX,} t _{EHAX}	t _{AHT}	Address hold time from Output Enable during toggle bit polling Min		10	10	10	ns	
t _{EHEL2}	t _{EPH}	Chip Enable High during toggle bit polling	Min	10	10	10	ns	
t _{WHGL2,} t _{GHGL2}	t _{OEH}	Output hold time during data and toggle bit polling Min		20	20	20	ns	
t _{WHRL}	t _{BUSY}	Program/Erase Valid to RB Low	Max	30	30	30	ns	

^{1.} Only available upon customer request.

DQ6 stops toggling when the ongoing Program or Erase command is completed. DQ2 stops toggling when the ongoing Chip Erase or Block Erase command is completed.

^{2.} See Table 27: Accelerated program and data polling/data toggle AC characteristics and Table 23: Read AC characteristics for details on the timings.

11 Package mechanical

In order to meet environmental requirements, Numonyx offers these devices in RoHS compliant packages. RoHS compliant packages are lead-free. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label.

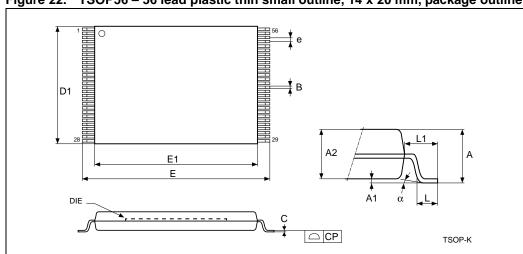


Figure 22. TSOP56 – 56 lead plastic thin small outline, 14 x 20 mm, package outline

Table 28. TSOP56 – 56 lead plastic thin small outline, 14 x 20 mm, package mechanical data

Symbol	Millimeters			Inches		
Symbol	Тур	Min	Max	Тур	Min	Max
Α	_	_	1.20	_	_	0.047
A1	0.10	0.05	0.15	0.004	0.002	0.006
A2	1.00	0.95	1.05	0.039	0.037	0.041
В	0.22	0.17	0.27	0.009	0.007	0.011
С	_	0.10	0.21	_	0.004	0.008
СР	_	_	0.10	_	_	0.004
D1	14.00	13.90	14.10	0.551	0.547	0.555
Е	20.00	19.80	20.20	0.787	0.780	0.795
E1	18.40	18.30	18.50	0.724	0.720	0.728
е	0.50	_	_	0.020	_	_
L	0.60	0.50	0.70	0.024	0.020	0.028
α	3	0	5	3	0	5

Numonyx

^{1.} Drawing is not to scale.

Package mechanical M29DW256G

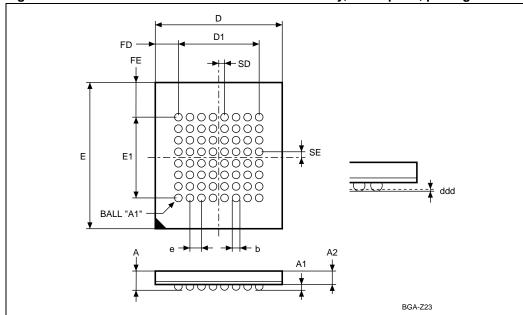


Figure 23. TBGA64 10 x 13 mm - 8 x 8 active ball array, 1 mm pitch, package outline

Table 29. TBGA64 10 x 13 mm - 8 x 8 active ball array, 1 mm pitch, package mechanical data

Symbol		millimeters			inches		
Symbol	Тур	Min	Max	Тур	Min	Max	
Α	_	_	1.20	_	_	0.047	
A1	0.30	0.20	0.35	0.012	0.008	0.014	
A2	0.80	_	_	0.031	_	_	
b	_	0.35	0.50	_	0.014	0.020	
D	10.00	9.90	10.10	0.394	0.390	0.398	
D1	7.000	_	_	0.276	_	_	
ddd	_	_	0.10	_	_	0.004	
е	1.00	_	_	0.039	_	_	
Е	13.00	12.90	13.10	0.512	0.508	0.516	
E1	7.00	_	_	0.276	_	_	
FD	1.50	_	_	0.059	_	_	
FE	3.00	_	_	0.118	_	_	
SD	0.50	_	_	0.020	_	_	
SE	0.50	_	_	0.020	_	_	

^{1.} Drawing is not to scale.

