M95512-DR
M95512-R M95512-W
512 Kbit serial SPI bus EEPROM
with high-speed clock

Features

- Compatible with SPI bus serial interface (Positive clock SPI modes):
- M95512-W and M95512-R: standard SPI 512 Kbit EEPROM
- M95512-DR: standard SPI 512 Kbit EEPROM with Identification page
■ Single supply voltage:
- 2.5 V to 5.5 V for M95512-W
- 1.8 V to 5.5 V for M95512-R and M95512-DR
- High speed clock
- 20 MHz clock rate
- 5 ms write time
- Status Register
- Hardware Protection of the Status Register
- Byte and Page Write (up to 128 bytes)

■ Self-timed programming cycle
■ Adjustable size read-only EEPROM area
■ Enhanced ESD Protection
■ More than 1000000 Write cycles

- More than 40-year data retention

■ Packages

- ECOPACK ${ }^{\circledR}$ (RoHS compliant)

Contents

1 Description 6
2 Signal description 8
2.1 Serial Data output (Q) 8
2.2 Serial Data input (D) 8
2.3 Serial Clock (C) 8
2.4 Chip Select ($\overline{\mathrm{S}}$) 8
2.5 Hold ($\overline{\mathrm{HOLD}})$ 8
2.6 Write Protect ($\overline{\mathrm{W}}$) 9
$2.7 \quad \mathrm{~V}_{\mathrm{CC}}$ supply voltage 9
2.8 V_{SS} ground 9
3 Connecting to the SPI bus 10
3.1 SPI modes 11
4 Operating features 12
4.1 Supply voltage (V_{CC}) 12
4.1.1 Operating supply voltage V_{CC} 12
4.1.2 Device reset 12
4.1.3 Power-up conditions 12
4.1.4 Power-down 13
4.2 Active Power and Standby Power modes 13
4.3 Hold condition 13
4.4 Status register 14
4.5 Data protection and protocol control 14
5 Memory organization 15
6 Instructions 16
6.1 Write Enable (WREN) 17
6.2 Write Disable (WRDI) 17
6.3 Read Status Register (RDSR) 18
6.3.1 WIP bit 18
6.3.2 WEL bit 18
6.3.3 BP1, BP0 bits 18
6.3.4 SRWD bit 18
6.4 Write Status Register (WRSR) 20
6.5 Read from Memory Array (READ) 22
6.6 Write to Memory Array (WRITE) 23
6.7 Read Identification Page (available only in M95512-DR devices) 25
6.8 Write Identification Page (available only in M95512-DR devices) 26
6.9 Read Lock Status (available only in M95512-DR devices) 27
6.10 Lock ID (available only in M95512-DR devices) 27
7 ECC (error correction code) and write cycling 29
8 Power-up and delivery state 29
8.1 Power-up state 29
8.2 Initial delivery state 29
9 Maximum rating 30
10 DC and AC parameters 31
11 Package mechanical data 39
12 Part numbering 42
13 Revision history 44

List of tables

Table 1. Signal names 6
Table 2. Write-protected block size 14
Table 3. M95512-W and M95512-R instruction set 16
Table 4. M95512-DR instruction set 16
Table 5. Status register format 18
Table 6. Protection modes 21
Table 7. Absolute maximum ratings 30
Table 8. Operating conditions (M95512-W device grade 6) 31
Table 9. Operating conditions (M95512-W device grade 3) 31
Table 10. Operating conditions (M95512-R and M95512-DR) 31
Table 11. AC measurement conditions 31
Table 12. Capacitance 32
Table 13. DC characteristics (current M95512-W products) 32
Table 14. DC characteristics (new M95512-W products) 33
Table 15. DC characteristics (current and new M95512-R and M95512-DR products) 33
Table 16. AC characteristics (current M95512-W products) 34
Table 17. AC characteristics (New M95512-W products) 35
Table 18. AC characteristics (current and new M95512-R and M95512-DR products) 36
Table 19. SO8N - 8 lead plastic small outline, 150 mils body width, package mechanical data 39
Table 20. TSSOP8 - 8 lead thin shrink small outline, package mechanical data 40
Table 21. UFDFPN8 (MLP8) - 8-lead ultra thin fine pitch dual flat package no lead $2 \times 3 \mathrm{~mm}$, package mechanical data 41
Table 22. Ordering information scheme 42
Table 23. Available M95512 products (package, voltage range, temperature grade) 43
Table 24. Available M95512-DR products (package, voltage range, temperature grade) 43
Table 25. Document revision history 44

List of figures

Figure 1. Logic diagram 6
Figure 2. SO8, TSSOP8 and UFDFPN8 connections 7
Figure 3. Bus master and memory devices on the SPI bus 10
Figure 4. SPI modes supported 11
Figure 5. Hold condition activation 13
Figure 6. Block diagram 15
Figure 7. Write Enable (WREN) sequence 17
Figure 8. Write Disable (WRDI) sequence 17
Figure 9. Read Status Register (RDSR) sequence 19
Figure 10. Write Status Register (WRSR) sequence 20
Figure 11. Read from Memory Array (READ) sequence 22
Figure 12. Byte Write (WRITE) sequence 23
Figure 13. Page Write (WRITE) sequence 24
Figure 14. Read Identification Page sequence 25
Figure 15. Write Identification Page sequence 26
Figure 16. Read Lock Status sequence 27
Figure 17. Lock ID sequence 28
Figure 18. AC measurement I/O waveform 31
Figure 19. Serial input timing 37
Figure 20. Hold timing 37
Figure 21. Serial output timing 38
Figure 22. SO8N - 8 lead plastic small outline, 150 mils body width, package outline 39
Figure 23. TSSOP8 - 8 lead thin shrink small outline, package outline 40
Figure 24. UFDFPN8 (MLP8) - 8-lead ultra thin fine pitch dual flat package no lead $2 \times 3 \mathrm{~mm}$, package outline 41

1 Description

The M95512-W, M95512-R and M95512-DR are electrically erasable programmable memory (EEPROM) devices accessed by a high-speed SPI-compatible bus. In the rest of the document these devices are referred to as M95512, unless otherwise specified.

The memory array is organized as 65536×8 bit. The device is accessed by a simple serial interface that is SPI-compatible. The bus signals are C, D and Q, as shown in Table 1 and Figure 1.
The device is selected when Chip Select $(\overline{\mathrm{S}})$ is taken low. Communications with the device can be interrupted using Hold ($\overline{\mathrm{HOLD}}$).

Figure 1. Logic diagram

Table 1. Signal names

Signal name	Function	Direction
C	Serial Clock	Input
D	Serial Data Input	Input
Q	Serial Data Output	Output
S	Chip Select	Input
$\overline{\text { W }}$	Write Protect	Input
$\overline{\text { HOLD }}$	Hold	Input
V CC $^{\text {V }}$	Supply voltage	

Figure 2. SO8, TSSOP8 and UFDFPN8 connections

1. See Section 11: Package mechanical data for package dimensions, and how to identify pin-1.

2 Signal description

During all operations, V_{CC} must be held stable and within the specified valid range:
$\mathrm{V}_{\mathrm{CC}}(\min)$ to $\mathrm{V}_{\mathrm{CC}}(\max)$.
All of the input and output signals must be held high or low (according to voltages of V_{IH}, $\mathrm{V}_{\mathrm{OH}}, \mathrm{V}_{\mathrm{IL}}$ or V_{OL}, as specified in Table 13 and Table 15). These signals are described next.

2.1 Serial Data output (Q)

This output signal is used to transfer data serially out of the device. Data is shifted out on the falling edge of Serial Clock (C).

$2.2 \quad$ Serial Data input (D)

This input signal is used to transfer data serially into the device. It receives instructions, addresses, and the data to be written. Values are latched on the rising edge of Serial Clock (C).

2.3 Serial Clock (C)

This input signal provides the timing of the serial interface. Instructions, addresses, or data present at Serial Data Input (D) are latched on the rising edge of Serial Clock (C). Data on Serial Data Output (Q) changes after the falling edge of Serial Clock (C).

2.4 Chip Select (S)

When this input signal is high, the device is deselected and Serial Data Output (Q) is at high impedance. Unless an internal Write cycle is in progress, the device will be in the Standby Power mode. Driving Chip Select $(\overline{\mathrm{S}})$ low selects the device, placing it in the Active Power mode.
After Power-up, a falling edge on Chip Select $(\overline{\mathrm{S}})$ is required prior to the start of any instruction.

2.5 Hold ($\overline{\text { HOLD })}$

The Hold ($\overline{\mathrm{HOLD}}$) signal is used to pause any serial communications with the device without deselecting the device.

During the Hold condition, the Serial Data Output (Q) is high impedance, and Serial Data Input (D) and Serial Clock (C) are Don't Care.
To start the Hold condition, the device must be selected, with Chip Select $(\overline{\mathrm{S}})$ driven low.

