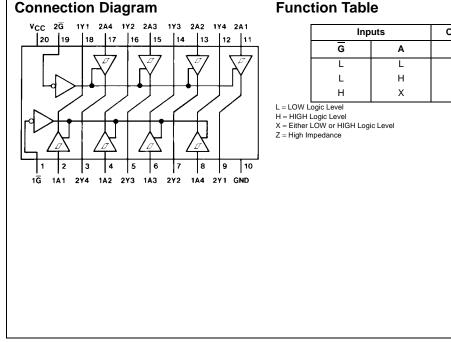
FAIRCHILD

DM74LS244 Octal 3-STATE Buffer/Line Driver/Line Receiver

General Description


Features

- 3-STATE outputs drive bus lines directly
- PNP inputs reduce DC loading on bus lines
- Hysteresis at data inputs improves noise margins
- Typical I_{OL} (sink current) 24 mA
- Typical I_{OH} (source current) –15 mA
- Typical propagation delay times Inverting 10.5 ns
 - Noninverting 12 ns
- Typical enable/disable time 18 ns Typical power dissipation (enabled) Inverting 130 mW
 - Noninverting 135 mW

Ordering Code:

EAIRCH SEMICONDU DM74LS2 Octal 3-S	JCTOR™ 244	ffer/Line D	August 1986 Revised March 2000
performance and drivers employed ers, and bus-orient mV of hysteresis a they provide impro	drivers are designed PC board density as memory-address ted transmitters/reco at each low current oved noise rejection	d to improve both the of 3-STATE buffers/ s drivers, clock driv- eivers. Featuring 400 PNP data line input, and high fanout out- nated lines down to	 Features 3-STATE outputs drive bus lines directly PNP inputs reduce DC loading on bus lines Hysteresis at data inputs improves noise margins Typical l_{OL} (sink current) 24 mA Typical l_{OH} (source current) -15 mA Typical propagation delay times Inverting 10.5 ns Noninverting 12 ns Typical enable/disable time 18 ns Typical power dissipation (enabled) Inverting 130 mW Noninverting 135 mW
	ode: Package Number		Package Description
DM74LS244WM DM74LS244SJ	M20B M20D		Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide Package (SOP), EIAJ TYPE II, 5.3mm Wide
DM74LS244S5	N20A		n-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Inputs		Output	
G	Α	Y	
L	L	L	
L	н	н	
н	Х	Z	

© 2000 Fairchild Semiconductor Corporation DS008442

Absolute Maximum Ratings(Note 1)

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range	-65°C to +150°C

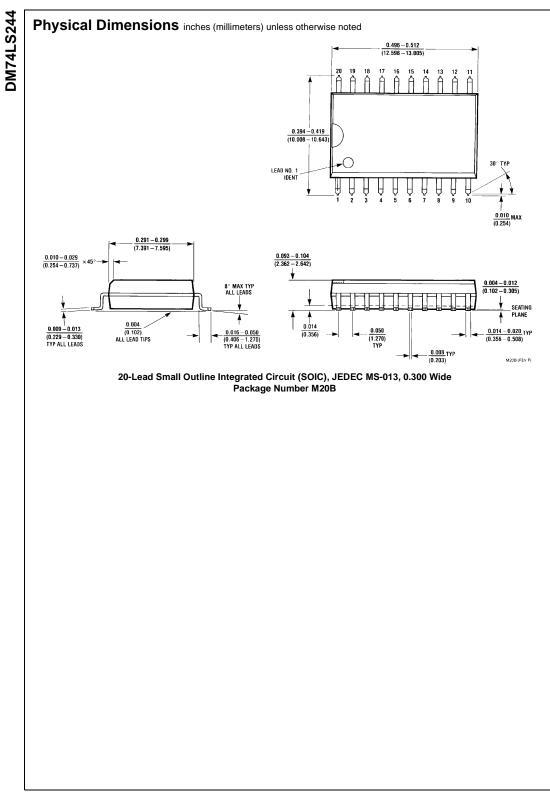
Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

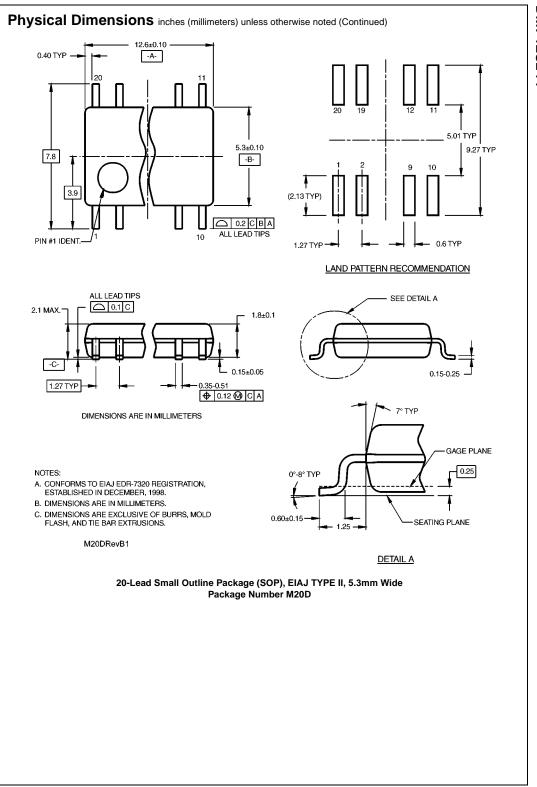
Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.75	5	5.25	V
V _{IH}	HIGH Level Input Voltage	2			V
V _{IL}	LOW Level Input Voltage			0.8	V
ОН	HIGH Level Output Current			-15	mA
OL	LOW Level Output Current			24	mA
T _A	Free Air Operating Temperature	0		70	°C

