

2-Mbit (128K x 16) Static RAM

Features

· Very high speed: 45 ns

Wide voltage range: 2.20V–3.60V
Pin-compatible with CY62136CV30

· Ultra low standby power

Typical standby current: 1μA
 Maximum standby current: 7μA

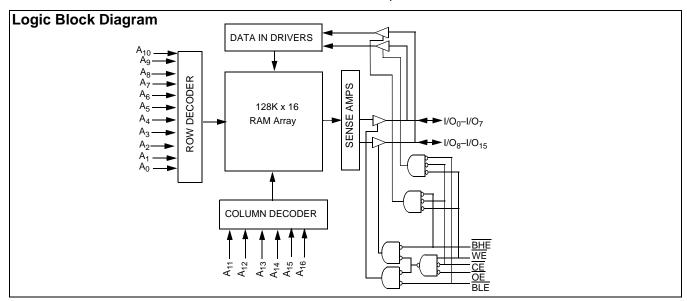
• Ultra-low active power

— Typical active current: 2 mA @ f = 1 MHz

• Easy memory expansion with CE, and OE features

· Automatic power-down when deselected

· CMOS for optimum speed/power


Offered in a Pb-free 48-ball VFBGA and 44-pin TSOP II packages

Functional Description[1]

The CY62136EV30 is a high-performance CMOS static RAM organized as 128K words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery LifeTM (MoBL®) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 80% when addresses are not toggling. The device can also be put into standby mode reducing power consumption by more than 99% when deselected (CE HIGH). The input/output pins (I/O $_0$ through I/O $_1$ s) are placed in a high-impedance state when: deselected (CE HIGH), outputs are disabled (OE HIGH), both Byte High Enable and Byte Low Enable are disabled (BHE, BLE HIGH), or during a write operation (CE LOW and WE LOW).

Writing to the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Write Enable (WE) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O $_0$ through I/O $_7$), is written into the location specified on the address pins (A $_0$ through A $_{16}$). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O $_8$ through I/O $_{15}$) is written into the location specified on the address pins (A $_0$ through A $_{16}$).

Reading from the device is accomplished by taking Chip Enable (CE) and Output Enable (OE) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins will appear on I/O $_0$ to I/O $_7$. If Byte High Enable (BHE) is LOW, then data from memory will appear on I/O $_8$ to I/O $_15$. See the truth table at the back of this data sheet for a complete description of read and write modes.

Note:

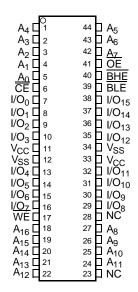
1. For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.

Cypress Semiconductor Corporation Document #: 38-05569 Rev. *B

198 Champion Court •

San Jose, CA 95134-1709

-1709 • 408-943-2600 Revised January 6, 2006



Pin Configuration^[2, 3]

VFBGA (Top View)

1	2	3	4	5	6	
BLE	(OE)	\bigcirc	$\left(A_{1}\right)$	$\left(A_{2}\right)$	NC	Α
(I/O ₈)	BHE	\bigcirc A ₃	\bigcirc A ₄	(CE)	(I/O_0)	В
(I/Q ₉)	(I/O ₁₀)	$\left(A_{5}\right)$	$\overline{A_6}$	(I/O ₁)	(I/O ₂)	С
V _{SS}	(I/O ₁₁)	NC	(A ₇)	(I/O ₃)	Vcc	D
Vcc	(I/O ₁₂)	NC	(A ₁₆)	(I/O ₄)	Vss	Ε
(I/O ₁₄)	(I/O ₁₃)	(A ₁₄)	(A ₁₅)	(I/O ₅)	1/Q ₆	F
(I/O ₁₅)	NC	(A ₁₂)	(A ₁₃)	WE	(I/O ₇)	G
NC	\bigcirc A ₈	$\left(A_{9}\right)$	$\left(A_{10}\right)$	$\left(A_{11}\right)$	NC	Н
_	_				_	

44 TSOP II (Top View)

Product Portfolio^[4]

											Power D	Dissipatio	n	
				Speed	C	Operating	ICC (mA)						
Product	V	_{CC} Range (V)	(ns)	f = 1	MHz	f = f	max	Standby	I _{SB2} (μ A)				
	Min.	Typ. ^[4]	Max.		Typ. ^[4]	Max.	Typ. ^[4]	Max.	Typ. ^[4]	Max.				
CY62136EV30LL	2.2	3.0	3.6	45	2	2.5	15	20	1	7				

Notes:

- 2. NC pins are not connected on the die.
- 3. Pins D3, H1, G2, and H6 in the BGA package are address expansion pins for 4 Mbit, 8 Mbit, 16 Mbit and 32 Mbit, respectively.
- 4. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C.

