

DM74S240 • DM74S241 • DM74S244 Octal 3-STATE Buffer/Line Driver/Line Receiver

FAIRCHILD

SEMICONDUCTOR

DM74S240 • DM74S241 • DM74S244 **Octal 3-STATE Buffer/Line Driver/Line Receiver**

General Description

These buffers/line drivers are designed to improve both the performance and PC board density of 3-STATE buffers/ drivers employed as memory-address drivers, clock drivers, and bus-oriented transmitters/receivers. Featuring 400 mV of hysteresis at each low current PNP data line input, they provide improved noise rejection and high fanout outputs, and can be used to drive terminated lines down to 133Ω.

Features

- 3-STATE outputs drive bus lines directly
- PNP inputs reduce DC loading on bus lines
- Hysteresis at data inputs improves noise margins

August 1986

Revised May 2000

- Typical I_{OL} (sink current) 64 mA
- Typical I_{OH} (source current) –15 mA
- Typical propagation delay times Inverting 4.5 ns
 - Noninverting 6 ns
- Typical enable/disable times 9 ns

Absolute Maximum Ratings(Note 1)

Supply Voltage	7V
Input Voltage	5.5V
Operating Free Air Temperature Range	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range	-65°C to +150°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

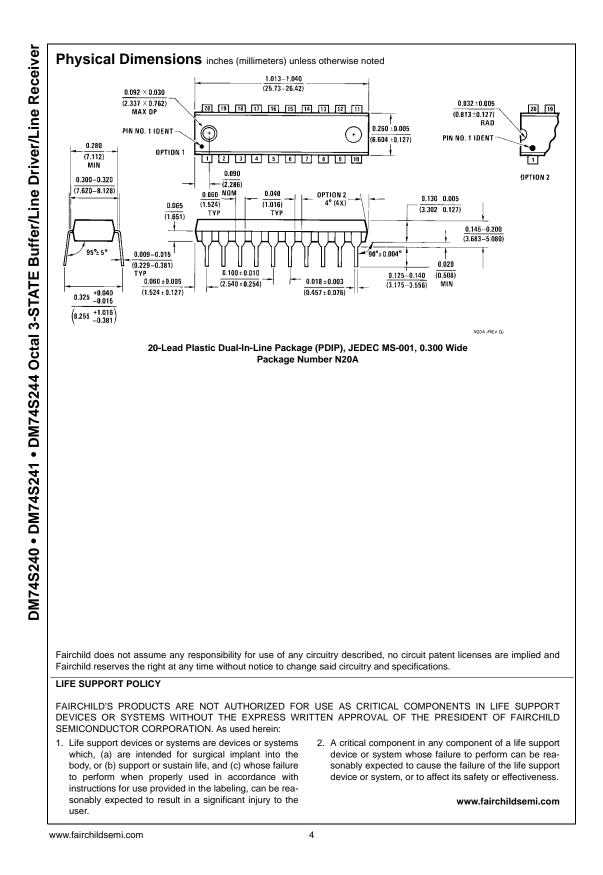
Symbol	Parameter	Min	Тур	Max	Units
V _{CC}	Supply Voltage	4.75	5	5.25	V
VIH	HIGH Level Input Voltage	2			V
V _{IL}	LOW Level Input Voltage			0.8	V
I _{ОН}	HIGH Level Output Current			-15	mA
I _{OL}	LOW Level Output Current			64	mA
T _A	Free Air Operating Temperature	0		70	°C

