Schmitt-Trigger Inverter / CMOS Logic Level Shifter

LSTTL-Compatible Inputs

The NLU1GT14 is an advanced high-speed CMOS Schmitt-trigger inverter in ultra-small footprint.

The device input is compatible with TTL-type input thresholds and the output has a full 5.0 V CMOS level output swing.

The NLU1GT14 input and output structures provide protection when voltages up to 7.0 V are applied, irregardless of the supply voltage.

The NLU1GT14 can be used to enhance noise immunity or to square up slowly changing waveforms.

Features

- High Speed: $t_{PD} = 4.5 \text{ ns} (Typ) @ V_{CC} = 5.0 \text{ V}$
- Low Power Dissipation: $I_{CC} = 1 \mu A$ (Max) at $T_A = 25^{\circ}C$
- TTL-Compatible Input: $V_{IL} = 0.8 \text{ V}; V_{IH} = 2.0 \text{ V}$
- CMOS-Compatible Output: V_{OH} > 0.8 V_{CC}; V_{OL} < 0.1 V_{CC} @ Load
- Power Down Protection Provided on inputs
- Balanced Propagation Delays
- Overvoltage Tolerant (OVT) Input and Output Pins
- Ultra-Small Pb-Free Package
- This is a Pb-Free Device

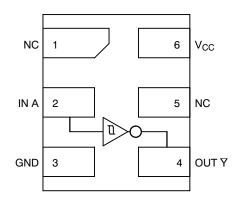


Figure 1. Pinout (Top View)

Figure 2. Logic Symbol

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

UDFN6 MU SUFFIX CASE 517AA

LE, U	= Device Marking
Μ	= Date Code

= Pb-Free Package

PIN ASSIGNMENT

1	NC	
2	IN A	
3	GND	
4	Ουτ Ϋ	
5	NC	
6	V _{CC}	

FUNCTION TABLE

А	Ÿ
L	H
H	L

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit	
V _{CC}	DC Supply Voltage		-0.5 to +7.0	V
V _{IN}	DC Input Voltage		-0.5 to +7.0	V
V _{OUT}	DC Output Voltage		-0.5 to +7.0	V
I _{IK}	DC Input Diode Current	V _{IN} < GND	-20	mA
I _{OK}	DC Output Diode Current	V _{OUT} < GND	±20	mA
Ι _Ο	DC Output Source/Sink Current		±12.5	mA
I _{CC}	DC Supply Current Per Supply Pin		±25	mA
I _{GND}	DC Ground Current per Ground Pin	±25	mA	
T _{STG}	Storage Temperature Range	-65 to +150	°C	
ΤL	Lead Temperature, 1 mm from Case for 10 Sec	TBD	°C	
TJ	Junction Temperature Under Bias		TBD	°C
θ_{JA}	Thermal Resistance (Note 1)	UDFN6	TBD	°C/W
PD	Power Dissipation in Still Air at 85°C	UDFN6	TBD	mW
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating Oxygen	UL 94 V-0 @ 0.125 in		
V _{ESD}	ESD Withstand Voltage Hum I Charged	> 2000 > 150 N/A	V	
I _{LATCHUP}	Latchup Performance Above V_{CC} and Below G	ND at 125°C (Note 5)	±500	mA

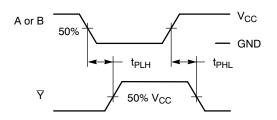
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.1. Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2 ounce copper trace no air flow.

Tested to EIA / JESD22-A114-A.
 Tested to EIA / JESD22-A115-A.
 Tested to JESD22-C101-A.

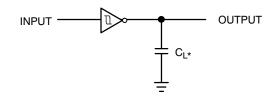
5. Tested to EIA / JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit	
V _{CC}	Positive DC Supply Voltage	1.65	5.5	V	
V _{IN}	Digital Input Voltage	0	5.5	V	
V _{OUT}	Output Voltage		0	5.5	V
T _A	Operating Free-Air Temperature	-55	+125	°C	
$\Delta t / \Delta V$	Input Transition Rise or Fail Rate $\begin{array}{c} V_{CC} = 3.3 \ V \pm 0.3 \ V \\ V_{CC} = 5.0 \ V \pm 0.5 \ V \end{array}$		0 0	100 20	ns/V

