NL27WZ126

Dual Buffer with 3-State Outputs

The NL27WZ126 is a high performance dual noninverting buffer operating from a 1.65 V to 5.5 V supply.

Features

- Extremely High Speed: tpD 2.6 ns (typical) at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
- Designed for 1.65 V to 5.5 V V CC Operation
- Over Voltage Tolerant Inputs and Outputs
- LVTTL Compatible - Interface Capability With 5.0 V TTL Logic with $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current Substantially Reduces System Power Requirements
- 3-State OE Input is Active-High
- Replacement for NC7WZ126
- Chip Complexity $=72$ FETs
- $\mathrm{Pb}-$ Free Package is Available

Figure 1. Pinout (Top View)

Figure 2. Logic Symbol

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

M2 = Device Code
M = Date Code*
= Pb-Free Package
(Note: Microdot may be in either location)
*Date Code orientation may vary depending upon manufacturing location.

PIN ASSIGNMENT

Pin	Function
1	OE
2	$\mathrm{~A}_{1}$
3	Y_{2}
4	GND
5	$\mathrm{~A}_{2}$
6	Y_{1}
7	OE_{2}
8	$\mathrm{~V}_{\mathrm{CC}}$

FUNCTION TABLE

Input		Output
$O_{\boldsymbol{n}}$	$\mathbf{A}_{\boldsymbol{n}}$	$\mathbf{Y}_{\boldsymbol{n}}$
H	H	H
H	L	L
L	X	Z

X = Don't Care
$\mathrm{n}=1,2$

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

NL27WZ126

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {CC }}$	DC Supply Voltage	-0.5 to +7.0	V
V_{1}	DC Input Voltage	-0.5 to +7.0	V
V_{O}	DC Output Voltage	-0.5 to +7.0	V
I_{IK}	DC Input Diode Current $\quad \mathrm{V}_{1}<$ GND	-50	mA
$\mathrm{l}_{\text {OK }}$	DC Output Diode Current $\mathrm{V}_{0}<$ GND	-50	mA
I_{0}	DC Output Sink Current	± 50	mA
I_{CC}	DC Supply Current per Supply Pin	± 100	mA
$\mathrm{I}_{\text {GND }}$	DC Ground Current per Ground Pin	± 100	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature under Bias	+ 150	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance (Note 1)	250	${ }^{\circ} \mathrm{C} / \mathrm{W}$
P_{D}	Power Dissipation in Still Air at $85^{\circ} \mathrm{C}$	250	mW
MSL	Moisture Sensitivity	Level 1	
F_{R}	Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
$\mathrm{V}_{\text {ESD }}$	ESD Withstand VoltageHuman Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4)	$\begin{gathered} >2000 \\ >200 \\ \text { N/A } \end{gathered}$	V

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Measured with minimum pad spacing on an FR4 board, using 10 mm -by-1 inch, 2-ounce copper trace with no air flow.
2. Tested to EIA/JESD22-A114-A.
3. Tested to EIA/JESD22-A115-A.
4. Tested to JESD22-C101-A.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V_{CC}	Supply Voltage	Operating Data Retention Only	$\begin{aligned} & 1.65 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	V
V_{1}	Input Voltage	(Note 5)	0	5.5	V
V_{O}	Output Voltage	(HIGH or LOW State)	0	5.5	V
T_{A}	Operating Free-Air Temperature		-40	+85	${ }^{\circ} \mathrm{C}$
$\Delta t / \Delta \mathrm{V}$	Input Transition Rise or Fall Rate	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 20 \\ 10 \\ 5 \end{gathered}$	ns/V