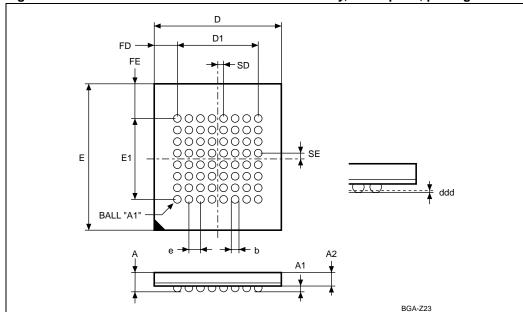
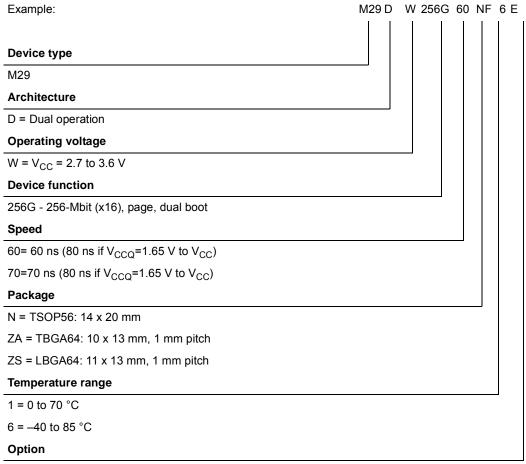


Figure 24. LBGA64 11 x 13 mm—8 x 8 active ball array, 1 mm pitch, package outline

1. Drawing is not to scale.


Table 30. LBGA64 11 x 13 mm—8 x 8 active ball array, 1 mm pitch, package mechanical data

monamour data						
Symbol		millimeters				
Symbol	Тур	Min	Max	Тур	Min	Max
Α	_	_	1.40	_	_	0.055
A1	0.48	0.43	0.53	0.018	0.016	
A2	0.80	_	_	0.031	_	_
b	_	0.55	0.65	_	0.021	0.025
D	11.00	10.90	11.10	0.433	0.429	0.437
D1	7.00	_	_	0.275	_	_
ddd	_	_	0.15	_	_	0.0059
е	1.00	_	_	0.039	_	_
Е	13.0	12.90	13.10	0.511	0.507	0.515
E1	7.00	_	_	0.275	_	_
FD	2.00	_	_	0.078	_	_
FE	3.00	_	_	0.118	_	_
SD	0.50	_	_	0.0196	_	_
SE	0.50	_	_	0.0196	_	_

Ordering information M29DW256G

12 Ordering information

Table 31. Ordering information scheme

E = RoHS package, standard packing

F = RoHS package, tape & reel packing

Note: This product is also available with the extended block factory locked.

Devices are shipped from the factory with the memory content bits erased to '1'.

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest Numonyx sales office.

Appendix A Block addresses and read/modify protection groups

Table 32. Block Addresses, Bank A

Block	Protection group	Block size (Kwords)	16-bit address range (in hexadecimal)
0	Protection Group	32	0000000 - 0007FFF
1	Protection Group	32	0008000 - 000FFFF
2	Protection Group	32	0010000 - 0017FFF
3	Protection Group	32	0018000 - 001FFFF
4	Protection Group	128	0020000 - 003FFFF
5	Protection Group	128	0040000 - 005FFFF
6	Protection Group	128	0060000 - 007FFFF
7	Protection Group	128	0080000 - 009FFFF
8	Protection Group	128	00A0000 - 00BFFFF
9	Protection Group	128	00C0000 - 00DFFFF
10	Protection Group	128	00E0000 - 00FFFFF
11	Protection Group	128	0100000 - 011FFFF
12	Protection Group	128	0120000 - 013FFFF
13	Protection Group	128	0140000 - 015FFFF
14	Protection Group	128	0160000 - 017FFFF
15	Protection Group	128	0180000 - 019FFFF
16	Protection Group	128	01A0000 - 01BFFFF
17	Protection Group	128	01C0000 - 01DFFFF
18	Protection Group	128	01E0000 - 01FFFFF