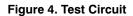

DC ELECTRICAL CHARACTERISTICS

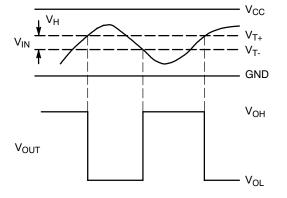
			V _{CC}	T _A = 25 °C			T _A = +85°C		T _A = -55°C to +125°C		
Symbol	Parameter	Conditions	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit
V _{T+}	Positive Threshold Voltage		3.0 4.5 5.5	1.20 1.58 1.79	1.40 1.74 1.94	1.60 2.00 2.10		1.6 2.0 2.0		1.6 2.0 2.0	V
V _{T-}	Negative Threshold Voltage		3.0 4.5 5.5	0.35 0.5 0.6	0.76 1.01 1.13	0.93 1.18 1.29	0.35 0.5 0.6		0.35 0.5 0.6		V
V _H	Hysteresis Voltage		3.0 4.5 5.5	0.30 0.40 0.50	0.64 0.73 0.81	1.20 1.40 1.60	0.30 0.40 0.50	1.20 1.40 1.60	0.30 0.40 0.50	1.20 1.40 1.60	V
V _{OH}	Minimum High-Level Output Voltage	$V_{IN} \le V_{T-MIN}$ I_{OH} = -50 µA	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		1.9 2.9 4.4		V
		$\begin{array}{l} V_{IN} \leq V_{T\text{-}MIN} \\ I_{OH} = -4 \ \text{mA} \\ I_{OH} = -8 \ \text{mA} \end{array}$	3.0 4.5	2.58 3.94			2.48 3.80		2.34 3.66		
V _{OL}	Maximum Low-Level Output Voltage	$V_{IN} \ge V_{T+MAX}$ $I_{OL} = 50 \ \mu A$	2.0 3.0 4.5		0 0 0	0.1 0.1 0.1		0.1 0.1 0.1		0.1 0.1 0.1	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 4 \text{ mA}$ $I_{OL} = 8 \text{ mA}$	3.0 4.5			0.36 0.36		0.44 0.44		0.52 0.52	
I _{IN}	Input Leakage Current	$0 \le V_{IN} \le 5.5 V$	0 to 5.5			±0.1		±1.0		±1.0	μΑ
ICC	Quiescent Supply Current	$0 \le V_{IN} \le V_{CC}$	5.5			1.0		20		40	μΑ
ICCT	Quiescent Supply Current	V _{IN} = 3.4 V	5.5			1.35		1.50		1.65	mA
I _{OPD}	Output Leakage Current	V _{OUT} = 5.5 V	0.0			0.5		5.0		10	μA

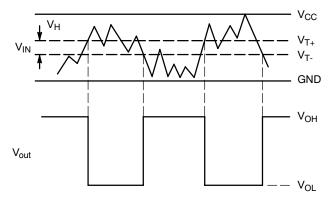

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0 \text{ ns}$)

	Vec		V _{CC} Test		T _A = 25 °(с	T_A = -	⊦85°C		55°C to 5°C	
Symbol	Parameter	(V)	Condition	Min	Тур	Max	Min	Max	Min	Max	Unit
t _{PLH} ,	Propagation Delay,	3.0 to	C _L = 15 pF		7.0	12.8	1.0	15.0	1.0	17.0	ns
t _{PHL}	Input A to Output Y	3.6	C _L = 50 pF		8.4	16.3	1.0	18.5	1.0	20.5	
		4.5 to	C _L = 15 pF		4.5	8.6	1.0	10.0	1.0	11.5	
		5.5	C _L = 50 pF		5.8	10.6	1.0	12.0	1.0	13.5	
C _{IN}	Input Capacitance				5	10		10		10.0	pF
C _{PD}	Power Dissipation Capacitance (Note 6)	5.0			10.0						pF

6. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the dynamic operating current consumption without load. Average operating current can be obtained by the equation I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}. C_{PD} is used to determine the no-load dynamic power consumption: P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}.




Figure 3. Switching Waveforms



*Includes all probe and jig capacitance.

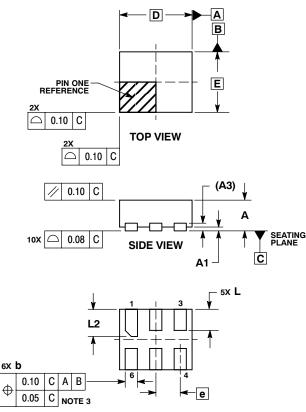
A 1- MHz square input wave is recommended for propagation delay tests.

(a) A Schmitt-Trigger Squares Up Inputs With Slow Rise and Fall Times

(b) A Schmitt-Trigger Offers Maximum Noise Immunity

Figure 5. Typical Schmitt-Trigger Applications

ORDERING INFORMATION

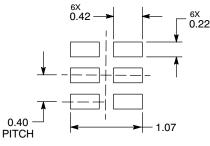

Device	Package	Shipping [†]
NLU1GT14MUTCG	UDFN6 (Pb-Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

http://onsemi.com

PACKAGE DIMENSIONS

UDFN6, 1.2x1.0, 0.4P CASE 517AA-01 ISSUE B



BOTTOM VIEW

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND
- 0.30 mm FROM TERMINAL.4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS						
DIM	MIN	MAX					
Α	0.45	0.55					
A1	0.00	0.05					
A3	0.127 REF						
b	0.15	0.25					
D	1.20 BSC						
Е	1.00	BSC					
е	0.40	BSC					
L	0.30	0.40					
L2	0.40	0.50					

MOUNTING FOOTPRINT*

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use personal and soluce to presaring the design or manufacture of the part. SCILLC is an Equal Opportunit/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative