# 3V dual pre / power amplifier BA3513AFS

The BA3513AFS is a dual, pre/power amplifier designed for headphone stereo applications. It has all of the basic signal circuits required for tape players, and operates off a 3V supply.

The auto-reverse-compatible preamplifier block and fixed-gain power amplifier blocks are independent to facilitate noise reduction

The preamplifier block can be direct-coupled, and the power amplifiers do not require bootstrap capacitors, and use a fixed-gain negative feedback circuit to reduce the number of external components required and allow compact and reliable set designs.

#### Applications

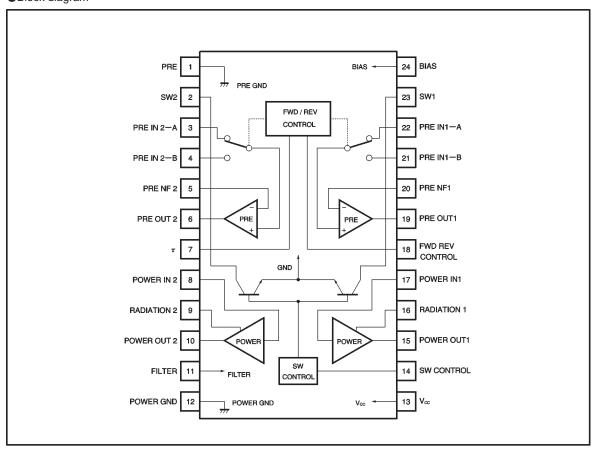
3V headphone stereos and 3V radio cassette players.

#### Features

- 1) Dual preamplifiers and power amplifiers on one chip.
- 2) Preamplifier suitable for auto-reverse use.
- 3) Transistor switch provided for metal-tape muting.
- 4) Power amplifier gain is optimized for noise reduction.
- 5) Radiation prevention pin provided.

#### ● Absolute maximum ratings (Ta = 25°C)

| Parameter             | Symbol | Limits          | Unit |
|-----------------------|--------|-----------------|------|
| Power supply voltage  | Vcc    | 4.5             | ٧    |
| Power dissipation     | Pd     | 800*            | mW   |
| Operating temperature | Topr   | <b>−25~</b> +75 | °C   |
| Storage temperature   | Tstg   | <b>−55∼+125</b> | °C   |


<sup>\*</sup> When mounted on a 90mm x 50mm x 1.6mm glass epoxy board, reduced by 8.0mW for each increase in Ta of 1°C over 25°C

### •Recommended operating conditions (Ta = 25°C)

| Parameter            | Symbol | Min. | Тур. | Max. | Unit |
|----------------------|--------|------|------|------|------|
| Power supply voltage | Vcc    | 1.8  | 2.4  | 3.6  | V    |

ROHM

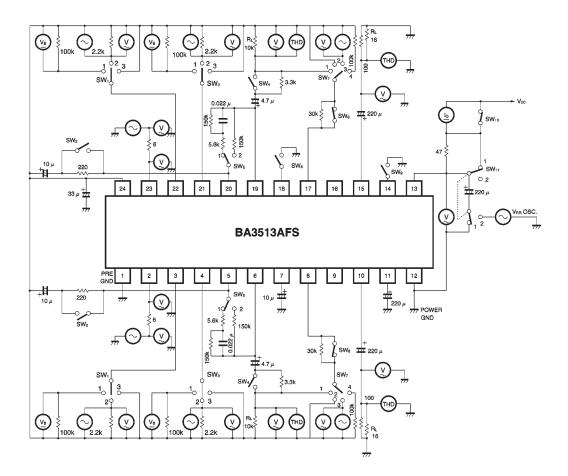
# Block diagram



306 NOHM

●Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = 2.4V and f = 1kHz)

| Parameter                                                | Symbol            | Min.       | Тур.      | Max.         | Unit              | Conditions                                                                             |
|----------------------------------------------------------|-------------------|------------|-----------|--------------|-------------------|----------------------------------------------------------------------------------------|
| Quiescent current                                        | lα                | _          | 8         | 14           | mA                | V <sub>IN</sub> =0V <sub>rms</sub> , 14, 18pin Open                                    |
| ⟨Preamplifier⟩ R∟=10kΩ                                   |                   | •          |           |              | •                 |                                                                                        |
| Open loop voltage gain                                   | Gvo               | 72         | 78        | _            | dB                | Vo=-10dBm                                                                              |
| Maximum output voltage                                   | Vом               | 200        | 300       | _            | mV <sub>rms</sub> | THD=1%                                                                                 |
| Total harmonic distortion                                | THD₁              | _          | 0.03      | 0.15         | %                 | Vo=0.2V <sub>rms</sub> , NAB33dB                                                       |
| Input conversion noise voltage                           | Vnin              | _          | 1.0       | 1.8          | μVrms             | $R_g$ =2.2k $\Omega$ , BPF20 $\sim$ 20kHz                                              |
| Ripple rejection ratio                                   | RR <sub>1</sub>   | 40         | 47        | _            | dB                | $V_{RR}$ =-20dBm, f=100Hz<br>NAB33dB, $R_g$ =2.2k $\Omega$                             |
| Forward-reverse crosstalk                                | CT <sub>F-R</sub> | 65         | 75.5      | _            | dB                | Single channel Vo=-10dBm<br>R <sub>g</sub> =2.2kΩ, BPF20~20kHz                         |
| Input bias current                                       | l <sub>В1</sub>   | _          | 60        | 300          | nA                | V <sub>IN</sub> =0V <sub>rms</sub>                                                     |
| ⟨Power amplifier⟩ R∟=16kΩ                                |                   |            |           |              |                   |                                                                                        |
| Rated output                                             | Роит              | 30         | 40        | _            | mW                | THD=10%                                                                                |
| Closed loop voltage gain                                 | Gvc               | 24.7       | 26.7      | 28.7         | dB                | V <sub>IN</sub> =-40dBm                                                                |
| Total harmonic distortion                                | THD <sub>2</sub>  | _          | 0.2       | 1.0          | %                 | Po=1mW                                                                                 |
| Output noise voltage                                     | V <sub>NO</sub>   | _          | 30        | 39           | μVrms             | $R_g=0\Omega$ , BPF20 $\sim$ 20kHz                                                     |
| Ripple rejection ratio                                   | RR <sub>2</sub>   | 45         | 58        | _            | dB                | $V_{RR}$ =-20dBm, f=100Hz, $R_g$ =0 $\Omega$                                           |
| Input resistance                                         | Rın               | 21.4       | 30        | 38.6         | kΩ                | _                                                                                      |
| Input bias current                                       | l <sub>B2</sub>   | _          | 22        | 80           | nA                | $V_{IN}=0V_{rms}, R_g=10k\Omega^{*1}$                                                  |
| Channel balance                                          | СВ                | _          | 0         | 0.7          | dB                | V <sub>O</sub> =-10dBm                                                                 |
| Switching transistor ON resistance                       | RTR               | _          | 6.0       | 18           | Ω                 | 14pin GND, 2pin, 23pin                                                                 |
| Preamplifier + power amplifier (con                      | nection as p      | er applica | tion exam | ple circuit) |                   |                                                                                        |
| Channel separation                                       | cs                | 37         | 47        | _            | dB                | Pre-Rg=2.2kΩ, VR Max.*2 Single channel Power-Vo=-5dBm BPF20~20kHz                      |
| Leakage from preamp to power amp for signal leak VR Min. | SL                | _          | -63       | -57          | dBm               | Pre-V <sub>0</sub> =-12dBm<br>VR Min.* <sup>3</sup> , When both channels are operating |