Table 33. Block Addresses, Bank B

Block	Protection Group	Block size (Kbytes/ Kwords)	16-bit address range (in hexadecimal)
19	Protection Group	128	0200000 - 021FFFF
20	Protection Group	128	0220000 - 023FFFF
21	Protection Group	128	0240000 - 025FFFF
22	Protection Group	128	0260000 - 027FFFF
23	Protection Group	128	0280000 - 029FFFF
24	Protection Group	128	02A0000 - 02BFFFF
25	Protection Group	128	02C0000 - 02DFFFF
26	Protection Group	128	02E0000 - 02FFFFF
27	Protection Group	128	0300000 - 031FFFF
28	Protection Group	128	0320000 - 033FFFF
29	Protection Group	128	0340000 - 035FFFF
30	Protection Group	128	0360000 - 037FFFF
31	Protection Group	128	0380000 - 039FFFF
32	Protection Group	128	03A0000 - 03BFFFF
33	Protection Group	128	03C0000 - 03DFFFF
34	Protection Group	128	03E0000 - 03FFFFF
35	Protection Group	128	0400000 - 041FFFF
36	Protection Group	128	0420000 - 043FFFF
37	Protection Group	128	0440000 - 045FFFF
38	Protection Group	128	0460000 - 047FFFF
39	Protection Group	128	0480000 - 049FFFF
40	Protection Group	128	04A0000 - 04BFFFF
41	Protection Group	128	04C0000 - 04DFFFF
42	Protection Group	128	04E0000 - 04FFFF
43	Protection Group	128	0500000 - 051FFFF
44	Protection Group	128	0520000 - 053FFFF
45	Protection Group	128	0540000 - 055FFFF
46	Protection Group	128	0560000 - 057FFFF
47	Protection Group	128	0580000 - 059FFFF
48	Protection Group	128	05A0000 - 05BFFFF
49	Protection Group	128	05C0000 - 05DFFFF
50	Protection Group	128	05E0000 - 05FFFFF
51	Protection Group	128	0600000 - 061FFFF

Table 33. Block Addresses, Bank B

Block	Protection Group	Block size (Kbytes/ Kwords)	16-bit address range (in hexadecimal)
52	Protection Group	128	0620000 - 063FFFF
53	Protection Group	128	0640000 - 065FFFF
54	Protection Group	128	0660000 - 067FFFF
55	Protection Group	128	0680000 - 06FFFFF
56	Protection Group	128	06A0000 - 06BFFFF
57	Protection Group	128	06C0000 - 06DFFFF
58	Protection Group	128	06E0000 - 06FFFFF
59	Protection Group	128	0700000 - 071FFFF
60	Protection Group	128	0720000 - 073FFFF
61	Protection Group	128	0740000 - 075FFFF
62	Protection Group	128	0760000 - 077FFFF
63	Protection Group	128	0780000 - 079FFFF
64	Protection Group	128	07A0000 - 07BFFFF
65	Protection Group	128	07C0000 - 07DFFFF
66	Protection Group	128	07E0000 - 07FFFFF

Table 34. Block Addresses, Bank C

Block	Protection Group	Block size (Kbytes/ Kwords)	16-bit address range (in hexadecimal)
67	Protection Group	128	0800000 - 081FFFF
68	Protection Group	128	0820000 - 083FFFF
69	Protection Group	128	0840000 - 085FFFF
70	Protection Group	128	0860000 - 087FFFF
71	Protection Group	128	0880000 - 089FFFF
72	Protection Group	128	08A0000 - 08BFFFF
73	Protection Group	128	08C0000 - 08DFFFF
74	Protection Group	128	08E0000 - 08FFFFF
75	Protection Group	128	0900000 - 091FFFF
76	Protection Group	128	0920000 - 093FFFF
77	Protection Group	128	0940000 - 095FFFF
78	Protection Group	128	0960000 - 097FFFF
79	Protection Group	128	0980000 - 099FFFF
80	Protection Group	128	09A0000 - 09BFFFF
81	Protection Group	128	09C0000 - 09DFFFF
82	Protection Group	128	09E0000 - 09FFFFF
83	Protection Group	128	0A00000 - 0A1FFFF
84	Protection Group	128	0A20000 - 0A3FFFF
85	Protection Group	128	0A40000 - 0A5FFFF
86	Protection Group	128	0A60000 - 0A7FFFF
87	Protection Group	128	0A80000 - 0A9FFFF
88	Protection Group	128	0AA0000 - 0ABFFFF
89	Protection Group	128	0AC0000 - 0ADFFFF
90	Protection Group	128	0AE0000 - 0AFFFFF
91	Protection Group	128	0B00000 - 0B1FFFF
92	Protection Group	128	0B20000 - 0B3FFFF
93	Protection Group	128	0B40000 - 0B5FFFF
94	Protection Group	128	0B60000 - 0B7FFFF
95	Protection Group	128	0B80000 - 0B9FFFF
96	Protection Group	128	0BA0000 - 0BBFFFF
97	Protection Group	128	0BC0000 - 0BDFFFF
98	Protection Group	128	0BE0000 - 0BFFFFF
99	Protection Group	128	0C00000 - 0C1FFFF

