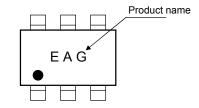

TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC7PA53FU

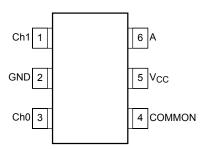
2-Channel Multiplexer/Demultiplexer

Features

- Ultra-low on resistance: R_{ON} = 21 Ω (max) at V_{CC} = 3.6 V
- Operating voltage range: V_{CC (opr.)} = 1.8 to 3.6 V
- 3.6 V Tolerant inputs.

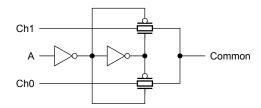


Weight: 0.0068 g (typ.)


Maximum Ratings (Ta = 25°C)

Characteristics		Symbol	Rating	Unit	
Power supply voltage		V _{CC}	-0.5 to 4.6	V	
DC input voltage	9	V _{IN}	-0.5 to 4.6	V	
Switch I/O voltage	Switch I/O voltage		-0.5 to V_{CC} + 0.5	V	
Clamp diode	Control input block	luz	-50	mA	
current	Switch block	lik	±50	IIIA	
Switch through of	Switch through current		100	mA	
Power dissipation		P_{D}	200	mW	
DC V _{CC} /ground current		Icc	±100	mA	
Storage tempera	ature	T _{stg}	-65 to 150	°C	

Marking


Pin Assignment (top view)

Truth Table

Input	On Channel
Α	On Chambe
L	Ch0
Н	Ch1

System Diagram

Recommended Operating Conditions

Characteristics	Symbol	Rating	Unit
Power supply voltage	V _{CC}	1.8 to 3.6	V
Control input voltage	V _{IN}	0 to 3.6	V
Switch I/O voltage	V _S	0 to V _{CC}	V
Operating temperature	T _{opr}	-40 to 85	°C
Control input rise and fall time	d _t /d _V	0 to 10	ns/V

Electrical Characteristics

DC Electrical Characteristics ($Ta = -40 \text{ to } 85^{\circ}\text{C}$)

Characteristics		Symbol Test Condition			Min	Max	Unit
		Symbol	rest obligation	V _{CC} (V)	IVIIII	IVIAX	Offic
	High level	V _{IH}		1.8	V _{CC} × 0.75		V
Input voltage	nigii level		_	2.3 to 3.6	V _{CC} × 0.75		
input voitage	Low level	V _{IL}		1.8	ı	V _{CC} × 0.25	V
	Low level	VIL.	_	2.3 to 3.6		V _{CC} × 0.25	
			$V_{IN} = 0 V$, $I_O = 24 \text{ mA}$	3.6		19	
			$V_{IN} = 1.9 \text{ V}, I_O = -24 \text{ mA}$	3.6		18	Ω
		R _{ON}	$V_{IN} = 3.6 \text{ V}, I_O = -24 \text{ mA}$	3.6	_	16	
On resistance			$V_{IN} = 0 \text{ V}, I_O = 24 \text{ mA}$	3.0		21	
$V_{I/O} = V_{CC}$ or GND	1		$V_{IN} = 3 \text{ V}, I_O = -24 \text{ mA}$	3.0	_	17	
V /0 = VCC 01 014E	,		$V_{IN} = 0 \text{ V}, I_{O} = 18 \text{ mA}$	2.3	_	25	
			$V_{IN} = 2.3 \text{ V}, I_O = -18 \text{ mA}$	2.3	_	20	
			V _{IN} = 0 V, I _O = 6 mA	1.8	_	32	
			V _{IN} = 1.8 V, I _O = -6 mA	1.8	_	26	
			$0 < V_{IN} < 3.6 \text{ V}, I_O = 24 \text{ mA}$	3.6	_	21	
On resistance	On resistance		$0 < V_{IN} < 3 V, I_O = 24 \text{ mA}$	3.0	_	23	
$V_{I/O} = V_{CC}$ to GND		R _{ON}	$0 < V_{IN} < 2.3 \text{ V}, I_O = 18 \text{ mA}$	2.3	_	42	Ω
			$0 < V_{IN} < 1.8 \text{ V}, I_O = 6 \text{ mA}$	1.8	_	140	
Control input leakage current		I _{IN}	V _{IN} = 0 to 3.6 V	3.6	_	±5.0	μА
Switch I/O leakage current		I _{SZ}	V _{IN} = 0 to 3.6 V	3.6	_	10.0	μА
Quiescent supply of	current	Icc	V _{IN} = V _{CC} or GND	3.6	_	20.0	
Increase in I _{CC} per	Increase in I _{CC} per Input		V _{IH} = 3 V	3.6	_	750	μА

AC Characteristics (Ta = -40 to 85°C, input $t_r = t_f = 2.0$ ns, $C_L = 30$ pF, $R_L = 500 \Omega$)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Min	Max	Unit
	^t pZL ^t pZH	Figure 1,2	1.8	_	9	
Output enable time			2.5 ± 0.2	_	7	ns
			3.3 ± 0.3	_	5	
Output disable time	t _{pLZ} t _{pHZ}	Figure 1,2	1.8	_	9	
			2.5 ± 0.2	_	7	ns
			3.3 ± 0.3	_	5	

The propagation delay time is defined by test condition as follows: (calculating condition: see Figure 3)

 $Propagation \ delay \ time \ (reference) = - \left(\ C_{OS} + C_{L} \ \right) \cdot \\ \left(R_{DRIVE+} R_{ON} \right) \cdot \\ ln \left(\left(\ (\ V_{OH} - V_{OL} \) - V_{M} \right) / \left(\ V_{OH} - V_{OL} \) \right)$

 R_{DRIVE} = Output impedance of front circuit V_{M} = Arbitrary output threshold voltage

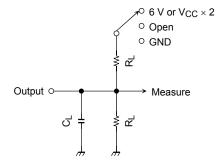
Example of calculation:

Propagation delay time (reference) = - (15 + 15) \cdot (0 + 21) \cdot In (((3.6 - 0) – 3.6 \cdot 50%)/(3.6 – 0)) = approximately 0.4 ns

Calculating condition:

 V_{CC} = 3.6V , C_L = 15pF , R_{DRIVE} = 0 Ω (ideal signal source) , V_M = 50% Input signal to switch = Digital signal ("H" revel voltage=3.6V , "L" revel voltage = 0V)

Capacitive Characteristics (Ta = 25°C)


Characteristics	Symbol	Test Condition		Тур.	Unit
Characteristics	Symbol	rest Condition	V _{CC} (V)		
Input capacitance	C _{IN}	_	1.8, 2.5, 3.3	3	pF
Common Terminal Capacitance	C _{IS}	_	1.8, 2.5, 3.3	6	pF
Switch Terminal Capacitance	Cos	_	1.8, 2.5, 3.3	15	pF
Feed Through Capacitance	C _{IOS}	_	1.8, 2.5, 3.3	0.3	pF
Power dissipation capacitance	C _{PD}	$f_{IN} = 10 \text{ MHz}$ (Note 1) 1.8, 2.5, 3.3	5.5	pF

Note 1: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current is given as:

4

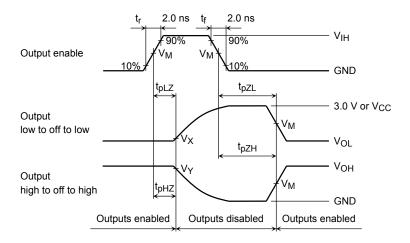
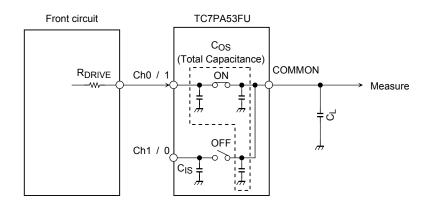
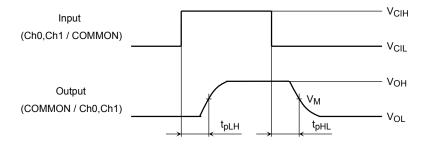

ICC (opr.) = CPD·VCC·fIN + ICC

Figure 1 AC Test Circuit

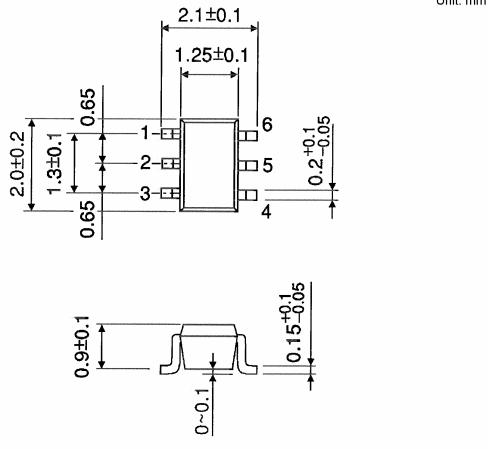

Characteristics	Switch		
	6 V at $V_{CC} = 3.3 \pm 0.3 \text{ V}$		
t_{pLZ}, t_{pZL}	V 2	at V_{CC} = 2.5 \pm 0.2 V	
	V _{CC} × 2	at $V_{CC} = 1.8 \text{ V}$	
t _{pHZ} , t _{pZH}	GND		


Figure 2 AC Waveforms t_{pLZ} , t_{pHZ} , t_{pZL} , t_{pZH}

Symbol		V _{CC}	
Syllibol	$3.3\pm0.3~\textrm{V}$	$2.5\pm0.2\textrm{V}$	1.8 V
V _{IH}	2.7 V	V _{CC}	V _{CC}
V _M	1.5 V	V _{CC/2}	V _{CC/2}
VX	V _{OL} + 0.3 V	V _{OL} + 0.15 V	V _{OL} + 0.15 V
VY	V _{OH} – 0.3 V	V _{OH} – 0.15 V	V _{OH} – 0.15 V

Figure 3 Calculating condition for propagation delay time t_{pLH}, t_{pHL}

 R_{DRIVE} = Output impedance of front circuit V_{M} = Arbitrary output threshold voltage V_{CIH} = "H" revel input voltage to switch


V_{CIL} = "L" revel input voltage to switch

Symbol	Vcc			
Syllibol	3.3 ± 0.3 V	2.5 ± 0.2 V	1.8 V	
V _M	arbitrary	arbitrary	arbitrary	

6 2005-11-29

Package Dimensions

SSOP6-P-0.65A Unit: mm

Weight: 0.0068 g (typ.)

RESTRICTIONS ON PRODUCT USE

030619EBA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patent or patent rights of
 TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.

8 2005-11-29

Handbook" etc..