Electrical Characteristics

Symbol	Parameter	Con	ditions	Min	Typ (Note 2)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.2	V
H _{ys}	Hysteresis (V _{T+} – V _T) (Data Inputs Only)	V _{CC} = Min		0.2	0.4		V
V _{OH} H	HIGH Level	$V_{CC} = 4.75 V, V_{IH} = 2 V$		2.7			
	Output Voltage	$V_{IL} = 0.8V$, $I_{OH} = -1$ mA	N N	2.1			
		$V_{CC} = Min, V_{IH} = 2V$ $V_{IL} = 0.8V, I_{OH} = -3 \text{ mA}$		2.4	3.4		v
		$V_{CC} = Min, V_{IH} = 2V$ $V_{IL} = 0.5V, I_{OH} = Max$		2			
V _{OL}	LOW Level	$V_{CC} = Min$ $I_{OL} = Max$			1 1	0.55	V
	Output Voltage	$V_{IL}=0.8V,\ V_{IH}=2V$		0.55	0.55	v	
I _{OZH}	Off-State Output Current,	$V_{CC} = Max$ $V_{O} = 2.4V$				50	μA
	HIGH Level Voltage Applied	$V_{IL} = 0.8V$				50	μΑ
I _{OZL}	Off-State Output Current,	V _{IH} = 2V V _O = 0.5V				-50	μA
	LOW Level Voltage Applied					-50	μΑ
l _l	Input Current at Maximum Input Voltage	$V_{CC} = Max$ $V_I = 5.5V$				1	mA
I _{IH}	HIGH Level Input Current	$V_{CC} = Max$ $V_I = 2.7V$				50	μA
IIL	LOW Level Input Current	V Level Input Current V _{CC} = Max V _I = 0.5V Any A		-400	μA		
			Any G	-2	mA		
l _{os}	Short Circuit Output Current	V _{CC} = Max (Note 3)		-50		-225	mA
I _{CC}	Supply	Outputs HIGH	DM74S240		80	135	
	Current		DM74S241, DM74244		95	160	
		Outputs LOW	DM74S240		100	150	mA
			DM74S241, DM74244		120	180	mA
		Outputs Disabled	DM74S240	_	100	150	
			DM74S241, DM74S244		120	180	

Note 2: All typical values are at V_{CC} = 5V, $T_A = 25^{\circ}C$.

Note 3: Not more than one output should be shorted at a time and duration should not exceed one second.


www.fairchildsemi.com

	$I, T_A = 25^{\circ}C$					
Symbol	Parameter		Conditions	Min	Max	Units
t _{PLH}	Propagation Delay Time	$C_L = 45 \text{ pF}$	DM74S240	2	7	ns
	LOW-to-HIGH Level Output	$R_L = 90\Omega$	DM74S241, DM74244	2	9	- 115
t _{PHL}	Propagation Delay Time	$C_L = 45 \text{ pF}$	DM74S240	2	7	ns
	HIGH-to-LOW Level Output	$R_L = 90\Omega$	DM74S241, DM74244	2	9	
t _{PZL}	Output Enable Time to	$C_L = 45 \text{ pF}$	DM74S240	3	15	ns
	LOW Level	$R_L = 90\Omega$	DM74S241, DM74244	3	15	
t _{PZH}	Output Enable Time to	$C_L = 45 \text{ pF}$	DM74S240	2	10	
	HIGH Level	$R_L = 90\Omega$	DM74S241, DM74244	3	3 12	ns
t _{PLZ}	Output Disable Time	C _L = 5 pF	DM74S240	4	15	
	from Low Level	$R_L = 90\Omega$	DM74S241, DM74244	2	15	ns
t _{PHZ}	Output Disable Time	$C_L = 5 pF$	DM74S240	2	9	
	from High Level	$R_L = 90\Omega$	DM74S241, DM74244	2	9	ns
t _{PLH}	Propagation Delay Time	C _L = 150 pF	DM74S240	3	10	
	LOW-to-HIGH Level Output	$R_L = 90\Omega$	DM74S241, DM74244	4	12	ns
t _{PHL}	Propagation Delay Time	C _L = 150 pF	DM74S240	3	10	ns
	HIGH-to-LOW Level Output	$R_L = 90\Omega$	DM74S241, DM74244	4	12	
t _{PZL}	Output Enable Time to	C _L = 150 pF	DM74S240	6	21	
	LOW Level	$R_L = 90\Omega$	DM74S241, DM74244	6	21	ns
t _{PZH}	Output Enable Time to	C _L = 150 pF	DM74S240	4	12	
	HIGH Level	$R_1 = 90\Omega$	DM74S241, DM74244	4	15	ns

DM74S940 DM749241 .

www.fairchildsemi.com

Downloaded from $\underline{\text{Elcodis.com}}$ electronic components distributor