Table 34. Block Addresses, Bank C

Block	Protection Group	Block size (Kbytes/ Kwords)	16-bit address range (in hexadecimal)
100	Protection Group	128	0C20000 - 0C3FFFF
101	Protection Group	128	0C40000 - 0C5FFFF
102	Protection Group	128	0C60000 - 0C7FFFF
103	Protection Group	128	0C80000 - 0CFFFF
104	Protection Group	128	0CA0000 - 0CBFFFF
105	Protection Group	128	0CC0000 - 0CDFFFF
106	Protection Group	128	0CE0000 - 0CFFFFF
107	Protection Group	128	0D00000 - 0D1FFFF
108	Protection Group	128	0D20000 - 0D3FFFF
109	Protection Group	128	0D40000 - 0D5FFFF
110	Protection Group	128	0D60000 - 0D7FFFF
111	Protection Group	128	0D80000 - 0D9FFFF
112	Protection Group	128	0DA0000 - 0DBFFFF
113	Protection Group	128	0DC0000 - 0DDFFFF
114	Protection Group	128	0DE0000 - 0DFFFFF

Appendix B Common flash interface (CFI)

The common flash interface is a JEDEC approved, standardized data structure that can be read from the flash memory device. It allows a system software to query the device to determine various electrical and timing parameters, density information and functions supported by the memory. The system can interface easily with the device, enabling the software to upgrade itself when necessary.

When the Read CFI Query command is issued, the memory enters read CFI query mode and read operations output the CFI data. *Table 35*, *Table 36*, *Table 37*, *Table 38*, *Table 39* and *Table 40* show the addresses (A0-A7) used to retrieve the data. The CFI data structure also contains a security area where a 64-bit unique security number is written (see *Table 40*: *Security code area*). This area can be accessed only in read mode by the final user. It is impossible to change the security number after it has been written by Numonyx.

Table 35. Query structure overview⁽¹⁾

Address	Sub-section name	Description	
x16	Sub-Section name		
10h	CFI query identification string	Command set ID and algorithm data offset	
1Bh	System interface information	Device timing & voltage information	
27h	Device geometry definition	Flash device layout	
40h	Primary algorithm-specific extended query table	Additional information specific to the primary algorithm (optional)	
61h	Security code area	64-bit unique device number	

^{1.} Query data are always presented on the lowest order data outputs.

Table 36. CFI query identification string⁽¹⁾

Address		Description	Value
x16	Data	Description	Value
10h	0051h		'Q'
11h	0052h	Query unique ASCII string 'QRY'	'R'
12h	0059h		'Y'
13h	0002h	Primary algorithm command set and control interface ID code 16 bit ID	Spansion
14h	0000h	code defining a specific algorithm	compatible
15h	0040h	Address for primary algorithm extended guest table (see Table 20)	P = 40h
16h	0000h	Address for primary algorithm extended query table (see <i>Table 39</i>)	P = 40H
17h	0000h	Alternate vendor command set and control interface ID code second	NΙΔ
18h	0000h	vendor - specified algorithm supported	NA
19h	0000h	Address for alternate algorithms outsided according	NIA
1Ah	0000h	Address for alternate algorithm extended query table	NA

^{1.} Query data are always presented on the lowest order data outputs (DQ7-DQ0) only. DQ8-DQ15 are '0'.