[+] Feedback

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to + 150°C Ambient Temperature with Power Applied-55°C to + 125°C Supply Voltage to Ground Potential-0.3V to 3.9V (V_{CC MAX} + 0.3V)

Davida	D	Ambient	v [7]
Latch-up Current Operating Rang	ge ^[7]		> 200 mA
Static Discharge Vol (per MIL-STD-883, I			> 2001V
Output Current into	Outputs (LC	DW)	20 mA
DC Input Voltage ^{[5,6}	^{5]} 0	.3V to 3.9V (V _{CC}	_{MAX} + 0.3V)

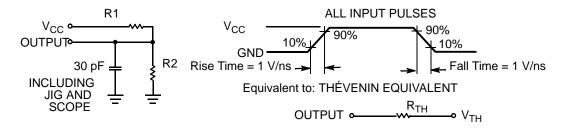
Device Range **Temperature** CY62136EV30LL -40°C to +85°C Industrial

Electrical Characteristics Over the Operating Range [5, 6, 7]

				45 ns		
Parameter	Description	Test Conditions	Min.	Typ. ^[4]	Max.	Unit
V _{OH}	Output HIGH	$I_{OH} = -0.1 \text{ mA}$ $V_{CC} = 2.20 \text{V}$	2.0			V
	Voltage	$I_{OH} = -1.0 \text{ mA}$ $V_{CC} = 2.70 \text{V}$	2.4			V
V_{OL}	Output LOW	$I_{OL} = 0.1 \text{ mA}$ $V_{CC} = 2.20 \text{V}$			0.4	V
	Voltage	$I_{OL} = 2.1 \text{mA}$ $V_{CC} = 2.70 \text{V}$			0.4	V
V _{IH}	Input HIGH Voltage	V _{CC} = 2.2V to 2.7V	1.8		V _{CC} + 0.3	V
		V _{CC} = 2.7V to 3.6V	2.2		V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage	V _{CC} = 2.2V to 2.7V	-0.3		0.6	V
		V _{CC} = 2.7V to 3.6V	-0.3		0.8	V
I _{IX}	Input Leakage Current	$GND \le V_I \le V_{CC}$	– 1		+1	μΑ
I _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}$, Output Disabled	–1		+1	μΑ
I _{CC}	V _{CC} Operating	$f = f_{MAX} = 1/t_{RC}$ $V_{CC} = V_{CCmax}$, $I_{OUT} = 0$ mA		15	20	mΑ
	Supply Current	f = 1 MHz CMOS levels		2	2.5	
I _{SB1}	Automatic CE Power-down Current — CMOS Inputs	$\begin{tabular}{ c c c c c }\hline \hline \hline \hline \hline CE &\geq V_{CC}-0.2V,\\ \hline V_{IN}&\geq V_{CC}-0.2V,\ V_{IN}&\leq 0.2V)\\ \hline f &= f_{\underline{MAX}}\ (Address\ and\ Data\ Only),\\ \hline f &= 0\ (OE,\ and\ WE),\\ \hline V_{CC} &= 3.60V\\ \hline \end{tabular}$		1	7	μА
I _{SB2}	Automatic CE Power-down Current — CMOS Inputs	$\overline{\text{CE}} \ge V_{\text{CC}} - 0.2V,$ $V_{\text{IN}} \ge V_{\text{CC}} - 0.2V \text{ or } V_{\text{IN}} \le 0.2V, f = 0,$ $V_{\text{CC}} = 3.60V$		1	7	μΑ

Capacitance (for all packages)[8]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	T _A = 25°C, f = 1 MHz,	10	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	10	pF


- 5. $V_{IL(min.)} = -2.0V$ for pulse durations less than 20 ns.
- N_{IH}(max)=V_{CC}+0.75V for pulse durations less than 20ns.
 Full Device AC operation assumes a 100 μs ramp time from 0 to Vcc(min) and 200 μs wait time after V_{CC} stabilization.
- 8. Tested initially and after any design or process changes that may affect these parameters.

Thermal Resistance^[8]

Parameter	Description	Test Conditions	VFBGA Package	TSOP II Package	Unit
Θ_{JA}	[0]	Still Air, soldered on a 3 × 4.5 inch, two-layer printed circuit board	75	77	°C/W
Θ _{JC}	Thermal Resistance (Junction to Case) ^[8]		10	13	°C/W

AC Test Loads and Waveforms

Parameters	2.50V	3.0V	Unit
R1	16667	1103	Ω
R2	15385	1554	Ω
R _{TH}	8000	645	Ω
V _{TH}	1.20	1.75	V

Data Retention Characteristics (Over the Operating Range)^[8, 9]

Parameter	Description	Conditions	Min.	Typ. ^[4]	Max.	Unit
V_{DR}	V _{CC} for Data Retention		1.0			V
ICCDR	Data Retention Current	$V_{CC} = 1.0V$ $CE \ge V_{CC} - 0.2V$, $V_{IN} \ge V_{CC} - 0.2V$ or $V_{IN} \le 0.2V$		0.8	3	μА
t _{CDR} ^[8]	Chip Deselect to Data Retention Time		0			ns
t _R ^[9]	Operation Recovery Time		t _{RC}			ns

Data Retention Waveform

Notes

9. Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)} \ge 100~\mu s$ or stable at $V_{CC(min.)} \ge 100~\mu s$.

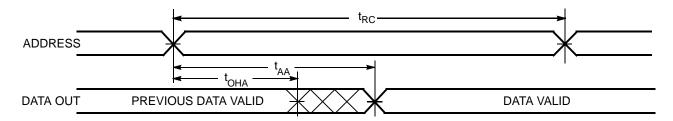
[+] Feedback

Switching Characteristics Over the Operating Range [10, 11, 12, 13]

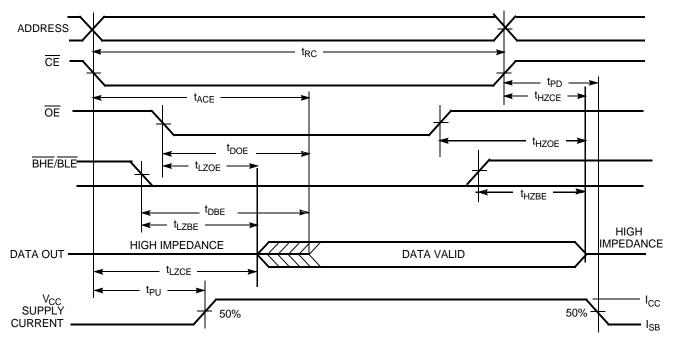
		45	ns	
Parameter	Description	Min.	Max.	Unit
Read Cycle	•			•
t _{RC}	Read Cycle Time	45		ns
t _{AA}	Address to Data Valid		45	ns
t _{OHA}	Data Hold from Address Change	10		ns
t _{ACE}	CE LOW to Data Valid		45	ns
t _{DOE}	OE LOW to Data Valid		22	ns
t _{LZOE}	OE LOW to LOW Z ^[11]	5		ns
t _{HZOE}	OE HIGH to High Z ^[11, 12]		18	ns
t _{LZCE}	CE LOW to Low Z ^[11]	10		ns
t _{HZCE}	CE HIGH to High Z ^[11, 12]		18	ns
t _{PU}	CE LOW to Power-Up	0		ns
t _{PD}	CE HIGH to Power-Down		45	ns
t _{DBE}	BLE/BHE LOW to Data Valid		22	ns
t _{LZBE}	BLE/BHE LOW to Low Z ^[11]	5		ns
t _{HZBE}	BLE/BHE HIGH to HIGH Z ^[11, 12]		18	ns
Write Cycle ^[13]		1	•	.
t_{WC}	Write Cycle Time	45		ns
t _{SCE}	CE LOW to Write End	35		ns
t _{AW}	Address Set-Up to Write End	35		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Set-Up to Write Start	0		ns
t _{PWE}	WE Pulse Width	35		ns
t _{BW}	BLE/BHE LOW to Write End	35		ns
t_{SD}	Data Set-Up to Write End	25		ns
t _{HD}	Data Hold from Write End	0		ns
t _{HZWE}	WE LOW to High-Z ^[11, 12]		18	ns
t _{LZWE}	WE HIGH to Low-Z ^[11]	10		ns

Notes:

^{10.} Test conditions for all parameters other than tri-state parameters assume signal transition time of 3 ns (1V/ns) or less, timing reference levels of V_{CC(typ.)}, input pulse levels of 0 to V_{CC(typ.)}, and output loading of the specified I_{OL}/I_{OH} as shown in the "AC Test Loads and Waveforms" section.


11. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZDE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} for any given device.

^{12.} t_{HZOE}, t_{HZOE},



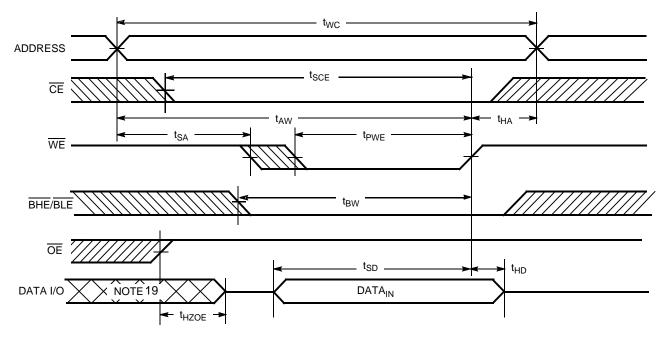
Switching Waveforms [14, 15]

Read Cycle 1 (Address Transition Controlled)^[14, 15]

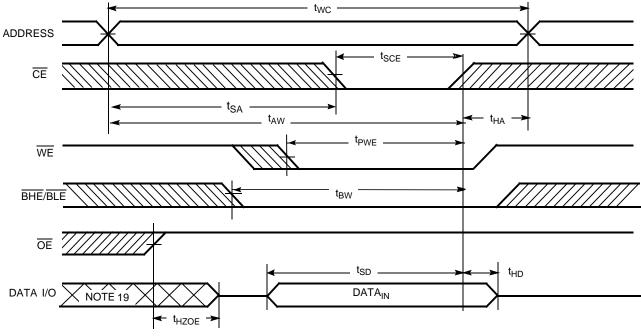
Read Cycle No. 2 (OE Controlled)[15, 16]

Notes:

14. The device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$, \overline{BHE} and/or $\overline{BLE} = V_{IL}$.


15. \overline{WE} is HIGH for read cycle.

16. Address valid prior to or coincident with \overline{CE} and \overline{BHE} , \overline{BLE} transition LOW.

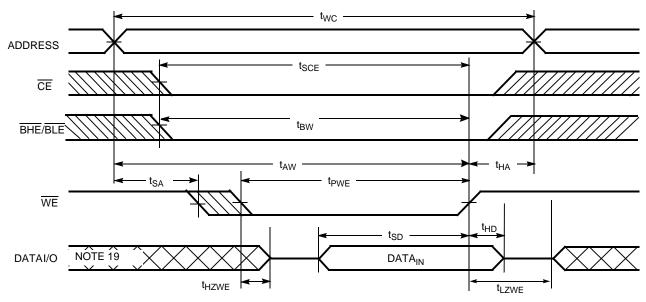


Switching Waveforms (continued)[14, 15]

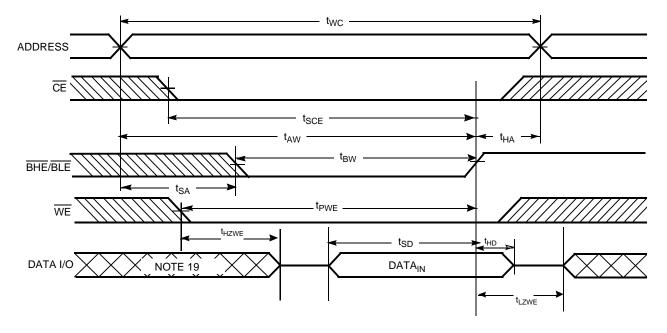
Write Cycle No. 1 (WE Controlled)[13, 17, 18]

Write Cycle No. 2 (CE Controlled)[13, 17, 18]

17. Data I/O is high impedance if $\overline{\text{OE}} = \text{V}_{\text{IH}}$.


18. If $\overline{\text{CE}}$ goes HIGH simultaneously with $\overline{\text{WE}} = \text{V}_{\text{IH}}$, the output remains in a high-impedance state.

