TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic
TC7SHU04FE

INVERTER (Un-Buffer)

Features

- Super high speed operation :tPD $=3.5 \mathrm{~ns}$ (typ.)

$$
@ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}
$$

- Low power dissipation : ICC $=2 \mu \mathrm{~A}$ (Max.)

$$
\text { @ } \mathrm{Ta}=25^{\circ} \mathrm{C}
$$

- High noise immunity : VNIH $=\mathrm{V}_{\mathrm{NIH}}$

$$
=10 \% \mathrm{~V}_{\mathrm{CC}}(\mathrm{Min} .)
$$

- 5.5 V tolerant input.
- Wide operation voltage range : VCC (opr) $=2 \sim 5.5 \mathrm{~V}$

Marking

Weight: 0.003 g (typ.)

Pin Assignment (top view)

Maximum Ratings $\left(\mathbf{T a}=25^{\circ} \mathrm{C}\right)$

Characteristics	Symbol	Rating	Unit
Supply voltage range	$\mathrm{V}_{\text {CC }}$	$-0.5 \sim 7$	V
DC input voltage	$\mathrm{V}_{\text {IN }}$	$-0.5 \sim 7$	V
DC output voltage	$\mathrm{V}_{\text {OUT }}$	$-0.5 \sim \mathrm{~V}_{\mathrm{CC}}+0.5$	V
Input diode current	I_{IK}	-20	mA
Output diode current	I_{OK}	± 20	mA
DC output current	$\mathrm{I}_{\mathrm{OUT}}$	± 25	mA
DC $\mathrm{V}_{\text {CC }} /$ ground current	I_{CC}	± 50	mA
Power dissipation	P_{D}	150	mW
Storage temperature	$\mathrm{T}_{\text {Stg }}$	$-65 \sim 150$	${ }^{\circ} \mathrm{C}$

Logic Diagram

IN A
\square
Truth Table

Recommended Operating Conditions

Characteristics	Symbol	Rating	Unit
Supply voltage	V_{CC}	$2 \sim 5.5$	V
Input voltage	$\mathrm{V}_{\text {IN }}$	$0 \sim 5.5$	V
Output voltage	$\mathrm{V}_{\text {OUT }}$	$0 \sim \mathrm{~V}_{\mathrm{CC}}$	V
Operating temperature	$\mathrm{T}_{\text {Opr }}$	$-40 \sim 85$	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

DC Characteristics

Characteristics	Symbol	Test Circuit	Test Condition			$\mathrm{Ta}=25^{\circ} \mathrm{C}$			$\mathrm{Ta}=-40 \sim 85^{\circ} \mathrm{C}$		Unit
					$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	Min	Typ.	Max	Min	Max	
High-level input voltage	V_{IH}	-	-		2.0	1.7	-	-	1.7	-	V
					3.0~5.5	$\begin{aligned} & V_{C C} \\ & \times 0.8 \end{aligned}$	-	-	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \times 0.8 \end{aligned}$	-	
Low-level input voltage	VIL	-	-		2.0	-	-	0.3	-	0.3	V
					3.0~5.5	-	-	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \times 0.2 \end{aligned}$	-	$\begin{aligned} & V_{C c} \\ & \times 0.2 \end{aligned}$	
High-level output voltage	V_{OH}	-	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$	$\mathrm{IOH}=-50 \mu \mathrm{~A}$	2.0	1.8	2.0	-	1.8	-	V
					3.0	2.7	3.0	-	2.7	-	
					4.5	4.0	4.5	-	4.0	-	
			$\mathrm{V}_{\text {IN }}=\mathrm{GND}$	$\mathrm{IOH}=-4 \mathrm{~mA}$	3.0	2.58	-	-	2.48	-	
				$\mathrm{l}_{\mathrm{OH}}=-8 \mathrm{~mA}$	4.5	3.94	-	-	3.80	-	
Low-level output voltage	V_{OL}	-	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IH }}$	$\mathrm{l} \mathrm{OL}=50 \mu \mathrm{~A}$	2.0	-	0	0.2	-	0.2	V
					3.0	-	0	0.3	-	0.3	
					4.5	-	0	0.5	-	0.5	
			$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$	$\mathrm{IOL}=4 \mathrm{~mA}$	3.0	-	-	0.36	-	0.44	
				$\mathrm{IOL}=8 \mathrm{~mA}$	4.5	-	-	0.36	-	0.44	
Input leakage current	IIN	-	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$ or GND		0~5.5	-	-	± 0.1	-	± 1.0	$\mu \mathrm{A}$
Quiescent supply current	ICC	-	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND		5.5	-	-	2.0	-	20.0	$\mu \mathrm{A}$

AC Characteristics (input: $\mathbf{t}_{\mathbf{r}}=\mathbf{t}_{\mathbf{f}}=\mathbf{3} \mathbf{n s}$)

Characteristics	Symbol	Test Condition		$\mathrm{Ta}=25^{\circ} \mathrm{C}$			$\mathrm{Ta}=-40 \sim 85^{\circ} \mathrm{C}$		Unit
		$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	$\mathrm{C}_{\mathrm{L}}(\mathrm{pF})$	Min	Typ.	Max	Min	Max	
Propagation delay time	$\begin{aligned} & \text { tPLH } \\ & \text { tpHL }^{2} \end{aligned}$	3.3 ± 0.3	15	-	5.0	8.9	1.0	10.5	ns
			50	-	7.5	11.4	1.0	13.0	
		5.0 ± 0.5	15	-	3.5	5.5	1.0	6.5	
			50	-	5.0	7.0	1.0	8.0	
Input capacitance	$\mathrm{C}_{\text {IN }}$			-	5	10	-	10	pF
Power dissipation capacitance	CPD	(Note)		-	6	-	-	-	pF

Note: $C_{P D}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation.
$\operatorname{ICC}(\mathrm{opr})=$ CPD $\cdot \mathrm{VCC}_{C C} \cdot f \mathrm{fIN}+\mathrm{ICC}$

Package Dimensions

SON5-P-0.50 Unit : mm

Weight: 0.003 g (typ.)

RESTRICTIONS ON PRODUCT USE

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.