5. Unused inputs may not be left open. All inputs must be tied to a high- or low-logic input voltage level.

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Condition	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
V_{IH}	High-Level Input Voltage		1.65 to 5.5	$0.7 \mathrm{~V}_{\mathrm{CC}}$			0.7 V CC		V
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage		1.65 to 5.5			$0.3 \mathrm{~V}_{\text {CC }}$		$0.3 \mathrm{~V}_{\text {CC }}$	V
V_{OH}	High-Level Output Voltage $\mathrm{V}_{I N}=\mathrm{V}_{I H}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=100 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-16 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \hline 1.65 \text { to } 5.5 \\ 1.65 \\ 2.7 \\ 3.0 \\ 3.0 \\ 4.5 \end{gathered}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}-0.1 \\ 1.9 \\ 2.2 \\ 2.4 \\ 2.3 \\ 3.8 \end{gathered}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{cc}} \\ & 2.1 \\ & 2.4 \\ & 2.7 \\ & 2.5 \\ & 4.0 \end{aligned}$		$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}-0.1 \\ 1.9 \\ 2.2 \\ 2.4 \\ 2.3 \\ 3.8 \end{gathered}$		V
VOL	Low-Level Output Voltage $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	$\begin{aligned} & \hline \mathrm{I} \mathrm{OL}=100 \mathrm{\mu A} \\ & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \hline 1.65 \text { to } 5.5 \\ 1.65 \\ 2.7 \\ 3.0 \\ 3.0 \\ 4.5 \end{gathered}$		$\begin{aligned} & 0.20 \\ & 0.22 \\ & 0.28 \\ & 0.38 \\ & 0.42 \end{aligned}$	$\begin{gathered} \hline 0.1 \\ 0.3 \\ 0.4 \\ 0.4 \\ 0.55 \\ 0.55 \end{gathered}$		$\begin{gathered} \hline 0.1 \\ 0.3 \\ 0.4 \\ 0.4 \\ 0.55 \\ 0.55 \end{gathered}$	V
IN	Input Leakage Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND	0 to 5.5			± 0.1		± 1.0	$\mu \mathrm{A}$
IofF	Power Off-Output Leakage Current	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$	0			1		10	$\mu \mathrm{A}$
ICC	Quiescent Supply Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	5.5			1		10	$\mu \mathrm{A}$
loz	3-State Output Leakage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & 0 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 5.5 \mathrm{~V} \end{aligned}$	1.65 to 5.5			± 0.5		± 5	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=3.0 \mathrm{~ns}\right)$

Symbol	Parameter	Condition	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
$\overline{t_{P L H}}$$\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay AN to YN (Figures 3 and 4, Table 1)	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \quad \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	$\begin{gathered} 1.8 \pm 0.15 \\ 2.5 \pm 0.2 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 12 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} 13 \\ 8 \end{gathered}$	ns
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega$ $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ $\mathrm{R}_{\mathrm{L}}=500 \Omega$ $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	3.3 ± 0.3	$\begin{aligned} & 0.8 \\ & 1.2 \end{aligned}$		$\begin{aligned} & 5.2 \\ & 5.7 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$	
		$R_{L}=1 \mathrm{M} \Omega$ $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ $\mathrm{R}_{\mathrm{L}}=500 \Omega$ $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	5.0 ± 0.5	$\begin{aligned} & 0.5 \\ & 0.8 \end{aligned}$		$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 5.3 \end{aligned}$	
tosth toshl	Output to Output Skew (Note 6)	$\mathrm{R}_{\mathrm{L}}=500 \Omega \quad \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	3.3 ± 0.3			1.0		1.0	ns
		$\mathrm{R}_{\mathrm{L}}=500 \Omega \quad \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	5.0 ± 0.5			0.8		0.8	
$\begin{aligned} & \hline \mathrm{t}_{\text {PZH }} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time (Figures 5, 6 and 7, Table 1)	$\mathrm{R}_{\mathrm{L}}=250 \Omega \quad \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\begin{gathered} \hline 1.8 \pm 0.15 \\ 2.5 \pm 0.2 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 1.8 \end{aligned}$		$\begin{aligned} & 14 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 15 \\ & 9.0 \end{aligned}$	ns
			3.3 ± 0.3	1.2		6.2	1.2	6.5	
			5.0 ± 0.5	0.8		5.5	0.8	5.8	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Enable Time (Figures 5, 6 and 7, Table 1)	R_{L} and $\mathrm{R} 1=500 \Omega \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\begin{gathered} 1.8 \pm 0.15 \\ 2.5 \pm 0.2 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 12 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 13 \\ & 8.5 \end{aligned}$	ns
			3.3 ± 0.3	0.8		5.7	0.8	6.0	
			5.0 ± 0.5	0.3		4.7	0.3	5.0	

6. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. This specification applies to any outputs switching in the same direction, either HIGH-to-LOW (tosHL) or LOW-to-HIGH (tosLH); parameter guaranteed by design.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	2.5	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	2.5	pF
C_{PD}	Power Dissipation Capacitance (Note 7)	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	9	pF
$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	11			

7. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $\mathrm{I}_{\mathrm{CC}(\mathrm{OPR})}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}}$. C_{PD} is used to determine the no-load dynamic power consumption; $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}}{ }^{2} \bullet \mathrm{f}_{\text {in }}+\mathrm{I}_{\mathrm{CC}} \bullet \mathrm{V}_{\mathrm{CC}}$.

Figure 3. Switching Waveform

*Includes all probe and jig capacitance.
A 1 MHz square input wave is recommended for propagation delay tests.

Figure 4. $\mathrm{t}_{\mathrm{PLH}}$ or $\mathrm{t}_{\mathrm{PHL}}$

Figure 5. AC Output Enable and Disable Waveform

Table 1. Output Enable and Disable Times
$t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{w}}=500 \mathrm{nsv}$

	V_{CC}		
Symbol	$\mathbf{3 . 3} \mathbf{V} \pm \mathbf{0 . 3} \mathbf{V}$	$\mathbf{2 . 7} \mathrm{V}$	$\mathbf{2 . 5} \mathbf{V} \pm \mathbf{0 . 2} \mathbf{V}$
V_{mi}	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{Cc} / 2}$
$\mathrm{~V}_{\mathrm{mo}}$	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{CC} / 2}$

A 1 MHz square input wave is recommended for propagation delay tests.
Figure 6. $\mathrm{t}_{\mathrm{PLL}}$ or $\mathrm{t}_{\mathrm{PLZ}}$

A 1 MHz square input wave is recommended for propagation delay tests.
Figure 7. $\mathrm{t}_{\mathrm{PZH}}$ or $\mathrm{t}_{\mathrm{PHZ}}$

DEVICE ORDERING INFORMATION

	Device Nomenclature						Package Type	Tape and Reel Size ${ }^{\dagger}$
Device Order Number	Logic Circuit Indicator	No. of Gates per Package	Temp Range Identifier	Technology	Device Function	Package Suffix		
NL27WZ126US	NL	2	7	WZ	126	US	US8	178 mm, 3000 Units
NL27WZ126USG	NL	2	7	WZ	126	USG	US8 (Pb-Free)	178 mm, 3000 Units

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

US8
US SUFFIX
CASE 493-02
ISSUE B

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION "A" DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURR. MOLD FLASH PROTRUSION AND GATE BURR SHALL NOT EXCEED 0.140 MM BURR SHALL NOTE.
4. DIMENSION "B" DOES NOT INCLUDE INTER-LEAD FLASH OR PROTRUSION. INTER-LEAD FLASH AND PROTRUSION SHALL NOT E3XCEED 0.140 (0.0055 ") PER SIDE.
5. LEAD FINISH IS SOLDER PLATING WITH THICKNESS OF 0.0076-0.0203 MM. (300-800").
6. ALL TOLERANCE UNLESS OTHERWISE SPECIFIED ± 0.0508 (0.0002 ").

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

[^0]
PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P.O. Box 61312, Phoenix, Arizona 85082-1312 USA

Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

[^0]: ON Semiconductor and 10 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. Al operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