19. During this period, the I/Os are in output state and input signals should not be applied.



Switching Waveforms (continued) [14, 15]

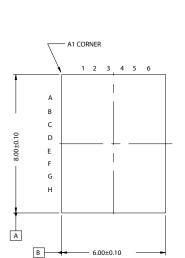
Write Cycle No. 3 (WE Controlled, OE LOW)[18]

Write Cycle No. 4 (BHE/BLE Controlled, OE LOW)[18]

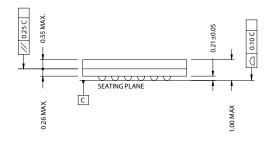
Truth Table

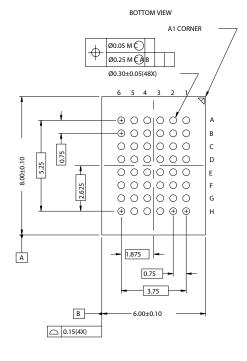
CE	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	High Z	Deselect/Power-down	Standby (I _{SB})
L	Х	Х	Н	Н	High Z	Output Disabled	Active (I _{CC})
L	Н	L	L	L	Data Out (I/O _O -I/O ₁₅)	Read	Active (I _{CC})
L	Н	L	Н	L	Data Out (I/O _O -I/O ₇); I/O ₈ -I/O ₁₅ in High Z	Read	Active (I _{CC})
L	Н	L	L	Н	Data Out (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Read	Active (I _{CC})
L	Н	Н	L	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	L	Н	High Z	Output Disabled	Active (I _{CC})
L	L	Х	L	L	Data In (I/O _O -I/O ₁₅)	Write	Active (I _{CC})
L	L	Х	Н	L	Data In (I/O _O –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Write	Active (I _{CC})
L	L	Х	L	Н	Data In (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Write	Active (I _{CC})

Ordering Information


Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
45	CY62136EV30LL-45BVXI	51-85150	48-ball Very Fine Pitch Ball Grid Array (Pb-free)	Industrial
	CY62136EV30LL-45ZSXI	51-85087	44-pin Thin Small Outline Package II (Pb-free)	

Please contact your local Cypress sales representative for availability of other parts

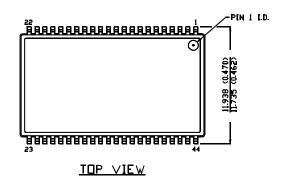


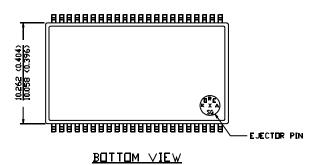

Package Diagrams

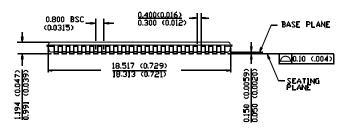
48-pin VFBGA (6 x 8 x 1 mm) (51-85150)

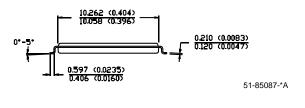
TOP VIEW

51-85150-*D


[+] Feedback




Package Diagrams (continued)


44-pin TSOP II (51-85087)

DIMENSION IN MM (INCH) MAX

MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor. All product and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	237432	See ECN	AJU	New Data Sheet
*A	419988	See ECN	RXU	Converted from Advanced Information to Final. Changed the address of Cypress Semiconductor Corporation on Page #1 from "3901 North First Street" to "198 Champion Court" Removed 35ns Speed Bin Removed "L" version of CY62136EV30 Changed I $_{CC}$ (Max) value from 2 mA to 2.5 mA and I $_{CC}$ (Typ) value from 1.5 mA to 2 mA at f=1 MHz Changed I $_{CC}$ (Typ) value from 12 mA to 15 mA at f = f $_{max}$ Changed I $_{SB1}$ and I $_{SB2}$ Typ. values from 0.7 μ A to 1 μ A and Max. values from 2.5 μ A to 7 μ A. Changed the AC test load capacitance from 50pF to 30pF on Page# 4 Changed V $_{DR}$ from 1.5V to 1V on Page# 4. Changed I $_{CCDR}$ from 2.5 μ A to 3 μ A. Added I $_{CCDR}$ typical value. Changed toHA, tLZCE and tLZWE from 6 ns to 10 ns Changed tLZDE from 3 ns to 5 ns Changed tLZDE, tHZDE, tHZBE and tHZWE from 15 ns to 18 ns Changed tSCE, tAW and tBW from 40 ns to 35 ns Changed tSD from 20 ns to 25 ns Changed typo in the Truth Table on Page# 9 Updated the package diagram 48-pin VFBGA from *B to *D Updated the ordering Information table and replaced the Package Name column with Package Diagram.
*B	427817	See ECN	NXR	Minor change: Moved datasheet to external web

Document #: 38-05569 Rev. *B Page 12 of 12