2.6 Write Protect (\bar{W})

The main purpose of this input signal is to freeze the size of the area of memory that is protected against Write instructions (as specified by the values in the BP1 and BPO bits of the Status Register).
This pin must be driven either high or low, and must be stable during all write instructions.

$2.7 \quad \mathrm{~V}_{\mathrm{Cc}}$ supply voltage

V_{CC} is the supply voltage.

$2.8 \quad V_{\text {SS }}$ ground

V_{SS} is the reference for the V_{CC} supply voltage.

3 Connecting to the SPI bus

These devices are fully compatible with the SPI protocol.
All instructions, addresses and input data bytes are shifted in to the device, most significant bit first. The Serial Data Input (D) is sampled on the first rising edge of the Serial Clock (C) after Chip Select ($\overline{\mathrm{S}}$) goes low.

All output data bytes are shifted out of the device, most significant bit first. The Serial Data Output (Q) is latched on the first falling edge of the Serial Clock (C) after the instruction (such as the Read from Memory Array and Read Status Register instructions) have been clocked into the device.

Figure 3. Bus master and memory devices on the SPI bus

1. The Write Protect $(\overline{\mathrm{W}})$ and Hold $(\overline{\mathrm{HOLD}})$ signals should be driven, high or low as appropriate.

Figure 3 shows an example of three memory devices connected to an MCU, on an SPI bus. Only one device is selected at a time, so only one device drives the Serial Data Output (Q) line at a time, the other devices are high impedance.

The pull-up resistor R (represented in Figure 3) ensures that no device is selected if the Bus Master leaves the $\overline{\mathrm{S}}$ line in the high impedance state.

In applications where the Bus Master might enter a state where all inputs/outputs SPI lines are in high impedance at the same time (for example, if the Bus Master is reset during the transmission of an instruction), the clock line (C) must be connected to an external pulldown resistor so that, if all inputs/outputs become high impedance, the C line is pulled low (while the \bar{S} line is pulled high). This ensures that \bar{S} and C do not become high at the same time, and so, that the $\mathrm{t}_{\mathrm{SHCH}}$ requirement is met.

The typical value of R is $100 \mathrm{k} \Omega$,.

3.1 SPI modes

These devices can be driven by a microcontroller with its SPI peripheral running in either of the two following modes:

- $\mathrm{CPOL}=0, \mathrm{CPHA}=0$
- $\mathrm{CPOL}=1, \mathrm{CPHA}=1$

For these two modes, input data is latched in on the rising edge of Serial Clock (C), and output data is available from the falling edge of Serial Clock (C).

The difference between the two modes, as shown in Figure 4, is the clock polarity when the bus master is in Stand-by mode and not transferring data:

- $\quad \mathrm{C}$ remains at 0 for ($\mathrm{CPOL}=0, \mathrm{CPHA}=0$)
- $\quad \mathrm{C}$ remains at 1 for $(\mathrm{CPOL}=1, \mathrm{CPHA}=1)$

Figure 4. SPI modes supported

4 Operating features

4.1 Supply voltage (V_{CC})

4.1.1 Operating supply voltage $\mathbf{V}_{\mathbf{C C}}$

Prior to selecting the memory and issuing instructions to it, a valid and stable V_{CC} voltage within the specified $\left[\mathrm{V}_{\mathrm{CC}}(\mathrm{min}), \mathrm{V}_{\mathrm{CC}}(\max)\right]$ range must be applied (see Table 8 and Table 10.). This voltage must remain stable and valid until the end of the transmission of the instruction and, for a Write instruction, until the completion of the internal write cycle (t_{W}). In order to secure a stable DC supply voltage, it is recommended to decouple the V_{CC} line with a suitable capacitor (usually of the order of 10 nF to 100 nF) close to the $\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{SS}}$ package pins.

4.1.2 Device reset

In order to prevent inadvertent Write operations during power-up, a power-on-reset (POR) circuit is included. At power-up, the device does not respond to any instruction until $V_{C C}$ has reached the POR threshold voltage (this threshold is lower than the minimum V_{CC} operating voltage defined in Table 8 and Table 10).
When V_{CC} passes over the POR threshold, the device is reset and in the following state:

- in the Standby Power mode
- deselected (note that when the device is deselected it is necessary to apply a falling edge on Chip Select ($\overline{\mathrm{S}}$) prior to issuing any new instruction, otherwise the instruction is not executed)
- Status register values:
- the Write Enable Latch (WEL) bit is reset to 0
- the Write In Progress (WIP) bit is reset to 0
- the SRWD, BP1 and BP0 bits remain unchanged (non-volatile bits).

When V_{Cc} passes over the POR threshold, the device is reset and enters the Standby Power mode, however, the device must not be accessed until V_{CC} reaches a valid and stable V_{CC} voltage within the specified $\left[\mathrm{V}_{\mathrm{CC}}(\mathrm{min}), \mathrm{V}_{\mathrm{CC}}(\mathrm{max})\right]$ range defined in Table 8 and Table 10.

4.1.3 Power-up conditions

When the power supply is turned on, V_{CC} rises continuously from V_{SS} to V_{CC}. During this time, the Chip Select $(\overline{\mathrm{S}})$ line is not allowed to float but should follow the V_{CC} voltage. It is therefore recommended to connect the $\overline{\mathrm{S}}$ line to V_{CC} via a suitable pull-up resistor (see Figure 3).

In addition, the Chip Select ($\overline{\mathrm{S}}$) input offers a built-in safety feature, as the $\overline{\mathrm{S}}$ input is edge sensitive as well as level sensitive: after power-up, the device does not become selected until a falling edge has first been detected on Chip Select $(\overline{\mathrm{S}})$. This ensures that Chip Select $(\overline{\mathrm{S}})$ must have been high, prior to going low to start the first operation.
The V_{CC} voltage has to rise continuously from 0 V up to the minimum V_{CC} operating voltage defined in Table 8 and Table 10 and the rise time must not vary faster than $1 \mathrm{~V} / \mu \mathrm{s}$.

4.1.4 Power-down

During power-down (continuous decrease in V_{CC} below the minimum V_{CC} operating voltage defined in Table 8 and Table 10), the device must be:

- deselected (Chip Select $(\overline{\mathrm{S}})$ should be allowed to follow the voltage applied on V_{CC})
- in Standby Power mode (that is there should not be any internal write cycle in progress).

4.2 Active Power and Standby Power modes

When Chip Select (\bar{S}) is low, the device is selected, and in the Active Power mode. The device consumes I_{CC}, as specified in Table 15.
When Chip Select $(\overline{\mathrm{S}})$ is high, the device is deselected. If a Write cycle is not currently in progress, the device then goes in to the Standby Power mode, and the device consumption drops to $\mathrm{I}_{\mathrm{CC} 1}$.

4.3 Hold condition

The Hold ($\overline{\mathrm{HOLD}}$) signal is used to pause any serial communications with the device without resetting the clocking sequence.
During the Hold condition, the Serial Data Output (Q) is high impedance, and Serial Data Input (D) and Serial Clock (C) are Don't Care.

To enter the Hold condition, the device must be selected, with Chip Select ($\overline{\mathrm{S}}$) low.
Normally, the device is kept selected, for the whole duration of the Hold condition.
Deselecting the device while it is in the Hold condition, has the effect of resetting the state of the device, and this mechanism can be used if it is required to reset any processes that had been in progress.

The Hold condition starts when the Hold ($\overline{H O L D}$) signal is driven low at the same time as Serial Clock (C) already being low (as shown in Figure 5).

The Hold condition ends when the Hold ($\overline{\mathrm{HOLD}}$) signal is driven high at the same time as Serial Clock (C) already being low.

Figure 5 also shows what happens if the rising and falling edges are not timed to coincide with Serial Clock (C) being low.

Figure 5. Hold condition activation

4.4 Status register

Figure 6 shows the position of the Status register in the control logic of the device. The Status register contains a number of status and control bits that can be read or set (as appropriate) by specific instructions. See Section 6.3: Read Status Register (RDSR) for a detailed description of the Status register bits

4.5 Data protection and protocol control

Non-volatile memory devices can be used in environments that are particularly noisy, and within applications that could experience problems if memory bytes are corrupted. Consequently, the device features the following data protection mechanisms:

- Write and Write Status register instructions are checked that they consist of a number of clock pulses that is a multiple of eight, before they are accepted for execution.
- All instructions that modify data must be preceded by a Write Enable (WREN) instruction to set the Write Enable Latch (WEL) bit. This bit is returned to its reset state by the following events:
- Power-up
- Write Disable (WRDI) instruction completion
- Write Status Register (WRSR) instruction completion
- Write (WRITE) instruction completion
- The Block Protect (BP1, BPO) bits in the Status Register allow part of the memory to be configured as read-only.
- The Write Protect $(\overline{\mathrm{W}})$ signal is used to protect the Block Protect (BP1, BP0) bits in the Status Register.

