

Terminal Names	Description
$\overline{\mathrm{OE}}$	Output Enable Input
T/R	Transmit/Receive Input
A_{n}	Side A Inputs or 3-STATE Outputs
B_{n}	Side B Inputs or 3-STATE Outputs
$\mathrm{V}_{\text {CCA }}$	Side A Power Supply
$\mathrm{v}_{\text {CCB }}$	Side B Power Supply
GND	Ground

Connection Diagram

Terminal Assignments for DQFN

(Top View)

Power-Up/Power-Down Sequencing

FXL translators offer an advantage in that either V_{CC} may be powered up first. This benefit derives from the chip design. When either V_{CC} is at 0 volts, outputs are in a HIGH-Impedance state. The control inputs (T/ $/ \mathrm{R}$ and $\overline{\mathrm{OE}}$) are designed to track the $\mathrm{V}_{\mathrm{CCA}}$ supply. A pull-up resistor tying $\overline{\mathrm{OE}}$ to $\mathrm{V}_{\mathrm{CCA}}$ should be used to ensure that bus contention, excessive currents, or oscillations do not occur during power-up/power-down. The size of the pull-up resistor is based upon the current-sinking capability of the $\overline{\mathrm{OE}}$ driver.

Truth Table

Inputs		Outputs
$\overline{\mathbf{O E}}$	$\mathbf{T} / \overline{\mathbf{R}}$	
L	L	Bus B Data to Bus A
L	H	Bus A Data to Bus B

H = HIGH Voltage Leve
L = LOW Voltage Level
X = Don't Care

Terminal Assignment

Terminal Number	Terminal Name
1	$\mathrm{~V}_{\mathrm{CCA}}$
2	$\mathrm{~A}_{0}$
3	$\mathrm{~A}_{1}$
4	$\mathrm{~A}_{2}$
5	$\mathrm{~A}_{3}$
6	$\mathrm{~T} / \overline{\mathrm{R}}$
7	GND
8	GND
9	$\overline{\mathrm{OE}}$
10	$\mathrm{~B}_{3}$
11	$\mathrm{~B}_{2}$
12	$\mathrm{~B}_{1}$
13	$\mathrm{~B}_{0}$
14	$\mathrm{~V}_{\mathrm{CCB}}$

The recommended power-up sequence is the following:

1. Apply power to either V_{CC}.
2. Apply power to the T / \bar{R} input (Logic HIGH for A-to-B operation; Logic LOW for B-to-A operation) and to the respective data inputs (A Port or B Port). This may occur at the same time as Step 1.
3. Apply power to other V_{CC}.
4. Drive the $\overline{\mathrm{OE}}$ input LOW to enable the device.

The recommended power-down sequence is the following:

1. Drive $\overline{\mathrm{OE}}$ input HIGH to disable the device.
2. Remove power from either V_{CC}.
3. Remove power from other V_{CC}.

Absolute Maximum Ratings（Note 1）		Recommended Operating Conditions（Note 3）
Supply Voltage		
$V_{\text {CCA }}$	-0.5 V to +4.6 V	Power Supply Operating（ $\mathrm{V}_{\mathrm{CCA}}$ or $\left.\mathrm{V}_{\mathrm{CCB}}\right) \quad 1.1 \mathrm{~V}$ to 3.6 V
$V_{\text {CCB }}$	-0.5 V to +4.6 V	Input Voltage
DC Input Voltage（ V_{l} ）		Port A $\quad 0.0 \mathrm{~V}$ to 3.6 V
I／O Port A	-0.5 V to +4.6 V	Port B $\quad 0.0 \mathrm{~V}$ to 3.6 V
I／O Port B	-0.5 V to +4.6 V	Control Inputs（T／／R，$\overline{\mathrm{OE}}) \quad 0.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CCA}}$
Control Inputs（T／$/ \mathrm{R}, \overline{\mathrm{OE}}$ ）	-0.5 V to +4.6 V	Output Current in $\mathrm{IOH}^{\prime} / \mathrm{IOL}^{\text {L }}$
Output Voltage（ V_{O} ）（Note 2）		$V_{C C}$
Outputs 3－STATE	-0.5 V to +4.6 V	3.0 V to 3.6 V
Outputs Active（ A_{n} ）	-0.5 V to $\mathrm{V}_{\mathrm{CCA}}+0.5 \mathrm{~V}$	2.3 V to 2.7 V
Outputs Active（ B_{n} ）	-0.5 V to $\mathrm{V}_{\mathrm{CCB}}+0.5 \mathrm{~V}$	1.65 V to 1.95 V
DC Input Diode Current（ I_{IK} ） $\mathrm{V}_{\mathrm{I}}<0 \mathrm{~V}$	－50 mA	1.4 V to 1.65 V
DC Output Diode Current（ I_{OK} ）		1.1 V to $1.4 \mathrm{~V} \quad \pm 0.5 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}$	－50 mA	Free Air Operating Temperature（ T_{A} ）$\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	＋50 mA	Minimum Input Edge Rate（ $\Delta \mathrm{V} / \Delta \mathrm{t}$ ）
DC Output Source／Sink Current （ $\mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$ ）	$-50 \mathrm{~mA} /+50 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CCA} / \mathrm{B}}=1.1 \mathrm{~V}$ to 3.6 V
DC V_{CC} or Ground Current per Supply Pin（ I_{CC} ）	$\pm 100 \mathrm{~mA}$	Note 1：The＂Absolute Maximum Ratings＂are those values beyond which the safety of the device cannot be guaranteed．The device should not be operated at these limits．The parametric values defined in the Electrical
Storage Temperature Range（ $\mathrm{T}_{\text {STG }}$ ）	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Characteristics tables are not guaranteed at the absolute maximum ratings． The＂Recommended Operating Conditions＂table will define the conditions for actual device operation．
		Note 2： I_{O} Absolute Maximum Rating must be observed．
		Note 3：All unused inputs must be held at $\mathrm{V}_{\mathrm{CCI}}$ or GND．