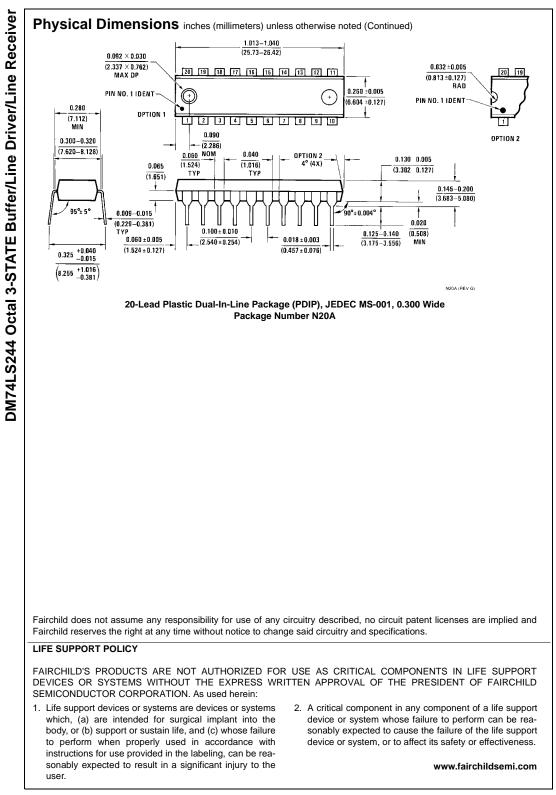
Electrical Characteristics

anded aparating free air temporature range (uplace athenuice noted)


Symbol	Parameter	Conditions		Min	Typ (Note 2)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.5	V
HYS	Hysteresis (V _{T+} – V _{T-}) Data Inputs Only	V _{CC} = Min		0.2	0.4		V
	HIGH Level Output Voltage	$V_{CC} = Min, V_{IH} = Min$ $V_{IL} = Max, I_{OH} = -1 mA$					
		$V_{CC} = Min, V_{IH} = Min$ $V_{IL} = Max, I_{OH} = -3 mA$			3.4		v
		$\label{eq:V_CC} \begin{split} V_{CC} &= \text{Min}, \ V_{IH} = \text{Min} \\ V_{IL} &= 0.5 \text{V}, \ \text{I}_{OH} = \text{Max} \end{split}$		2			
V _{OL}	LOW Level Output Voltage	V _{CC} = Min	I _{OL} = 12 mA			0.4	
		V _{IL} = Max V _{IH} = Min	I _{OL} = Max			0.5	V
I _{OZH}	Off-State Output Current, HIGH Level Voltage Applied	V _{CC} = Max V _{IL} = Max	V _O = 2.7V			20	μA
I _{OZL}	Off-State Output Current, LOW Level Voltage Applied	V _{IH} = Min	$V_O = 0.4V$			-20	μA
I	Input Current at Maximum Input Voltage	V _{CC} = Max	V ₁ = 7V			0.1	mA
I _{IH}	HIGH Level Input Current	V _{CC} = Max	$V_{I} = 2.7V$			20	μA
IIL	LOW Level Input Current	V _{CC} = Max	$V_{1} = 0.4V$	-0.5		-200	μΑ
los	Short Circuit Output Current	V _{CC} = Max (Note 3)	· ·	-40		-225	mA
I _{CC}	Supply Current	V _{CC} = Max,	Outputs HIGH		13	23	
		Outputs Open	Outputs LOW		27	46	mA
			Outputs Disabled		32	54	


Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.


# · · CC · •	V, $T_A = 25^{\circ}C$			
Symbol	Parameter	Conditions	Max	Units
t _{PLH}	Propagation Delay Time	C _L = 45 pF	18	ns
	LOW-to-HIGH Level Output	$R_L = 667\Omega$	10	
t _{PHL}	Propagation Delay Time	$C_L = 45 \text{ pF}$	18	20
	HIGH-to-LOW Level Output	$R_L = 667\Omega$	10	ns
t _{PZL}	Output Enable Time to	C _L = 45 pF	30	ns
	LOW Level	$R_L = 667\Omega$	30	
t _{PZH}	Output Enable Time to	C _L = 45 pF	23	ns
	HIGH Level	$R_L = 667\Omega$		
t _{PLZ}	Output Disable Time	ïme C _L = 5 pF	25	ns
	from LOW Level	$R_L = 667\Omega$	25	115
t _{PHZ}	Output Disable Time	C _L = 5 pF	18	ns
	from HIGH Level	$R_L = 667\Omega$	10	
t _{PLH}	Propagation Delay Time	C _L = 150 pF	21	ns
	LOW-to-HIGH Level Output	$R_L = 667\Omega$	21	
t _{PHL}	Propagation Delay Time	C _L = 150 pF	22	ns
	HIGH-to-LOW Level Output	$R_L = 667\Omega$	22	
t _{PZL}	Output Enable Time to	C _L = 150 pF	33	ns
	LOW Level	$R_L = 667\Omega$		
t _{PZH}	Output Enable Time to	C _L = 150 pF	26	ns
	HIGH Level	$R_1 = 667\Omega$	20	

DM74LS244

5

www.fairchildsemi.com

6