

SPICE Device Model Si5441DC

Vishay Siliconix

P-Channel 2.5-V (G-S) MOSFET

CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- · Level 3 MOS

- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model schematic is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-to-5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

SUBCIRCUIT MODEL SCHEMATIC

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{qd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

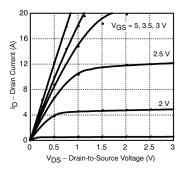
Document Number: 71545 07-Oct-99

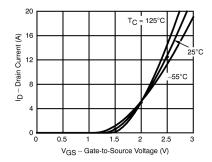
Vishay Siliconix

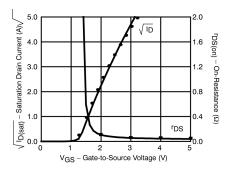
	'
-VISHAY	

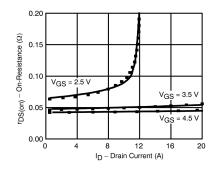
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)						
Parameter	Symbol	Test Condition	Typical	Unit		
Static						
Gate Threshold Voltage	V _{GS(th)}	V_{DS} = V_{GS} , I_D = -250 μ A	1.02	V		
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \leq -5 \text{ V}, V_{GS} \text{ = } -4.5 \text{ V}$	60	А		
Drain-Source On-State Resistance ^a	۲ _{DS} (on)	V_{GS} = -4.5 V, I _D = -3.9 A	0.043	Ω		
		V_{GS} = -3.6 V, I _D = -3.7 A	0.049			
		V_{GS} = -2.5 V, I _D = -3.1 A	0.069			
Forward Transconductance ^a	g _{fs}	$V_{DS} = -10 \text{ V}, \text{ I}_{D} = -3.9 \text{ A}$	12	S		
Diode Forward Voltage ^a	V _{SD}	I _S = -1.1 A, V _{GS} = 0 V	-0.80	V		
Dynamic ^b		•	•			
Total Gate Charge	Qg	V_{DS} = -10 V, V_{GS} = -4.5 V, I_D = -3.9 A	10.5			
Gate-Source Charge	Q _{gs}		3	nC		
Gate-Drain Charge	Q _{gd}		2.5			
Turn-On Delay Time	t _{d(on)}	V_{DD} = -10 V, R _L = 10 Ω I _D \cong -1 A, V _{GEN} = -4.5 V, R _G = 6 Ω	23			
Rise Time	tr		29			
Turn-Off Delay Time	t _{d(off)}		39	ns		
Fall Time	t _f		46			
Source-Drain Reverse Recovery Time	t _{rr}	I _F = -1.1 A, di/dt = 100 A/μs	32			

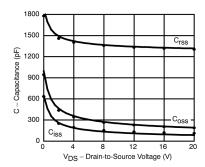
Notes

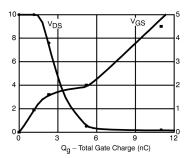

a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.




SPICE Device Model Si5441DC


Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Document Number: 71545 07-Oct-99