DC Electrical Characteristics

Symbol	Parameter	Conditions	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{ccl}} \\ & \text { (V) } \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{cco}} \\ \text { (V) } \\ \hline \end{gathered}$	Min	Max	Units
$\overline{V_{I H}}$ （Note 4）	High Level Input Voltage	Data Inputs $\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$	2．7－3．6	1．1－3．6	2.0		V
			2．3－2．7		1.6		
			1．65－2．3		$0.65 \times \mathrm{V}_{\text {CCI }}$		
			1．4－1．65		$0.65 \times \mathrm{V}_{\text {ClI }}$		
			1．1－1．4		$0.9 \times \mathrm{V}_{\mathrm{CCI}}$		
		Control Pins $/ \overline{\mathrm{OE}}, \mathrm{T} / \overline{\mathrm{R}}$ （Referenced to $\mathrm{V}_{\text {CCA }}$ ）	2．7－3．6	1．1－3．6	2.0		
			2．3－2．7		1.6		
			1．65－2．3		$0.65 \times \mathrm{V}_{\text {CCA }}$		
			1．4－1．65		$0.65 \times \mathrm{V}_{\text {CCA }}$		
			1．1－1．4		$0.9 \times \mathrm{V}_{\text {CCA }}$		
$\overline{\mathrm{V}_{\mathrm{IL}}}$ （Note 4）	Low Level Input Voltage	Data Inputs $\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$	2．7－3．6	1．1－3．6		0.8	V
			2．3－2．7			0.7	
			1．65－2．3			$0.35 \times \mathrm{V}_{\text {ClI }}$	
			1．4－1．65			$0.35 \times \mathrm{V}_{\text {ClI }}$	
			1．1－1．4			$0.1 \times \mathrm{V}_{\mathrm{CCI}}$	
		Control Pins $/ \overline{\mathrm{OE}}, \mathrm{T} / \overline{\mathrm{R}}$ （Referenced to $\mathrm{V}_{\mathrm{CCA}}$ ）	2．7－3．6	1．1－3．6		0.8	
			2．3－2．7			0.7	
			1．65－2．3			$0.35 \times \mathrm{V}_{\text {CCA }}$	
			1．1．4－1．65			$0.35 \times \mathrm{V}_{\text {CCA }}$	
			1．1－1．4			$0.1 \times \mathrm{V}_{\text {CCA }}$	