Table 37. CFI query system interface information⁽¹⁾

Address	- Data	Pagazintian	Value	
x16	Data	Description	value	
1Bh	0027h	V _{CC} logic supply minimum program/erase voltage bit 7 to 4BCD value in volts bit 3 to 0BCD value in 100 mV	2.7 V	
1Ch	0036h	V _{CC} logic supply maximum program/erase voltage bit 7 to 4BCD value in volts bit 3 to 0BCD value in 100 mV	3.6 V	
1Dh	0085h	V _{PPH} [programming] supply minimum program/erase voltage bit 7 to 4HEX value in volts bit 3 to 0BCD value in 100 mV	8.5 V	
1Eh	0095h	V _{PPH} [programming] supply maximum program/erase voltage bit 7 to 4HEX value in volts bit 3 to 0BCD value in 100 mV	9.5 V	
1Fh	0004h	Typical timeout for single word program = 2 ⁿ µs	16 µs	
20h	0004h	Typical timeout for minimum size write buffer program = 2 ⁿ μs	16 µs	
21h	0009h	Typical timeout for individual block erase = 2 ⁿ ms	0.5 s	
22h	0011h	Typical timeout for full chip erase = 2 ⁿ ms	80 s	
23h	0004h	Maximum timeout for word program = 2 ⁿ times typical	200 μs	
24h	0004h	Maximum timeout for write buffer program = 2 ⁿ times typical	200 μs	
25h	0003h	Maximum timeout per individual block erase = 2 ⁿ times typical	2.3 s	
26h	0004h	Maximum timeout for chip erase = 2 ⁿ times typical	800 s	

^{1.} The values given in the above table are valid for both packages.

Table 38. Device geometry definition

Table 30.	Device geometry definition			
Address	Data	Description	Value	
x16		2333p	Value	
27h	0019h	Device size = 2 ⁿ in number of bytes	32 Mbytes	
28h 29h	0001h 0000h	Flash device interface code description	x16 async.	
2Ah 2Bh	0006h 0000h	Maximum number of bytes in multiple-byte program or page= 2 ⁿ	64	
2Ch	0003h	Number of Erase block regions. It specifies the number of regions containing contiguous Erase blocks of the same size.	3	
2Dh 2Eh 2Fh 30h	0003h 0000h 0000h 0001h	Erase block region 1 information 2Dh-2Eh: number of erase blocks of identical size 2Fh-30h: block size (n*256 bytes)	4 blocks, 32-Kwords	
31h 32h 33h 34h	007Dh 0000h 0000h 0004h	Erase block region 2 information	126 blocks, 128-Kwords	
35h 36h 37h 38h	0003h 0000h 0000h 0001h	Erase block region 3 information	4 blocks, 32-Kwords	
39h 3Ah 3Bh 3Ch	0000h 0000h 0000h 0000h	Erase block region 4 information	NA	

Table 39. Primary algorithm-specific extended query table (1)

Address			.,,
x16	– Data	Description	Value
40h	0050h		'P'
41h	0052h	Primary algorithm extended query table unique ASCII string "PRI"	'R'
42h	0049h	7	17
43h	0031h	Major version number, ASCII	'1'
44h	0033h	Minor version number, ASCII	'3'
45h	0010h	Address sensitive unlock (bits 1 to 0) 00 = required, 01= not required Silicon revision number (bits 7 to 2)	Yes 65 nm
46h	0002h	Erase suspend 00 = not supported, 01 = read only, 02 = read and write	2
47h	0001h	Block protection 00 = not supported, x = number of blocks per group	1
48h	0000h	Temporary block unprotect 00 = not supported, 01 = supported	Not supported
49h	0008h	Block protect /unprotect 08 = M29DW256G	8
4Ah	0073h	Simultaneous operations: x= block number (excluding bank A)	115
4Bh	0000h	Burst mode, 00 = not supported, 01 = supported	Not supported
4Ch	0002h	Page mode, 00 = not supported, 02 = 8-word page	02
4Dh	0085h	V _{PPH} supply minimum program/erase voltage bit 7 to 4 HEX value in volts bit 3 to 0 BCD value in 100 mV	8.5 V
4Eh	0095h	V _{PPH} supply maximum program/erase voltage bit 7 to 4 HEX value in volts bit 3 to 0 BCD value in 100 mV	9.5 V
4Fh	0001h	01 = Dual Boot	Dual Boot
50h	0001h	Program suspend, 00 = not supported, 01 = supported	Supported
51h	0001h	Unlock bypass: 00 = not supported, 01 = supported	Supported
52h	0008h	Extended memory block size (customer lockable), 2 ⁿ bytes	256
57h	0004h	Bank organization, 00 = data at 4Ah is 0, x= bank number	4
58h	0013h	Bank A information, x = number of blocks in bank A	19
59h	0030h	Bank B information, x = number of blocks in bank B	48
5Ah	0030h	Bank C information, x = number of blocks in bank C	48
5Bh	0013h	Bank D information, x = number of blocks in bank D	19
	1	1	1