For any instruction to be accepted, and executed, Chip Select ($\overline{\mathrm{S}}$) must be driven high after the rising edge of Serial Clock (C) for the last bit of the instruction, and before the next rising edge of Serial Clock (C).

Two points need to be noted in the previous sentence:

- The 'last bit of the instruction' can be the eighth bit of the instruction code, or the eighth bit of a data byte, depending on the instruction (except for Read Status Register (RDSR) and Read (READ) instructions).
- \quad The 'next rising edge of Serial Clock (C)' might (or might not) be the next bus transaction for some other device on the SPI bus.

Table 2. Write-protected block size

Status register bits		Protected block	Protected array addresses
BP1	BP0		none
0	0	none	Upper quarter
0	1	Upper half	8000 C - FFFFFh
1	0	Whole memory	0000 F - FFFFh
1	1		

5 Memory organization

The memory is organized as shown in Figure 6.
Figure 6. Block diagram

6 Instructions

Each instruction starts with a single-byte code, as summarized in Table 3.
If an invalid instruction is sent (one not contained in Table 3), the device automatically deselects itself.

Table 3. M95512-W and M95512-R instruction set

Instruction	Description	Instruction format
WREN	Write Enable	00000110
WRDI	Write Disable	00000100
RDSR	Read Status Register	00000101
WRSR	Write Status Register	00000001
READ	Read from Memory Array	00000011
WRITE	Write to Memory Array	00000010

Table 4. M95512-DR instruction set

Instruction	Description	Instruction format
WREN	Write Enable	00000110
WRDI	Write Disable	00000100
RDSR	Read Status Register	00000101
WRSR	Write Status Register	00000001
READ	Read from Memory Array	00000011
WRITE	Write to Memory Array	00000010
Read Identification Page	Reads the page dedicated to identification.	$10000011^{(1)}$
Write Identification Page	Writes the page dedicated to identification.	$10000010^{(1)}$
Read Lock Status	Reads the lock status of the Identification Page.	$10000011^{(2)}$
Lock ID	Locks the Identification page in read-only mode.	$10000010^{(2)}$

1. Address bit A10 must be 0 , all other address bits are Don't Care.
2. Address bit A10 must be 1 , all other address bits are Don't Care.

6.1 Write Enable (WREN)

The Write Enable Latch (WEL) bit must be set prior to each WRITE and WRSR instruction. The only way to do this is to send a Write Enable instruction to the device.
As shown in Figure 7, to send this instruction to the device, Chip Select $(\overline{\mathrm{S}})$ is driven low, and the bits of the instruction byte are shifted in, on Serial Data Input (D). The device then enters a wait state. It waits for a the device to be deselected, by Chip Select ($\overline{\mathrm{S}}$) being driven high.

Figure 7. Write Enable (WREN) sequence

6.2 Write Disable (WRDI)

One way of resetting the Write Enable Latch (WEL) bit is to send a Write Disable instruction to the device.
As shown in Figure 8, to send this instruction to the device, Chip Select $(\overline{\mathrm{S}})$ is driven low, and the bits of the instruction byte are shifted in, on Serial Data Input (D).

The device then enters a wait state. It waits for a the device to be deselected, by Chip Select $(\overline{\mathrm{S}})$ being driven high.
The Write Enable Latch (WEL) bit, in fact, becomes reset by any of the following events:

- Power-up
- WRDI instruction execution
- WRSR instruction completion
- WRITE instruction completion.

Figure 8. Write Disable (WRDI) sequence

6.3 Read Status Register (RDSR)

The Read Status Register (RDSR) instruction allows the Status Register to be read. The Status Register may be read at any time, even while a Write or Write Status Register cycle is in progress. When one of these cycles is in progress, it is recommended to check the Write In Progress (WIP) bit before sending a new instruction to the device. It is also possible to read the Status Register continuously, as shown in Figure 9.

The status and control bits of the Status Register are as follows:

6.3.1 WIP bit

The Write In Progress (WIP) bit indicates whether the memory is busy with a Write or Write Status Register cycle. When set to 1 , such a cycle is in progress, when reset to 0 no such cycle is in progress.

6.3.2 WEL bit

The Write Enable Latch (WEL) bit indicates the status of the internal Write Enable Latch. When set to 1 the internal Write Enable Latch is set, when set to 0 the internal Write Enable Latch is reset and no Write or Write Status Register instruction is accepted.

6.3.3 BP1, BPO bits

The Block Protect (BP1, BP0) bits are non-volatile. They define the size of the area to be software protected against Write instructions. These bits are written with the Write Status Register (WRSR) instruction. When one or both of the Block Protect (BP1, BPO) bits is set to 1, the relevant memory area (as defined in Table 5) becomes protected against Write (WRITE) instructions. The Block Protect (BP1, BPO) bits can be written provided that the Hardware Protected mode has not been set.

6.3.4 SRWD bit

The Status Register Write Disable (SRWD) bit is operated in conjunction with the Write Protect (\bar{W}) signal. The Status Register Write Disable (SRWD) bit and Write Protect (\bar{W}) signal allow the device to be put in the Hardware Protected mode (when the Status Register Write Disable (SRWD) bit is set to 1 , and Write Protect (\bar{W}) is driven low). In this mode, the non-volatile bits of the Status Register (SRWD, BP1, BP0) become read-only bits and the Write Status Register (WRSR) instruction is no longer accepted for execution.

Table 5. Status register format

Figure 9. Read Status Register (RDSR) sequence

6.4 Write Status Register (WRSR)

The Write Status Register (WRSR) instruction allows new values to be written to the Status Register. Before a WRSR instruction can be accepted, a Write Enable (WREN) instruction must have been executed.

The Write Status Register (WRSR) instruction is issued by driving Chip Select ($\overline{\mathrm{S}}$) low, sending the instruction code and the data byte on Serial Data input (D) and driving Chip Select $(\overline{\mathrm{S}})$ high. Chip Select $(\overline{\mathrm{S}})$ must be driven high after the rising edge of Serial Clock (C) that latches in the eighth bit of the data byte, and before the next rising edge of Serial Clock (C). Otherwise, the Write Status Register (WRSR) instruction is not executed.

Driving Chip Select $(\overline{\mathrm{S}})$ high at a byte boundary of the input data triggers the self-timed Write cycle whose duration is t_{W} (specified in Table 16 and Table 18). The instruction sequence is shown in Figure 10.

While the Write Status Register cycle is in progress, the Status Register may still be read to check the value of the Write In Progress (WIP) bit: the WIP bit is 1 during the self-timed Write cycle t_{W}, and 0 when the Write cycle is complete. The WEL bit (Write Enable Latch) is also reset when the Write cycle t_{W} is complete.

The Write Status Register (WRSR) instruction allows the user to change the values of the BP1, BP0 and SRWD bits:

- The Block Protect (BP1, BP0) bits define the size of the area to be treated as read-only, as defined in Table 6.
- The SRWD bit (Status Register Write Disable bit), depending on the signal applied on the Write Protect pin (W), allows the user to set or reset the write protection mode of the Status Register. When the Status Register is in the Write-protected mode, the Write Status Register (WRSR) instruction is not executed.

The contents of the SRWD and BP1, BP0 bits are updated upon completion of the WRSR instruction (after t_{W}).
The Write Status Register (WRSR) instruction has no effect on Status Register bits b6, b5, b4, b1, b0. They are always read as 0 .

Figure 10. Write Status Register (WRSR) sequence

Table 6. Protection modes

$\begin{gathered} \overline{\mathbf{W}} \\ \text { Signal } \end{gathered}$	SRWD Bit	Mode	Write Protection of the Status Register	Memory content	
				Protected area ${ }^{(1)}$	Unprotected area ${ }^{(1)}$
1	0	Software Protected (SPM)	Status Register is Writable (if the WREN instruction has set the WEL bit) The values in the BP1 and BPO bits can be changed	Write Protected	Ready to accept Write instructions
0	0				
1	1				
0	1	Hardware Protected (HPM)	Status Register is Hardware write protected The values in the BP1 and BPO bits cannot be changed	Write Protected	Ready to accept Write instructions

1. As defined by the values in the Block Protect (BP1, BPO) bits of the Status Register, as shown in Table 2.

The protection features of the device are summarized in Table 6.
When the Status Register Write Disable (SRWD) bit of the Status Register is 0 (its initial delivery state), it is possible to write to the Status Register (provided that the WEL bit has previously been set by a WREN instruction), regardless of the logic level applied on the Write Protect (W) input pin.
When the Status Register Write Disable (SRWD) bit of the Status Register is set to 1, two cases need to be considered, depending on the state of Write Protect $(\overline{\mathrm{W}})$ input pin:

- If Write Protect (\bar{W}) is driven high, it is possible to write to the Status Register (provided that the WEL bit has previously been set by a WREN instruction.
- If Write Protect (\bar{W}) is driven low, it is not possible to write to the Status Register even if the WEL bit has previously been set by a WREN instruction (attempts to write to the Status Register are rejected, and are not accepted for execution). As a consequence, all the data bytes in the memory area that are software-protected (SPM) by the Block Protect (BP1, BP0) bits in the Status Register, are also hardware-protected against data modification.

Regardless of the order of the two events, the Hardware-protected mode (HPM) can be entered either:

- by setting the SRWD bit after driving the Write Protect (\bar{W}) input pin low
- or by driving the Write Protect (\bar{W}) input pin low after setting the SRWD bit

Once entered, the Hardware-protected mode (HPM) can only be exited by pulling Write Protect ($\overline{\mathrm{W}}$) high.

If Write Protect (\bar{W}) is permanently tied high, the Hardware-protected mode (HPM) can never be activated, and only the Software-protected mode (SPM) using the Block Protect (BP1, BPO) bits in the Status Register, can be used.

6.5 Read from Memory Array (READ)

As shown in Figure 11, to send this instruction to the device, Chip Select ($\overline{\mathrm{S}}$) is first driven low. The bits of the instruction byte and address bytes are then shifted in, on Serial Data Input (D). The address is loaded into an internal address register, and the byte of data at that address is shifted out, on Serial Data Output (Q).

If Chip Select $(\overline{\mathrm{S}})$ continues to be driven low, the internal address register is automatically incremented, and the byte of data at the new address is shifted out.

When the highest address is reached, the address counter rolls over to zero, allowing the Read cycle to be continued indefinitely. The whole memory can, therefore, be read with a single READ instruction.

The Read cycle is terminated by driving Chip Select $(\overline{\mathrm{S}})$ high. The rising edge of the Chip Select $(\overline{\mathrm{S}})$ signal can occur at any time during the cycle.
The first byte addressed can be any byte within any page.
The instruction is not accepted, and is not executed, if a Write cycle is currently in progress.
Figure 11. Read from Memory Array (READ) sequence

6.6 Write to Memory Array (WRITE)

As shown in Figure 12, to send this instruction to the device, Chip Select ($\overline{\mathrm{S}}$) is first driven low. The bits of the instruction byte, address byte, and at least one data byte are then shifted in, on Serial Data Input (D).
The instruction is terminated by driving Chip Select $(\overline{\mathrm{S}})$ high at a byte boundary of the input data. The self-timed Write cycle triggered by the rising edge of Chip Select ($\overline{\mathrm{S}}$) continues for a period t_{W} (as specified in Table 16 and Table 18), at the end of which the Write in Progress (WIP) bit is reset to 0 .
In the case of Figure 12, Chip Select $(\overline{\mathrm{S}})$ is driven high after the eighth bit of the data byte has been latched in, indicating that the instruction is being used to write a single byte. If, though, Chip Select $(\overline{\mathrm{S}})$ continues to be driven low, as shown in Figure 13., the next byte of input data is shifted in, so that more than a single byte, starting from the given address towards the end of the same page, can be written in a single internal write cycle.
Each time a new data byte is shifted in, the least significant bits of the internal address counter are incremented. If the number of data bytes sent to the device exceeds the page boundary, the internal address counter rolls over to the beginning of the page, and the previous data there are overwritten with the incoming data. (The page size of these devices is 128 bytes).
The instruction is not accepted, and is not executed, under the following conditions:

- if the Write Enable Latch (WEL) bit has not been set to 1 (by executing a Write Enable instruction just before)
- if a Write cycle is already in progress
- if the device has not been deselected, by Chip Select ($\overline{\mathrm{S}}$) being driven high, at a byte boundary (after the eighth bit, b0, of the last data byte that has been latched in)
- if the addressed page is in the region protected by the Block Protect (BP1 and BPO) bits.
Note: \quad The self-timed write cycle t_{W} is internally executed as a sequence of two consecutive events: [Erase addressed byte(s)], followed by [Program addressed byte(s)]. An erased bit is read as "0" and a programmed bit is read as "1".

Figure 12. Byte Write (WRITE) sequence

Figure 13. Page Write (WRITE) sequence

6.7 Read Identification Page (available only in M95512-DR devices)

As shown in Figure 14, to send this instruction to the device, the Chip Select signal $(\overline{\mathrm{S}})$ is first driven low. The bits of the instruction byte and address bytes are then shifted in, on Serial Data input (D). Address bit A10 must be 0, address bits [A15:A11] and [A9:A7] are Don't Care, and the data byte pointed to by [A6:A0] is shifted out on Serial Data output (Q).
If Chip Select (\bar{S}) continues to be driven low, the internal address register is automatically incremented, and the byte of data at the new address is shifted out. When the highest address is reached, the address counter rolls over to zero, allowing the read cycle to continue indefinitely.
The read cycle is terminated by driving Chip Select $(\overline{\mathrm{S}})$ high. The rising edge of the Chip Select $(\overline{\mathrm{S}})$ signal can occur at any time during the cycle. The first byte addressed can be any byte within any page.
The instruction is not accepted, and is not executed, if a write cycle is currently in progress.
Figure 14. Read Identification Page sequence

6.8 Write Identification Page (available only in M95512-DR devices)

As shown in Figure 15, to send this instruction to the device, the Chip Select signal $(\overline{\mathrm{S}})$ is first driven low. The bits of the instruction byte, address byte, and at least one data byte are then shifted in on Serial Data input (D). Address bit A10 must be 0, address bits [A15:A11] and [A9:A7] are Don't Care, the [A6:A0] address bits define the byte address inside the identification page.
The instruction is terminated by driving Chip Select $(\overline{\mathrm{S}})$ high at a byte boundary of the input data. The self-timed write cycle triggered by the rising edge of Chip Select ($\overline{\mathrm{S}}$) continues for a period t_{W} (as specified in Table 17 and Table 18), at the end of which the Write in Progress (WIP) bit is reset to 0 .
In the case of Figure 15, Chip Select (\bar{S}) is driven high after the eighth bit of the data byte has been latched in, indicating that the instruction is being used to write a single byte. However, if Chip Select ($\overline{\mathrm{S}}$) continues to be driven low, as shown in Figure 15, the next byte of input data is shifted in, so that more than a single byte, starting from the given address towards the end of the same page, can be written in a single internal write cycle. Each time a new data byte is shifted in, the least significant bits of the internal address counter are incremented. If the number of data bytes sent to the device exceeds the page boundary, the internal address counter rolls over to the beginning of the page, and the previous data there are overwritten with the incoming data. (The page size of these devices is 128 bytes).

The instruction is not accepted, and is not executed, under the following conditions:

- if the Write Enable Latch (WEL) bit has not been set to 1 (by previously executing a Write Enable instruction)
- if Status register bits $(\mathrm{BP} 1, \mathrm{BP} 0)=(1,1)$
- if a write cycle is already in progress
- if the device has not been deselected, by Chip Select (S) being driven high, at a byte boundary (after the eighth bit, b0, of the last data byte that was latched in)
- if the Identification page is locked by the Lock Status bit

Figure 15. Write Identification Page sequence

6.9 Read Lock Status (available only in M95512-DR devices)

The Read Lock Status instruction is used to read the lock status. To send this instruction to the device, Chip Select (\bar{S}) first has to be driven low. The bits of the instruction byte and address bytes are then shifted in on Serial Data input (D). Address bit A10 must be 1, all other address bits are Don't Care. The Lock bit is the LSB (least significant bit) of the byte read on Serial Data output (Q). It is at ' 1 ' when the lock is active and at ' 0 ' when the lock is not active. If Chip Select (\bar{S}) continues to be driven low, the same data byte is shifted out. The read cycle is terminated by driving Chip Select $(\overline{\mathrm{S}})$ high. The instruction sequence is shown in Figure 16.

Figure 16. Read Lock Status sequence

6.10 Lock ID (available only in M95512-DR devices)

The Lock ID instruction permanently locks the Identification Page in read-only mode. Before this instruction can be accepted, a Write Enable (WREN) instruction must have been executed. The Lock ID instruction is issued by driving Chip Select ($\overline{\mathrm{S}}$) low, sending the instruction code, the address and a data byte on Serial Data input (D), and driving Chip Select $(\overline{\mathrm{S}})$ high. In the address sent, A10 must be equal to 1 , all other address bits are Don't Care. The data byte sent must be equal to the binary value $\mathrm{xxxx} x \mathrm{x} 1 \mathrm{x}$, where $\mathrm{x}=$ Don't Care.

Chip Select ($\overline{\mathrm{S}}$) must be driven high after the rising edge of Serial Clock (C) that latches in the eighth bit of the data byte, and before the next rising edge of Serial Clock (C). Otherwise, the Lock ID instruction is not executed.

Driving Chip Select (\bar{S}) high at a byte boundary of the input data triggers the self-timed write cycle whose duration is t_{W} (specified in Table 17 and Table 18). The instruction sequence is shown in Figure 17.

The instruction is not accepted, and so not executed, under the following conditions:

- if the Write Enable Latch (WEL) bit has not been set to 1 (by previously executing a Write Enable instruction)
- if Status register bits $(\mathrm{BP} 1, \mathrm{BP} 0)=(1,1)$
- if a write cycle is already in progress
- if the device has not been deselected, by Chip Select $(\overline{\mathrm{S}})$ being driven high, at a byte boundary (after the eighth bit, b0, of the last data byte that was latched in)
- if the Identification page is locked by the Lock Status bit

Figure 17. Lock ID sequence

7 ECC (error correction code) and write cycling

The M95512-W, M95512-R and M95512-DR devices offer an ECC (error correction code) logic which compares each 4-byte word with its associated 6 EEPROM bits of ECC. As a result, if a single bit out of 4 bytes of data happens to be erroneous during a Read operation, the ECC detects it and replaces it by the correct value. The read reliability is therefore much improved by the use of this feature.

Note however that even if a single byte has to be written, 4 bytes are internally modified (plus the ECC bits), that is, the addressed byte is cycled together with the other three bytes making up the word. It is therefore recommended to write by words of 4 bytes in order to benefit from the larger amount of Write cycles.

The M95512-W, M95512-R and M95512-DR devices are qualified at 1 million (1000000) Write cycles, using a cycling routine that writes to the device by multiples of 4-byte packets.

8 Power-up and delivery state

8.1 Power-up state

After power-up, the device is in the following state:

- Standby Power mode
- Deselected (after Power-up, a falling edge is required on Chip Select ($\overline{\mathrm{S}}$) before any instructions can be started).
- Not in the Hold Condition
- Write Enable Latch (WEL) is reset to 0
- Write In Progress (WIP) is reset to 0

The SRWD, BP1 and BP0 bits of the Status Register are unchanged from the previous power-down (they are non-volatile bits).

8.2 Initial delivery state

The device is delivered with the memory array set at all 1s (FFh). The Status Register Write Disable (SRWD) and Block Protect (BP1 and BPO) bits are initialized to 0.

9 Maximum rating

Stressing the device outside the ratings listed in Table 7 may cause permanent damage to the device. These are stress ratings only, and operation of the device at these, or any other conditions outside those indicated in the operating sections of this specification, is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

Table 7. Absolute maximum ratings

Symbol	Parameter	Min.	Max.	Unit
T_{A}	Ambient operating temperature	-40	130	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {LEAD }}$	Lead temperature during soldering	See note ${ }^{(1)}$		${ }^{\circ} \mathrm{C}$
V_{O}	Output voltage	-0.50	$\mathrm{~V}_{\mathrm{CC}}+0.6$	V
$\mathrm{~V}_{\mathrm{I}}$	Input voltage	-0.50	6.5	V
$\mathrm{~V}_{\mathrm{CC}}$	Supply voltage	-0.50	6.5	V
$\mathrm{~V}_{\text {ESD }}$	Electrostatic discharge voltage (human body model) $)^{(2)}$	-3000	3000	V

1. Compliant with JEDEC Std J-STD-020C (for small body, Sn-Pb or Pb assembly), the ST ECOPACK ${ }^{\circledR}$ 7191395 specification, and the European directive on Restrictions on Hazardous Substances (RoHS) 2002/95/EU
2. AEC-Q100-002 (compliant with JEDEC Std JESD22-A114A, C1=100 pF, R1=1500 $\Omega, R 2=500 \Omega$)

10 DC and AC parameters

This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and AC characteristic tables that follow are derived from tests performed under the measurement conditions summarized in the relevant tables. Designers should check that the operating conditions in their circuit match the measurement conditions when relying on the quoted parameters.

Table 8. Operating conditions (M95512-W device grade 6)

Symbol	Parameter	Min.	Max.	Unit
V_{CC}	Supply voltage	2.5	5.5	V
$\mathrm{~T}_{\mathrm{A}}$	Ambient operating temperature (device grade 6)	-40	85	${ }^{\circ} \mathrm{C}$

Table 9. Operating conditions (M95512-W device grade 3)

Symbol	Parameter	Min.	Max.	Unit
$\mathrm{V}_{\text {CC }}$	Supply voltage	2.5	5.5	V
$\mathrm{~T}_{\mathrm{A}}$	Ambient operating temperature (device grade 6)	-40	125	${ }^{\circ} \mathrm{C}$

Table 10. Operating conditions (M95512-R and M95512-DR)

Symbol	Parameter	Min.	Max.	Unit
V_{CC}	Supply voltage	1.8	5.5	V
$\mathrm{~T}_{\mathrm{A}}$	Ambient operating temperature	-40	85	${ }^{\circ} \mathrm{C}$

Table 11. AC measurement conditions

Symbol	Parameter	Min.	Max.	Unit
C_{L}	Load capacitance	30		pF
	Input Rise and Fall times		50	ns
	Input Pulse voltages	$0.2 \mathrm{~V}_{\mathrm{CC}}$ to $0.8 \mathrm{~V}_{\mathrm{CC}}$	V	
	Input and output timing reference voltages	$0.3 \mathrm{~V}_{\mathrm{CC}}$ to $0.7 \mathrm{~V}_{\mathrm{CC}}$	V	

Figure 18. AC measurement I/O waveform
Input Levels

Table 12. Capacitance ${ }^{(1)}$

Symbol	Parameter	Test condition	Min.	Max.	Unit
$\mathrm{C}_{\text {OUT }}$	Output capacitance (Q)	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		8	pF
C_{IN}	Input capacitance (D)	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		8	pF
	Input capacitance (other pins)	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		6	pF

1. Not 100% tested.

Table 13. DC characteristics (current ${ }^{(1)}$ M95512-W products)

Symbol	Parameter	$\begin{gathered} \text { Test conditions: } \mathrm{V}_{\mathrm{CC}}=2.5 \text { to } 5.5 \mathrm{~V} \text { at } \\ \mathrm{T}_{\mathrm{A}}=-40 \text { to } 85^{\circ} \mathrm{C} \text { (device grade } 6 \text {) } \\ \text { or } \mathrm{T}_{\mathrm{A}}=-40 \text { to } 125^{\circ} \mathrm{C} \text { (device grade 3) } \end{gathered}$	Min.	Max.	Unit
I_{LI}	Input leakage current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$ or V_{CC}		± 2	$\mu \mathrm{A}$
lo	Output leakage current	$\overline{\mathrm{S}}=\mathrm{V}_{\text {CC }}, \mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}$ or $\mathrm{V}_{\text {CC }}$		± 2	$\mu \mathrm{A}$
$I_{\text {cc }}$	Supply current (Read)	$\begin{gathered} \mathrm{C}=0.1 \mathrm{~V}_{\mathrm{CC}} / 0.9 \mathrm{~V}_{\mathrm{CC}} \text { at } 5 \mathrm{MHz}, \\ \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{Q}=\text { open } \end{gathered}$		3	mA
		$\begin{gathered} \mathrm{C}=0.1 \mathrm{~V}_{\mathrm{CC}} / 0.9 \mathrm{~V}_{\mathrm{CC}} \text { at } 5 \mathrm{MHz}, \mathrm{~V}_{\mathrm{CC}}=5 \\ \mathrm{~V}, \mathrm{Q}=\text { open } \end{gathered}$		5	mA
$\mathrm{ICCO}^{(2)}$	Supply current (Write)	$\begin{aligned} & \text { During } \mathrm{t}_{\mathrm{W}}, \overline{\mathrm{~S}}=\mathrm{V}_{\mathrm{CC}}, \\ & 2.5 \mathrm{~V}<\mathrm{V}_{C C}<5.5 \mathrm{~V} \end{aligned}$		6	mA
$\mathrm{I}_{\mathrm{CC} 1}$	Supply current (Standby Power mode)	$\begin{gathered} \overline{\mathrm{S}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{SS}} \text { or } \mathrm{V}_{\mathrm{CC}}, \\ 2.5 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<5.5 \mathrm{~V} \end{gathered}$		5	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IL }}$	Input low voltage		-0.45	$0.3 \mathrm{~V}_{\mathrm{CC}}$	V
V_{IH}	Input high voltage		$0.7 \mathrm{~V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}+1$	V
V_{OL}	Output low voltage	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \text { and } \mathrm{I}_{\mathrm{OL}}=1.5 \mathrm{~mA} \text { or } \\ \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \text { and } \mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA} \end{gathered}$		0.4	V
V_{OH}	Output high voltage	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \text { and } \mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA} \text { or } \\ \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \text { and } \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA} \end{gathered}$	$0.8 \mathrm{~V}_{\mathrm{CC}}$		V

1. Current products are identified by $A B$ process letters $A B$.
2. Characterized value, not tested in production.

Table 14. DC characteristics (new ${ }^{(1)}$ M95512-W products)

Symbol	Parameter	$\begin{aligned} & \text { Test conditions: } \mathrm{V}_{\mathrm{CC}}=2.5 \text { to } 5.5 \mathrm{~V} \text {, } \\ & \mathrm{T}_{\mathrm{A}}=-40 \text { to } 85^{\circ} \mathrm{C} \end{aligned}$	Min.	Max.	Unit
I_{LI}	Input leakage current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$ or V_{CC}		± 2	$\mu \mathrm{A}$
ILO	Output leakage current	$\overline{\mathrm{S}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}$ or V_{CC}		± 2	$\mu \mathrm{A}$
I_{CC}	Supply current (Read)	$\begin{gathered} \mathrm{C}=0.1 \mathrm{~V}_{\mathrm{CC}} / 0.9 \mathrm{~V}_{\mathrm{CC}} \text { at } 10 \mathrm{MHz}, \\ \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{Q}=\text { open } \end{gathered}$		4	mA
		$\begin{gathered} \mathrm{C}=0.1 \mathrm{~V}_{\mathrm{CC}} / 0.9 \mathrm{~V}_{\mathrm{CC}} \text { at } 20 \mathrm{MHz}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ \mathrm{Q}=\text { open } \end{gathered}$		8	mA
$\mathrm{ICCO}^{(2)}$	Supply current (Write)	During $\mathrm{t}_{\mathrm{W}}, \overline{\mathrm{S}}=\mathrm{V}_{\mathrm{cc}}, 2.5 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<5.5 \mathrm{~V}$		6	mA
$\mathrm{ICC1}$	Supply current (Standby Power mode)	$\begin{gathered} \overline{\mathrm{S}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}} \text { or } \mathrm{V}_{\mathrm{CC}} \\ \\ 2.5 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<5.5 \mathrm{~V} \end{gathered}$		5	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IL }}$	Input low voltage		-0.45	$0.3 \mathrm{~V}_{\mathrm{CC}}$	V
V_{IH}	Input high voltage		$0.7 \mathrm{~V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}+1$	V
V_{OL}	Output low voltage	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \text { and } \mathrm{I}_{\mathrm{OL}}=1.5 \mathrm{~mA} \text { or } \\ \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \text { and } \mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA} \end{gathered}$		0.4	V
V_{OH}	Output high voltage	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \text { and } \mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA} \text { or } \\ \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \text { and } \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA} \end{gathered}$	0.8 V CC		V

1. New products are identified by process letter K.
2. Characterized value, not tested in production.

Table 15. DC characteristics (current and new M95512-R and M95512-DR products)

Symbol	Parameter	Test conditions: $\mathrm{V}_{\mathrm{CC}}=1.8 \text { to } 5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40 \text { to } 85^{\circ} \mathrm{C}$	Min	Max	Unit
I_{LI}	Input leakage current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$ or V_{CC}		± 2	$\mu \mathrm{A}$
$\mathrm{l}_{\text {LO }}$	Output leakage current	$\overline{\mathrm{S}}=\mathrm{V}_{\text {CC }}, \mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}$ or $\mathrm{V}_{\text {CC }}$		± 2	$\mu \mathrm{A}$
I_{CC}	Supply current (Read)	$\begin{gathered} \mathrm{C}=0.1 \mathrm{~V}_{\mathrm{CC}} / 0.9 \mathrm{~V}_{\mathrm{CC}} \text { at } 2 \mathrm{MHz}, \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V}, \\ \mathrm{Q}=\text { open }^{(1)} \end{gathered}$		1	mA
		$\begin{gathered} \mathrm{C}=0.1 \mathrm{~V}_{\mathrm{CC}} / 0.9 \mathrm{~V}_{\mathrm{CC}} \text { at } 5 \mathrm{MHz}, \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V}, \\ \mathrm{Q}=\text { open }^{(2)} \end{gathered}$		2.5	mA
$\mathrm{I}_{\mathrm{CCO}}{ }^{(3)}$	Supply current (Write)	During $\mathrm{t}_{\mathrm{W}}, \overline{\mathrm{S}}=\mathrm{V}_{\mathrm{CC}}, 1.8 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<2.5 \mathrm{~V}$		3	mA
$\mathrm{I}_{\mathrm{CC} 1}$	Supply current (Standby Power mode)	$\begin{gathered} \overline{\mathrm{S}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}} \text { or } \mathrm{V}_{\mathrm{CC}}, \\ 1.8 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<2.5 \mathrm{~V} \end{gathered}$		3	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IL }}$	Input low voltage		-0.45	$0.3 \mathrm{~V}_{\mathrm{CC}}$	V
V_{IH}	Input high voltage		$0.7 \mathrm{~V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}+1$	V
V_{OL}	Output low voltage	$\mathrm{I}_{\mathrm{OL}}=0.15 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V}$		0.3	V
V_{OH}	Output high voltage	$\mathrm{l}_{\mathrm{OH}}=-0.1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V}$	$0.8 \mathrm{~V}_{\mathrm{CC}}$		V

1. Current products are identified by process letters $A B$.
2. New products are identified by process letter K.
3. Characterized value, not tested in production.

Table 16. AC characteristics (current ${ }^{(1)}$ M95512-W products)
Test conditions:
$\mathrm{V}_{\mathrm{CC}}=2.5$ to 5.5 V at $\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$ (device grade 6) or $\mathrm{T}_{\mathrm{A}}=-40$ to $125{ }^{\circ} \mathrm{C}$ (device grade 3)

Symbol	Alt.	Parameter	Min.	Max.	Unit
f_{C}	$\mathrm{f}_{\text {SCK }}$	Clock frequency	D.C.	5	MHz
$\mathrm{t}_{\text {SLCH }}$	$\mathrm{t}_{\mathrm{CSS} 1}$	$\overline{\mathrm{~S}}$ active setup time	90		ns
$\mathrm{t}_{\text {SHCH }}$	$\mathrm{t}_{\mathrm{CSS} 2}$	$\overline{\mathrm{~S}}$ not active setup time	90		ns

$\mathrm{t}_{\mathrm{SHSL}}$	t_{CS}	$\overline{\mathrm{S}}$ deselect time	100	
$\mathrm{t}_{\mathrm{CHSH}}$	$\mathrm{t}_{\mathrm{CSH}}$	$\overline{\mathrm{S}}$ active hold time	90	
$\mathrm{t}_{\mathrm{CHSL}}$		$\overline{\mathrm{S}}$ not active hold time	90	ns

$\mathrm{t}_{\mathrm{CH}}{ }^{(2)}$	$\mathrm{t}_{\mathrm{CLH}}$	Clock high time	90	
$\mathrm{t}_{\mathrm{CL}}{ }^{(2)}$	$\mathrm{t}_{\mathrm{CLL}}$	Clock low time	90	
$\mathrm{t}^{(3)}$	$\mathrm{t}^{(2)}$	Clock		

$\mathrm{t}_{\mathrm{CLCH}}{ }^{(3)}$	t_{RC}	Clock rise time		1
$\mathrm{t}_{\mathrm{CHCL}}{ }^{(3)}$	t_{FC}	Clock fall time		1
$\mathrm{t}_{\mathrm{DVCH}}$	$\mathrm{t}_{\mathrm{DSU}}$	Data in setup time	20	

$\mathrm{t}_{\mathrm{CHDX}}$	t_{DH}	Data in hold time	30	
$\mathrm{t}_{\mathrm{HHCH}}$		Clock low hold time after $\overline{\text { HOLD not active }}$	70	
$\mathrm{t}_{\mathrm{HLCH}}$		Clock low hold time after $\overline{\text { HOLD active }}$	ns	
$\mathrm{t}_{\mathrm{CLHL}}$		Clock low setup time before $\overline{\text { HOLD active }}$	40	
$\mathrm{t}_{\mathrm{CLHH}}$		Clock low setup time before $\overline{\text { HOLD not active }}$	ns	
$\mathrm{t}_{\mathrm{SHQZ}}{ }^{(3)}$	$\mathrm{t}_{\mathrm{DIS}}$	Output disable time	0	
$\mathrm{t}_{\mathrm{CLQV}}$	t_{V}	Clock low to output valid	ns	
$\mathrm{t}_{\mathrm{CLQX}}$	t_{HO}	Output hold time	100	ns
$\mathrm{t}_{\mathrm{QLQH}}{ }^{(3)}$	t_{RO}	Output rise time		60
$\mathrm{t}_{\mathrm{QHQL}}{ }^{(3)}$	t_{FO}	Output fall time	ns	
$\mathrm{t}_{\mathrm{HHQV}}$	t_{LZ}	HOLD high to output valid	0	
$\mathrm{t}_{\mathrm{HLQZ}}{ }^{(3)}$	t_{HZ}	HOLD low to output High-Z	ns	
t_{W}	t_{WC}	Write time		50

1. Current products are identified by process letters AB .
2. $\mathrm{t}_{\mathrm{CH}}+\mathrm{t}_{\mathrm{CL}}$ must never be less than the shortest possible clock period, $1 / \mathrm{f}_{\mathrm{C}}(\max)$
3. Value guaranteed by characterization, not 100% tested in production.