DC Electrical Characteristics (Continued)							
Symbol	Parameter	Conditions	$\begin{aligned} & \mathrm{v}_{\mathrm{CCA}} \\ & \text { (V) } \end{aligned}$	$\begin{gathered} \mathrm{v}_{\mathrm{CCB}} \\ \text { (v) } \end{gathered}$	Min	Max	Units
$\begin{aligned} & \hline \mathrm{V}_{\mathrm{OH}} \\ & \text { (Note 5) } \end{aligned}$	High Level Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	1.1-3.6	1.1-3.6	$\mathrm{v}_{\mathrm{CCO}}-0.2$		v
		$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.7	2.7	2.2		
		$\mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA}$	3.0	3.0	2.4		
		$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	3.0	3.0	2.2		
		$\mathrm{l}_{\mathrm{OH}}=-6 \mathrm{~mA}$	2.3	2.3	2.0		
		$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.3	2.3	1.8		
		$\mathrm{l}_{\mathrm{OH}}=-18 \mathrm{~mA}$	2.3	2.3	1.7		
		$\mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA}$	1.65	1.65	1.25		
		$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	1.4	1.4	1.05		
		$\mathrm{IOH}=-0.5 \mathrm{~mA}$	1.1	1.1	$0.75 \times \mathrm{V}_{\text {cco }}$		
VoL (Note 5)	Low Level Output Voltage	$\mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	1.1-3.6	1.1-3.6		0.2	v
		$\mathrm{loL}=12 \mathrm{~mA}$	2.7	2.7		0.4	
		$\mathrm{l}^{\mathrm{OL}}=18 \mathrm{~mA}$	3.0	3.0		0.4	
		$\mathrm{loL}=24 \mathrm{~mA}$	3.0	3.0		0.55	
		$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$	2.3	2.3		0.4	
		$\mathrm{l}_{\mathrm{oL}}=18 \mathrm{~mA}$	2.3	2.3		0.6	
		$\mathrm{l}_{\mathrm{OL}}=6 \mathrm{~mA}$	1.65	1.65		0.3	
		$\mathrm{l}_{\mathrm{OL}}=2 \mathrm{~mA}$	1.4	1.4		0.35	
		$\mathrm{l}^{\mathrm{OL}}=0.5 \mathrm{~mA}$	1.1	1.1		$0.3 \times \mathrm{V}_{\mathrm{cco}}$	
1	Input Leakage Current. Control Pins	$\mathrm{V}_{1}=\mathrm{V}_{\text {CCA }}$ or GND	1.1-3.6	3.6		± 1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {off }}$	Power Off Leakage Current	$\mathrm{A}_{\mathrm{n}}, \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to 3.6 V	0	3.6		± 10.0	$\mu \mathrm{A}$
		$\mathrm{B}_{\mathrm{n}}, \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to 3.6 V	3.6	0		± 10.0	
loz (Note 6)	$\begin{aligned} & \hline 3 \text {-STATE Output Leakage } \\ & 0 \leq \mathrm{V}_{\mathrm{O}} \leq 3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \hline \end{aligned}$	$\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}} \quad \overline{\mathrm{OE}}=\mathrm{V}_{1 H}$	3.6	3.6		± 10.0	$\mu \mathrm{A}$
		$\mathrm{B}_{\mathrm{n}}, \quad \overline{\mathrm{OE}}=$ Don't Care	0	3.6		+10.0	
		$\mathrm{A}_{\mathrm{n}}, \quad \overline{\mathrm{OE}}=$ Don't Care	3.6	0		+10.0	
$\overline{\mathrm{ICCAB} \text { (Note 7) }}$	Quiescent Supply Current	$\mathrm{V}_{1}=\mathrm{V}_{\text {CCI }}$ or GND; $\mathrm{I}_{0}=0$	1.1-3.6	1.1-3.6		20.0	$\mu \mathrm{A}$
1 lczz (Note 7)	Quiescent Supply Current	$\mathrm{V}_{1}=\mathrm{V}_{\text {cCl }}$ or GND; $\mathrm{l}_{0}=0$	1.1-3.6	1.1-3.6		20.0	$\mu \mathrm{A}$
${ }_{\text {ICCA }}$	Quiescent Supply Current	$\mathrm{V}_{1}=\mathrm{V}_{\text {CCA }}$ or GND; $\mathrm{l}_{0}=0$	0	1.1-3.6		-10.0	$\mu \mathrm{A}$
		$\mathrm{V}_{1}=\mathrm{V}_{\text {CCA }}$ or $\mathrm{GND} ; \mathrm{l}_{0}=0$	1.1-3.6	0		10.0	$\mu \mathrm{A}$
$\overline{I C C B ~}$	Quiescent Supply Current	$\mathrm{V}_{1}=\mathrm{V}_{\text {CCB }}$ or GND; $\mathrm{l}_{0}=0$	1.1-3.6	0		-10.0	$\mu \mathrm{A}$
		$\mathrm{V}_{1}=\mathrm{V}_{\text {CCB }}$ or GND; $\mathrm{l}_{0}=0$	0	1.1-3.6		10.0	$\mu \mathrm{A}$
$\triangle^{\text {CCAAB }}$	Increase in I_{CC} per Input; Other Inputs at V_{CC} or GND	$\mathrm{V}_{1 \mathrm{H}}=3.0$	3.6	3.6		500	$\mu \mathrm{A}$
Note 4: $\mathrm{V}_{\mathrm{CCI}}=$ the V_{CC} associated with the data input under test. Note 5: $\mathrm{V}_{\mathrm{CCO}}=$ the V_{CC} associated with the output under test. Note 6: Don't Care = Any valid logic level. Note 7: Reflects current per supply, $\mathrm{V}_{\mathrm{CCA}}$ or $\mathrm{V}_{\mathrm{CCB}}$.							

AC Electrical Characteristics $\mathrm{v}_{\mathrm{ccA}}=3.0 \mathrm{v}$ to 3.6 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$										Units
		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}= \\ 3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}= \\ 2.3 \mathrm{~V} \text { to } 2.7 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\text {CCB }}= \\ 1.65 \mathrm{~V} \text { to } 1.95 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}= \\ 1.4 \mathrm{~V} \text { to } 1.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}= \\ 1.1 \mathrm{~V} \text { to } 1.3 \mathrm{~V} \end{gathered}$		
		Min	Max									
$\overline{t_{\text {PLH }}, \mathrm{t}_{\text {PHL }}}$	Propagation Delay A to B	0.2	3.5	0.3	3.9	0.5	5.4	0.6	6.8	1.4	22.0	ns
	Propagation Delay B to A	0.2	3.5	0.2	3.8	0.3	4.0	0.5	4.3	0.8	13.0	
$\mathrm{t}_{\text {PZH，}}, \mathrm{t}_{\text {PZL }}$	Output Enable $\overline{\mathrm{OE}}$ to B	0.5	4.0	0.7	4.4	1.0	5.9	1.0	6.4	1.5	17.0	ns
	Output Enable $\overline{\mathrm{OE}}$ to A	0.5	4.0	0.5	4.0	0.5	4.0	0.5	4.0	0.5	4.0	
$\mathrm{t}_{\text {PHZ }}, \mathrm{tpLZ}$	Output Disable $\overline{\mathrm{OE}}$ to B	0.2	3.8	0.2	4.0	0.7	4.8	1.5	6.2	2.0	17.0	ns
	Output Disable $\overline{\mathrm{OE}}$ to A	0.2	3.7	0.2	3.7	0.2	3.7	0.2	3.7	0.2	3.7	

AC Electrical Characteristics $\mathrm{v}_{\mathrm{CCA}}=2.3 \mathrm{v}$ to 2.7 v

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$										Units
		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}= \\ 3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}= \\ 2.3 \mathrm{~V} \text { to } 2.7 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\text {CCB }}= \\ 1.65 \mathrm{~V} \text { to } 1.95 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}= \\ 1.4 \mathrm{~V} \text { to } 1.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}= \\ 1.1 \mathrm{~V} \text { to } 1.3 \mathrm{~V} \end{gathered}$		
		Min	Max									
${ }_{\text {tPLH }}$ ， PHHL	Propagation Delay A to B	0.2	3.8	0.4	4.2	0.5	5.6	0.8	6.9	1.4	22.0	ns
	Propagation Delay B to A	0.3	3.9	0.4	4.2	0.5	4.5	0.5	4.8	1.0	7.0	
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PZL }}$	Output Enable $\overline{\mathrm{OE}}$ to B	0.6	4.2	0.8	4.6	1.0	6.0	1.0	6.8	1.5	17.0	ns
	Output Enable $\overline{\mathrm{OE}}$ to A	0.6	4.5	0.6	4.5	0.6	4.5	0.6	4.5	0.6	4.5	
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$	Output Disable $\overline{\mathrm{OE}}$ to B	0.2	4.1	0.2	4.3	0.7	4.8	1.5	6.7	2.0	17.0	ns
	Output Disable $\overline{\mathrm{OE}}$ to A	0.2	4.0	0.2	4.0	0.2	4.0	0.2	4.0	0.2	4.0	

AC Electrical Characteristics $\mathrm{V}_{\text {CCA }}=1.65 \mathrm{~V}$ to 1.95 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$										Units
		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}= \\ 3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}= \\ 2.3 \mathrm{~V} \text { to } 2.7 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\text {CCB }}= \\ 1.65 \mathrm{~V} \text { to } 1.95 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}= \\ 1.4 \mathrm{~V} \text { to } 1.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}= \\ 1.1 \mathrm{~V} \text { to } 1.3 \mathrm{~V} \end{gathered}$		
		Min	Max									
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Propagation Delay A to B	0.3	4.0	0.5	4.5	0.8	5.7	0.9	7.1	1.5	22.0	ns
	Propagation Delay B to A	0.5	5.4	0.5	5.6	0.8	5.7	1.0	6.0	1.2	8.0	
tezh， tpzL	Output Enable $\overline{\mathrm{OE}}$ to B	0.6	5.2	0.8	5.4	1.2	6.9	1.2	7.2	1.5	18.0	ns
	Output Enable $\overline{\mathrm{OE}}$ to A	1.0	6.7	1.0	6.7	1.0	6.7	1.0	6.7	1.0	6.7	
$\mathrm{t}_{\text {PHZ }}$ ，tPLZ	Output Disable $\overline{\mathrm{OE}}$ to B	0.2	5.1	0.2	5.2	0.8	5.2	1.5	7.0	2.0	17.0	ns
	Output Disable $\overline{\mathrm{OE}}$ to A	0.5	5.0	0.5	5.0	0.5	5.0	0.5	5.0	0.5	5.0	

AC Electrical Characteristics $\mathrm{V}_{\mathrm{CCA}}=1.4 \mathrm{~V}$ to 1.6 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$										Units
		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}= \\ 3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}= \\ 2.3 \mathrm{~V} \text { to } 2.7 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}= \\ 1.65 \mathrm{~V} \text { to } 1.95 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}= \\ 1.4 \mathrm{~V} \text { to } 1.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}= \\ 1.1 \mathrm{~V} \text { to } 1.3 \mathrm{~V} \end{gathered}$		
		Min	Max									
$\overline{t_{\text {PLH }}, t_{\text {PHL }}}$	Propagation Delay A to B	0.5	4.3	0.5	4.8	1.0	6.0	1.0	7.3	1.5	22.0	ns
	Propagation Delay B to A	0.6	6.8	0.8	6.9	0.9	7.1	1.0	7.3	1.3	9.5	
$t_{\text {PZH，}}$ t ${ }_{\text {PZL }}$	Output Enable $\overline{\mathrm{OE}}$ to B	1.1	7.5	1.1	7.6	1.3	7.7	1.4	7.9	2.0	20.0	ns
	Output Enable $\overline{\mathrm{OE}}$ to A	1.0	7.5	1.0	7.5	1.0	7.5	1.0	7.5	1.0	7.5	
$\mathrm{t}_{\text {PHZ }}$ t tPLZ	Output Disable $\overline{\text { OE }}$ to B	0.4	6.1	0.4	6.2	0.9	6.2	1.5	7.5	2.0	18.0	ns
	Output Disable $\overline{\mathrm{OE}}$ to A	1.0	6.0	1.0	6.0	1.0	6.0	1.0	6.0	1.0	6.0	

AC Electrical Characteristics $\mathrm{v}_{\mathrm{CCA}}=1.1 \mathrm{~V}$ to 1.3 V												
Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$										Units
		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}= \\ 3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}= \\ 2.3 \mathrm{~V} \text { to } 2.7 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}= \\ 1.65 \mathrm{~V} \text { to } 1.95 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}= \\ 1.4 \mathrm{~V} \text { to } 1.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}= \\ 1.1 \mathrm{~V} \text { to } 1.3 \mathrm{~V} \end{gathered}$		
		Min	Max									
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Propagation Delay A to B	0.8	13.0	1.0	7.0	1.2	8.0	1.3	9.5	2.0	24.0	ns
	Propagation Delay B to A	1.4	22.0	1.4	22.0	1.5	22.0	1.5	22.0	2.0	24.0	
$\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\text {PZL }}$	Output Enable $\overline{\mathrm{OE}}$ to B	1.0	12.0	1.0	9.0	2.0	10.0	2.0	11.0	2.0	24.0	ns
	Output Enable $\overline{\mathrm{OE}}$ to A	2.0	22.0	2.0	22.0	2.0	22.0	2.0	22.0	2.0	22.0	
$\overline{t_{\text {PHZ }}, t_{\text {PLZ }}}$	Output Disable $\overline{\mathrm{OE}}$ to B	1.0	15.0	0.7	7.0	1.0	8.0	2.0	10.0	2.0	20.0	ns
	Output Disable $\overline{\mathrm{OE}}$ to A	2.0	15.0	2.0	12.0	2.0	12.0	2.0	12.0	2.0	12.0	

Capacitance

Symbol	Parameter	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Units
			Typical	
$\mathrm{C}_{\text {IN }}$	Input Capacitance Control Pins ($\overline{\mathrm{OE}}, \mathrm{T} / \overline{\mathrm{R}})$	$\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\text {CCB }}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {CCA/B }}$	4.0	pF
$\mathrm{C}_{\text {I/O }}$	Input/Output Capacitance A_{n}, B_{n} Ports	$\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\text {CCB }}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {CCA }} \mathrm{B}$	5.0	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCB}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{F}=10 \mathrm{MHz}$	20.0	pF

AC Loading and Waveforms

Note: Input $t_{R}=t_{F}=2.0 \mathrm{~ns}, 10 \%$ to 90%
Input $t_{R}=t_{F}=2.5$ ns, 10% to 90%, @ $V_{I}=3.0 \mathrm{~V}$ to 3.6 V only
FIGURE 2. Waveform for Inverting and Non-Inverting Functions

Note: Input $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.0 \mathrm{~ns}, 10 \%$ to 90%
Input $t_{R}=t_{F}=2.5 n s, 10 \%$ to 90%, @ $V_{I}=3.0 \mathrm{~V}$ to 3.6 V only
FIGURE 4. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

Symbol	$\mathrm{V}_{\mathbf{C C}}$				
	$\mathbf{3 . 3 V} \pm \mathbf{0 . 3 V}$	$\mathbf{2 . 5 V} \pm \mathbf{0 . 2 V}$	$\mathbf{1 . 8 V} \pm \mathbf{0 . 1 5 V}$	$\mathbf{1 . 5 V} \pm \mathbf{0 . 1 V}$	$\mathbf{1 . 2 V} \pm \mathbf{0 . 1 V}$
V_{mi}	$\mathrm{V}_{\mathrm{CCI}} / 2$	$\mathrm{~V}_{\mathrm{CCI}} / 2$	$\mathrm{~V}_{\mathrm{CC} /} / 2$	$\mathrm{~V}_{\mathrm{CCI}} / 2$	$\mathrm{~V}_{\mathrm{CC} /} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	$\mathrm{V}_{\mathrm{CCO}} / 2$	$\mathrm{~V}_{\mathrm{CCO}} / 2$	$\mathrm{~V}_{\mathrm{CCO}} / 2$	$\mathrm{~V}_{\mathrm{CCO}} / 2$	$\mathrm{~V}_{\mathrm{CCO}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.1 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.1 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{Y}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+01 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+01 \mathrm{~V}$

Note: For $\mathrm{V}_{\mathrm{mi}}: \mathrm{V}_{\mathrm{CCI}}=\mathrm{V}_{\mathrm{CCA}}$ for Control Pins $\mathrm{T} / \overline{\mathrm{R}}$ and $\overline{\mathrm{OE}}$, or $\mathrm{V}_{\mathrm{CCA}} / 2$

Tape and Reel Specification Tape Format for DQFN				
Package Designator	Tape Section	Number Cavities	$\begin{aligned} & \text { Cavity } \\ & \text { Status } \end{aligned}$	Cover Tape Status
BQX	Leader (Start End) Carrier Trailer (Hub End)	$\begin{gathered} 125 \text { (typ) } \\ 3000 \\ 75 \text { (typ) } \end{gathered}$	Empty Filled Empty	Sealed Sealed Sealed

TAPE DIMENSIONS inches (millimeters)

NOTES: unless otherwise specified

1. Cummulative pitch for feeding holes and cavities (chip pockets) not to exceed $0.008[0.20]$ over 10 pitch span.
2. Smallest allowable bending radius.
3. Thru hole inside cavity is centered within cavity.
4. Tolerance is ± 0.002 [0.05] for these dimensions on all 12 mm tapes
5. Ao and Bo measured on a plane $0.120[0.30$] above the bottom of the pocket.
6. Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
7. Pocket position relative to sprocket hole measured as true position of pocket. Not pocket hole.
8. Cocket position relative to sprocket hole measured as true position
8 . Controlling dimension is millimeter. Diemension in inches rounded.

REEL DIMENSIONS inches (millimeters)

Tape Size	A	B	C	D	\mathbf{N}	W1	W2
12 mm	13.0	0.059	0.512	0.795	2.165	0.488	0.724
	(330.0)	(1.50)	(13.00)	(20.20)	(55.00)	(12.4)	(18.4)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