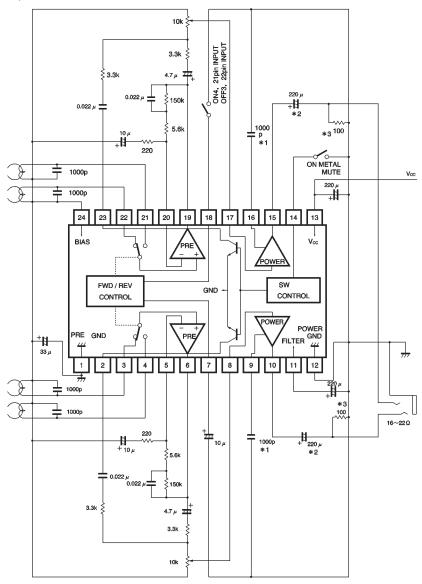

<sup>\*1</sup>  $IB2 = \frac{VB2}{10k\Omega} \times \frac{4}{3}$ 

V<sub>B2</sub>: Voltage at each end of Rg (10  $\Omega$ ).

<sup>\*2 0</sup>dB attenuation from the preamplifier output to power amplifier input.

<sup>\*3</sup> Power amplifier signal source impedance is 0  $\!\Omega$  .

## Measurement circuit




Units:

Resistance :  $\Omega$  ( $\pm 1\%$ ) Capacitance (film) : F ( $\pm 1\%$ ) Capacitance (electrolytic): F ( $\pm 5\%$ )

308 ROHM

# Application example



Units:

 $\begin{array}{ll} \mbox{Resistance} & : \Omega \ (\pm 5\%) \\ \mbox{Capacitance (film)} & : \mbox{F} \ (\pm 10\%) \\ \mbox{Capacitance (electrolytic): F} \ (\pm 20\%) \end{array}$ 

- \*1 Connect a 1000pF capacitor as a countermeasure against RF noise. Normally not required.
- \*2 220  $\mu$  F for 16 $\Omega$  headphones. 100  $\mu$  F for 32 $\Omega$  headphones.
- \*3 Depending on the headphones, connect a 47 $\Omega$  resistor and 0.01  $\mu$ F capacitor between pin 10 (pin15) and GND.

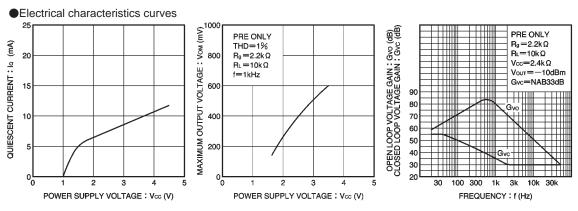



Fig. 1 Quiescent current vs. power supply voltage

Fig. 2 Maximum output power vs. power supply voltage

Fig. 3 Voltage gain vs. frequency

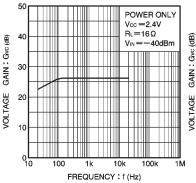



Fig. 4 Voltage gain vs. frequency

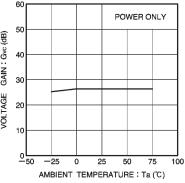



Fig. 5 Voltage gain vs. ambient temperature

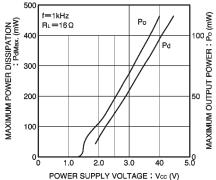
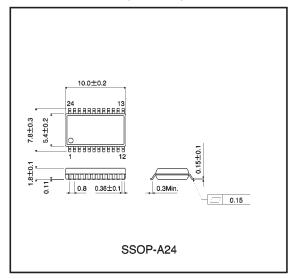




Fig. 6 Maximum power dissipation and output power vs. power supply voltage

Downloaded from Elcodis.com electronic components distributor

# ●External dimensions (Units: mm)