Table 17. AC characteristics (New ${ }^{(1)}$ M95512-W products)

Test conditions: $\mathrm{V}_{\mathbf{C C}}=2.5$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $85{ }^{\circ} \mathrm{C}$							
Symbol	Alt.	Parameter	Min.	Max.	Min.	Max.	Unit
			2.5 V to 5.5 V		4.5 V to 5.5 V		
f_{C}	$\mathrm{f}_{\text {Sck }}$	Clock frequency	D.C.	10	D.C.	20	MHz
$\mathrm{t}_{\text {SLCH }}$	$\mathrm{t}_{\text {CSS } 1}$	$\overline{\mathrm{S}}$ active setup time	30		15		ns
${ }^{\text {SHCH}}$	$\mathrm{t}_{\text {cSS2 }}$	$\overline{\mathrm{S}}$ not active setup time	30		15		ns
$\mathrm{t}_{\text {SHSL }}$	t_{CS}	$\overline{\text { S }}$ deselect time	40		20		ns
$\mathrm{t}_{\mathrm{CHSH}}$	$\mathrm{t}_{\mathrm{CSH}}$	$\overline{\mathrm{S}}$ active hold time	30		15		ns
$\mathrm{t}_{\mathrm{CHSL}}$		$\overline{\mathrm{S}}$ not active hold time	30		15		ns
$\mathrm{t}_{\mathrm{CH}}{ }^{(2)}$	$\mathrm{t}_{\mathrm{CLH}}$	Clock high time	45		20		ns
$\mathrm{t}_{\mathrm{CL}}{ }^{(2)}$	${ }^{\text {ctL }}$	Clock low time	45		20		ns
$\mathrm{t}_{\mathrm{CLCH}}{ }^{(3)}$	t_{RC}	Clock rise time		2		2	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{CHCL}}{ }^{(3)}$	t_{FC}	Clock fall time		2		2	$\mu \mathrm{s}$
$\mathrm{t}_{\text {DVCH }}$	$\mathrm{t}_{\text {DSU }}$	Data in setup time	10		5		ns
$\mathrm{t}_{\mathrm{CHDX}}$	t_{DH}	Data in hold time	10		10		ns
$\mathrm{t}_{\mathrm{HHCH}}$		Clock low hold time after $\overline{\text { HOLD }}$ not active	30		15		ns
$\mathrm{t}_{\mathrm{HLCH}}$		Clock low hold time after HOLD active	30		15		ns
$\mathrm{t}_{\mathrm{CLHL}}$		Clock low setup time before $\overline{\text { HOLD }}$ active	0		0		ns
$\mathrm{t}_{\mathrm{CLHH}}$		Clock low setup time before HOLD not active	0		0		ns
$\mathrm{t}_{\text {SHQZ }}{ }^{(3)}$	$t_{\text {DIS }}$	Output disable time		40		20	ns
tclav	t_{v}	Clock low to output valid		40		20	ns
$\mathrm{t}_{\text {CLQX }}$	t_{HO}	Output hold time	0		0		ns
$\mathrm{t}_{\text {QLQH }}{ }^{(3)}$	t_{RO}	Output rise time		40		20	ns
$\mathrm{t}_{\text {QHQL }}{ }^{(3)}$	t_{FO}	Output fall time		40		20	ns
$\mathrm{t}_{\mathrm{HHQV}}$	tLz	HOLD high to output valid		40		20	ns
$\mathrm{t}_{\mathrm{HLQZ}}{ }^{(3)}$	t_{Hz}	$\overline{\text { HOLD }}$ low to output High-Z		40		20	ns
t_{W}	t_{wc}	Write time		5		5	ms

1. New products are identified by process letter K.
2. $t_{C H}+t_{C L}$ must never be less than the shortest possible clock period, $1 / f_{C}$ (max)
3. Value guaranteed by characterization, not 100% tested in production.

Table 18. AC characteristics (current and new M95512-R and M95512-DR products)

Symbol	Alt.	Parameter	Min.	Max.	Min.	Max.	
			Current ${ }^{(1)}$ products		New products ${ }^{(2)}$		
f_{C}	$\mathrm{f}_{\text {SCK }}$	Clock frequency	D.C.	2	D.C.	5	MHz
$\mathrm{t}_{\text {SLCH }}$	tcss1	$\overline{\text { S }}$ active setup time	200		60		ns
$\mathrm{t}_{\mathrm{SHCH}}$	$\mathrm{t}_{\mathrm{CSS} 2}$	$\overline{\mathrm{S}}$ not active setup time	200		60		ns
$\mathrm{t}_{\text {SHSL }}$	t_{CS}	$\overline{\mathrm{S}}$ deselect time	200		90		ns
$\mathrm{t}_{\mathrm{CHSH}}$	${ }^{\text {t CSH }}$	$\overline{\mathrm{S}}$ active hold time	200		60		ns
$\mathrm{t}_{\mathrm{CHSL}}$		$\overline{\mathrm{S}}$ not active hold time	200		60		ns
$\mathrm{t}_{\mathrm{CH}}{ }^{(3)}$	$\mathrm{t}_{\mathrm{CLH}}$	Clock high time	200		80		ns
$\mathrm{t}_{\mathrm{CL}}{ }^{(3)}$	$\mathrm{t}_{\text {CLL }}$	Clock low time	200		80		ns
$\mathrm{t}_{\mathrm{CLCH}}{ }^{(4)}$	t_{RC}	Clock rise time		1		2	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{CHCL}}{ }^{(4)}$	t_{FC}	Clock fall time		1		2	$\mu \mathrm{s}$
$t_{\text {DVCH }}$	$t_{\text {DSU }}$	Data in setup time	40		20		ns
$\mathrm{t}_{\text {CHDX }}$	t_{DH}	Data in hold time	50		20		ns
$\mathrm{t}_{\mathrm{HHCH}}$		Clock low hold time after $\overline{\text { HOLD }}$ not active	140		60		ns
$\mathrm{t}_{\mathrm{HLCH}}$		Clock low hold time after $\overline{\text { HOLD }}$ active	90		60		ns
${ }^{\text {t }}$ LLHL		Clock low setup time before $\overline{\text { HOLD }}$ active	0		0		ns
${ }^{\text {t }}$ CLHH		Clock low setup time before $\overline{\text { HOLD }}$ not active	0		0		ns
$\mathrm{t}_{\mathrm{SHQZ}}{ }^{(4)}$	$\mathrm{t}_{\text {DIS }}$	Output disable time		250		80	ns
$\mathrm{t}_{\text {CLQV }}$	t_{V}	Clock low to output valid		150		80	ns
$\mathrm{t}_{\text {CLQX }}$	t_{HO}	Output hold time	0		0		ns
$\mathrm{t}_{\text {QLQH }}{ }^{(4)}$	t_{RO}	Output rise time		100		80	ns
$\mathrm{t}_{\text {QHQL }}{ }^{(4)}$	t_{FO}	Output fall time		100		80	ns
$\mathrm{t}_{\mathrm{HHQV}}$	t Lz	$\overline{\text { HOLD }}$ high to output valid		100		80	ns
$\mathrm{t}_{\mathrm{HLQZ}}{ }^{(4)}$	t_{HZ}	HOLD low to output High-Z		250		80	ns
$t_{\text {w }}$	$t_{\text {w }}$	Write time		5		5	ms

1. Current products are identified by process letters "AB".
2. New products are identified by process letter K. For these new products, the test flow guarantees the AC parameter values defined in this table (when $\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$) and the AC parameter values defined in Table $17\left(\mathrm{when} \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}\right.$ or $\mathrm{V}_{\mathrm{CC}}=$ 5.0 V).
3. $t_{C H}+t_{C L}$ must never be less than the shortest possible clock period, $1 / f_{C}(\max)$
4. Value guaranteed by characterization, not 100% tested in production.

Figure 19. Serial input timing

Figure 20. Hold timing

Figure 21. Serial output timing

11 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

Figure 22. SO8N - 8 lead plastic small outline, 150 mils body width, package outline

SO-A

1. Drawing is not to scale.

Table 19. SO8N - 8 lead plastic small outline, 150 mils body width, package mechanical data

Symbol	millimeters			inches $^{(1)}$		
	Typ	Min	Max	Typ	Min	Max
A			1.75			0.0689
A1		0.10	0.25		0.0039	0.0098
A2		1.25			0.0492	
b		0.28	0.48		0.011	0.0189
c		0.17	0.23		0.0067	0.0091
ccc			0.10			0.0039
D	4.90	4.80	5.00	0.1929	0.189	0.1969
E	6.00	5.80	6.20	0.2362	0.2283	0.2441
E1	3.90	3.80	4.00	0.1535	0.1496	0.1575
e	1.27	-	-	0.05	-	-
h		0.25	0.50		0.0098	0.0197
k		0°	8°		0°	8°
L		0.40	1.27		0.0157	0.05
L1	1.04			0.0409		

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 23. TSSOP8-8 lead thin shrink small outline, package outline

1. Drawing is not to scale.

Table 20. TSSOP8-8 lead thin shrink small outline, package mechanical data

Symbol	millimeters			inches $^{(1)}$								
	Typ	Min	Max	Typ	Min	Max						
A			1.200			0.0472						
A1		0.050	0.150		0.0020	0.0059						
A2	1.000	0.800	1.050	0.0394	0.0315	0.0413						
b		0.190	0.300		0.0075	0.0118						
c		0.090	0.200		0.0035	0.0079						
CP			0.100			0.0039						
D	3.000	2.900	3.100	0.1181	0.1142	0.1220						
e	0.650	-	-	0.0256	-	-						
E	6.400	6.200	6.600	0.2520	0.2441	0.2598						
E1	4.400	4.300	4.500	0.1732	0.1693	0.1772						
L	0.600	0.450	0.750	0.0236	0.0177	0.0295						
L1	1.000			0.0394								
α		0°	8°		0°	8°						
N	8										8	

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 24. UFDFPN8 (MLP8) - 8-lead ultra thin fine pitch dual flat package no lead $2 \times 3 \mathrm{~mm}$, package outline

UFDFPN-01

1. Drawing is not to scale.

Table 21. UFDFPN8 (MLP8) - 8-lead ultra thin fine pitch dual flat package no lead $2 \times 3 \mathrm{~mm}$, package mechanical data

Symbol	millimeters			inches $^{(1)}$		
	Typ	Min	Max	Typ	Min	Max
A	0.55	0.50	0.60	0.0217	0.0197	0.0236
A1	0.02	0.00	0.05	0.0008	0	0.0020
b	0.25	0.20	0.30	0.0098	0.0079	0.0118
D	2.00	1.90	2.10	0.0787	0.0748	0.0827
D2	1.60	1.50	1.70	0.0630	0.0591	0.0669
ddd			0.08			0.0031
E	3.00	2.90	3.10	0.1181	0.1142	0.1220
E2	0.20	0.10	0.30	0.0079	0.0039	0.0118
e	0.50	-	-	0.0197	-	-
L	0.45	0.40	0.50	0.0177	0.0157	0.0197
L1			0.15			0.0059
L3		0.30			0.0118	

1. Values in inches are converted from mm and rounded to 4 decimal digits.

12 Part numbering

Table 22. Ordering information scheme

$6=$ Industrial temperature range, -40 to $85^{\circ} \mathrm{C}$.
Device tested with standard test flow
3 = Device tested with high reliability certified flow ${ }^{(1)}$.
Automotive temperature range (-40 to $125^{\circ} \mathrm{C}$)

Option
blank = Standard packing
T = Tape and reel packing

Plating technology
P or G = ECOPACK ${ }^{\circledR}$ (RoHS compliant)

Process ${ }^{(2)}$
/AB = F8L
$/ \mathrm{K}=\mathrm{F} 8 \mathrm{H}$

1. ST strongly recommends the use of the automotive grade devices for use in an automotive environment. The high reliability certified flow (HRCF) is described in the quality note QNEE9801. Please ask your nearest ST sales office for a copy.
2. The process letters only appear in the product ordering codes of device grade 3 devices. For other devices, it is only given here as an indication of how to differentiate current from new products. To identify current from new devices, please contact your nearest ST sales office.

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

Table 23. Available M95512 products (package, voltage range, temperature grade)

Package	M95512-W	M95512-R
	$\mathbf{2 . 5} \mathrm{V}$ to 5.5 V	$\mathbf{1 . 8 ~ V}$ to 5.5 V
SO8 (MN)	Range 6, range 3	Range 6
TSSOP (DW)	Range 6	Range 6
UFDFPN8 (MB)	-	Range 6

Table 24. Available M95512-DR products (package, voltage range, temperature grade)

Package	M95512-DR $1.8 ~ \mathrm{~V}$ to 5.5 $\mathbf{~ V ~}$
SO8 (MN)	Range 6
TSSOP (DW)	Range 6

13 Revision history

Table 25. Document revision history

Date	Revision	Changes
Jan-1999	1.0	Document written
13-Feb-2002	2.0	Document reformatted using the new template Voltage range -S added, and -R removed Instruction Sequence illustrations updated Announcement made of planned upgrade to 10 MHz clock for the $5 \mathrm{~V},-40$ to $85^{\circ} \mathrm{C}$, range
05-Dec-2003	3.0	Table of contents, and Pb -free options added. $\mathrm{V}_{\mathrm{IL}}(\mathrm{min})$ improved to 0.45 V . Voltage range -R added, and -S removed
02-Apr-2004	4.0	Old versions of document completely replaced by one rewritten from M95256
03-Jan-2005	5.0	AC and DC characteristics tables updated with the performance data of the new device identified with the process letter " A ". Table 1., Product List added. AEC-Q100-002 compliance. Device Grade information clarified. $\mathrm{t}_{\mathrm{HHQx}}, \mathrm{t}_{\mathrm{CHHL}}$ and $\mathrm{t}_{\mathrm{CHH}}$ corrected to $\mathrm{t}_{\mathrm{HHQV}}, \mathrm{t}_{\mathrm{CLHL}}$ and $\mathrm{t}_{\mathrm{CLHH}}$, respectively. M95512 part number with 4.5 V to 5.5 V operating voltage range removed (related tables removed). Document status changed to Preliminary Data.
30-Jun-2005	6.0	Updated Figure 3: Bus master and memory devices on the SPI bus and Figure 20: Hold timing. Power On Reset information clarified. Protected Array Addresses modified in Table 2: Write-protected block size. Ambient Operating Temperature value added in Table 7: Absolute maximum ratings. Supply Current (I_{CC}) value modified for 10 MHz in Table 13: DC characteristics (current M95512-W products). All values modified in Table 18: AC characteristics (current and new M95512-R and M95512-DR products). Document status changed to Datasheet.

Table 25. Document revision history (continued)

Date	Revision	Changes
06-Feb-2007	7	Document reformatted. Packages are ECOPACK® compliant. 10 MHz frequency removed. VCC supply voltage and VSS ground descriptions added. Figure 3: Bus master and memory devices on the SPI bus modified and explanatory paragraph added. Power-up and Power On Reset paragraphs replaced by Section 4.1: Supply voltage (VCC). Section 7: ECC (error correction code) and write cycling added. T_{A} max modified in Table 8: Operating conditions (M95512-W device grade 6). Note modified below Table 12: Capacitance. C_{L} modified in and Table 11: AC measurement conditions. $\mathrm{V}_{\mathrm{IL}} \max$ and $\mathrm{I}_{\mathrm{CCO}}$ test conditions modified in Table 15: DC characteristics (current and new M95512-R and M95512-DR products). $I_{\text {CC }}$ modified in Table 13: DC characteristics (current M95512-W products), I $\mathrm{I}_{\mathrm{C} 0}$ added to Table 13 and Table 15: DC characteristics (current and new M95512-R and M95512-DR products) modified. Table 18: AC characteristics (current and new M95512-R and M95512-DR products) modified. $\mathrm{t}_{\mathrm{SHQZ}}$ end timing line moved back in Figure 21: Serial output timing. SO8N package specifications updated (see Figure 22 and Table 19). Blank removed below Plating technology in Table 22: Ordering information scheme.
05-Jun-2007	8	The device endurance is specified at more than 1000000 (1 million) cycles (corrected on page 1).
03-Jul-2008	9	M95512-W is now available in the device grade 3 (automotive temperature range), see Table 8 on page 31). Section 4.1: Supply voltage (VCC) on page 12 updated. Section 6.4: Write Status Register (WRSR) on page 20 and Section 6.6: Write to Memory Array (WRITE) on page 23 clarified. I Cco modified in Table 13: DC characteristics (current M95512-W products). Figure 19: Serial input timing, Figure 20: Hold timing and Figure 21: Serial output timing updated. Package mechanical data values in inches are calculated from the millimeter values and rounded to four decimal digits (see Section 11: Package mechanical data). Table 23: Available M95512 products (package, voltage range, temperature grade) added. Small text changes.
14-Apr-2009	10	M95512-DR part number added (see Table 24: Available M95512-DR products (package, voltage range, temperature grade)). New M95512-W, M95512-R and M95512-DR products operating at up to 20 MHz added (preliminary data). UFDFPN8 package added (see Section 11: Package mechanical data).

Table 25. Document revision history (continued)

Date	Revision	Changes
11-May-2009	11	V USD modified in Table 7: Absolute maximum ratings. Updated: - Section 6.7: Read Identification Page (available only in M95512-DR devices) - Section 6.8: Write Identification Page (available only in M95512-DR devices) - Section 6.9: Read Lock Status (available only in M95512-DR devices) - Section 6.10: Lock ID (available only in M95512-DR devices)
28-Aug-2009	12	Data related to new products are no longer preliminary. Note 2 updated in Table 18: AC characteristics (current and new M95512- R and M95512-DR products).

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