^{1.} The values given in the above table are valid for both packages.

Table 40. Security code area

Address	- Data	Description
x16		
61h	XXXX	
62h	XXXX	OA hit unimos desire growth as
63h	XXXX	64-bit: unique device number
64h	XXXX	

Appendix C Extended memory block

The M29DW256G has an extra block, the extended memory block, that can be accessed using a dedicated command. This extended memory block is 128 words. It is used as a security block (to provide a permanent security identification number) or to store additional information.

The device can be shipped either with the extended memory block factory locked, or factory unlocked.

The extended memory block cannot be erased, and is one-time programmable (OTP) memory. If memory block is factory locked or customer protected by setting the extended memory block protection bit, it cannot be further modified.

If the extended memory block is not factory locked, it can be customer lockable. Its status is indicated by bit DQ7 in autoselect mode. This bit is permanently set to either '1' or '0' at the factory and cannot be changed. When set to '1', it indicates that the device is factory locked and the extended memory block is protected. When set to '0', it indicates that the device is customer lockable. Bit DQ7 being permanently locked to either '1' or '0' is another security feature which ensures that a customer lockable device cannot be used instead of a factory locked one.

Bit DQ7 is the most significant bit in the extended memory block verify indicator. It can be read in auto select mode using either the programmer or the in-system method.

The extended memory block can only be accessed when the device is in extended memory block mode. For details of how the extended memory block mode is entered and exited, refer to the *Section 6.4.2: Extended Memory Block*.

C.1 Factory locked extended memory block

In devices where the extended memory block is factory locked, the security identification number is written to the extended memory block address space (see *Table 41: Extended memory block address and data*) in the factory. The DQ7 bit is set to '1' and the extended memory block cannot be unprotected.

C.2 Customer lockable extended memory block

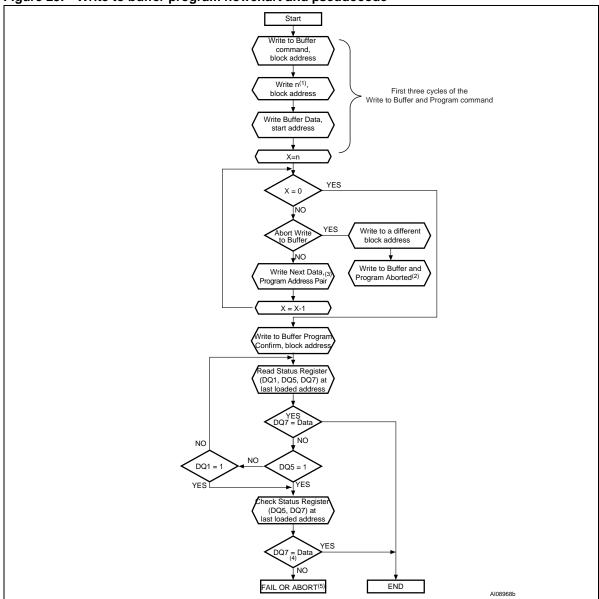
A device where the extended memory block is customer lockable is delivered with the DQ7 bit set to '0' and the extended memory block unprotected. It is up to the customer to program and protect the extended memory block but care must be taken because the protection of the extended memory block is not reversible.

If the device has not been shipped with the extended memory block factory protected, the block can be protected by setting the extended memory block protection bit, DQ0, to '0'.

However, this bit is one-time programmable and once protected the extended memory block cannot be unprotected.

Once the extended memory block is programmed, the Exit Extended Memory Block command must be issued to exit the extended memory block mode and return the device to read mode.

Table 41. Extended memory block address and data


Address ⁽¹⁾	Data	
x16	Factory locked	Customer lockable
000000h-00007Fh	Security identification number	Determined by customer

See Table 32: Block Addresses, Bank A, Table 33: Block Addresses, Bank B, and Table 34: Block Addresses, Bank C.

M29DW256G Flowcharts

Appendix D Flowcharts

Figure 25. Write to buffer program flowchart and pseudocode

- 1. n+1 is the number of addresses to be programmed.
- 2. A write to buffer program abort and reset must be issued to return the device in read mode.
- 3. When the block address is specified, any address in the selected block address space is acceptable. However when loading write buffer address with data, all addresses must fall within the selected write buffer page.
- 4. DQ7 must be checked since DQ5 and DQ7 may change simultaneously.
- 5. If this flowchart location is reached because DQ5='1', then the Write to Buffer Program command failed. If this flowchart location is reached because DQ1='1', then the Write to Buffer Program command aborted. In both cases, the appropriate reset command must be issued to return the device in read mode: a Reset command if the operation failed, a Write to Buffer Program Abort and Reset command if the operation aborted.

Flowcharts M29DW256G

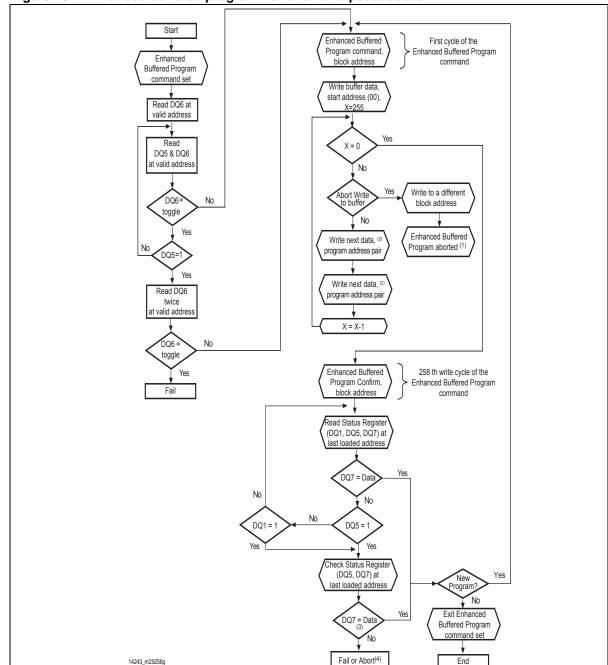


Figure 26. Enhanced buffered program flowchart and pseudocode

- 1. An Enhanced buffered program abort reset command must be issued to return the device in read mode.
- 2. When the block address is specified, all the addresses in the selected block address space must be issued starting from (00). Furthermore, when loading write buffer address with data, data program addresses must be consecutive.
- 3. DQ7 must be checked since DQ5 and DQ7 may change simultaneously.
- 4. If this flowchart location is reached because DQ5='1', then the Enhanced Buffered Program command failed. If this flowchart location is reached because DQ1='1', then the Enhanced Buffered Program command aborted. In both cases, the appropriate reset command must be issued to return the device in read mode: a Reset command if the operation failed, a Buffered Program Abort and Reset command if the operation aborted.
- 5. See Table 13: Enhanced buffered program commands, for details on Enhanced Buffered Program command sequence.

82/84 Numonyx

M29DW256G Revision history

13 Revision history

Table 42. Document revision history

Date	Version	Changes
23-April-2009	01	Initial release.

Please Read Carefully:

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX™ PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN NUMONYX'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Numonyx products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Numonyx may make changes to specifications and product descriptions at any time, without notice.

Numonyx, B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Numonyx reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by visiting Numonyx's website at http://www.numonyx.com.

Numonyx StrataFlash is a trademark or registered trademark of Numonyx or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2009, Numonyx, B.V., All Rights Reserved.