General Description

The 74ABT3284 is a synchronous datapath buffer designed to transmit four 9－bit bytes of data onto one or two 9－bit bytes in 2：1 or 4：1 multiplexed configurations．In addition， the non－inverting transceiver supports bidirectional data transfer in transparent or registered modes．A data byte from any one of the six ports can be stored during transpar－ ent operation for later recall．Data input to any port may also be read back to itself for byte manipulation or system self－di－ agnostic purposes．
The 74ABT3284 is useful for interleaving data in memory applications or for use in bus－to－bus communications where variations in data word length or construction are required．

Features

－Advanced BiCMOS technology provides high speed at low power consumption

Commercial	Package Number	Package Description
74 ABT3284VJG	VJG100A	100－Lead $(14 \mathrm{~mm} \times 14 \mathrm{~mm})$ Molded Plastic Quad Flatpak，JEDEC

Connection Diagram
Pin Assignment

	Pin		Pin		Pin		Pin	
	1	Mode＿SO	26	V_{CC}	51	CP＿IN	76	V_{CC}
	2	CP＿AX	27	A_{8}	52	$\overline{\mathrm{OEB}}$	77	D_{8}
	3	OEC	28	A_{7}	53	LDBI	78	D_{7}
	4	LDCI	29	A_{6}	54	LDBO	79	D_{6}
	5	LDCO	30	GND	55	Mode＿W	80	GND
	6	$\mathrm{SA}_{2} \mathrm{X}_{1}$	31	A_{5}	56	YSEL	81	D_{5}
最崀	7	$\mathrm{SA}_{2} \mathrm{X}_{0}$	32	A_{4}	57	OEY	82	D_{4}
崀	8	X_{0}	33	A_{3}	58	Y_{8}	83	D_{3}
呢	9	X_{1}	34	A_{2}	59	Y_{7}	84	D_{2}
崀	10	GND	35	GND	60	GND	85	GND
啹	11	X_{2}	36	A_{1}	61	Y_{6}	86	D_{1}
崀	12	X_{3}	37	A_{0}	62	Y_{5}	87	D_{0}
崀	13	X_{4}	38	V_{CC}	63	Y_{4}	88	V_{CC}
易•兰	14	X_{5}	39	B_{0}	64	Y_{3}	89	C_{0}
100 I	15	X_{6}	40	B_{1}	65	Y_{2}	90	C_{1}
1 TL／F／11582－1	16	GND	41	GND	66	GND	91	GND
	17	X_{7}	42	B_{2}	67	Y_{1}	92	C_{2}
	18	X_{8}	43	B_{3}	68	Y_{0}	93	C_{3}
	19	OEX	44	B_{4}	69	LDDO	94	C_{4}
	20	XSELo	45	B_{5}	70	LDDI	95	C_{5}
	21	XSEL ${ }_{1}$	46	GND	71	ASEL1	96	GND
	22	LDAO	47	B_{6}	72	ASELO	97	C_{6}
	23	LDAI	48	B_{7}	73	$\overline{\text { OED }}$	98	C_{7}
	24	OEA	49	B_{8}	74	CP＿XA	99	C_{8}
	25	$\mathrm{V}_{C C}$	50	V_{CC}	75	Mode＿SC	100	V_{CC}

TRI－STATE is a registered trademark of National Semiconductor Corporation

Functional Description

The 74ABT3284 is a bi-directional registered data-path routing device which can multiplex/de-multiplex four 9-bit "Aside" data ports (Ports A, B, C, D) onto/from one 9-bit "Xside" port (Port X). Alternatively, it can be configured for mux/demux of two 18-bit data paths (Ports A and C, B and D) onto/from one 18-bit data path (Ports X and Y).

Each of the six 9-bit I/O ports have independent active low TRI-STATE ${ }^{\circledR}$ output enable control logic which can be configured to operate asynchronously or synchronously. With MODE_SO low, direct asynchronous output control is provided. With MODE__SO high, output enable control is asserted synchronously on the positive edge of the CP__IN clock. All I/O port inputs are continuously active allowing output state feedback.
The four A-side ports (A, B, C, D) contain independently enabled input and output data registers for storage of data passing in either direction. The input register (AIR, BIR, CIR, DIR) is loaded/held on the positive edge of CP__AX when the respective Load Control pin (LDAI, LDBI, LDCI, LDDI) is asserted high/low. The Input Registers can be loaded with data from the corresponding A-side port. The output register (AOR, BOR, COR, DOR) is loaded/held on the positive edge of CP_XA when the respective Load Control pin (LDAO, LDBO, LDCO, LDDO) is asserted high/low. The Output Registers can be loaded with data from Port X when MODE__WS is asserted low. When MODE__WS is asserted high, the Output Registers A and C can be loaded with Port X data and the B and D Output Registers can be loaded with data from Port Y .
When routing data from A-side to X -side, Data Path Control is provided for the following options via the SA2X inputs; Transparent mode where Input Register is bypassed but can simultaneously monitor A-side data; Registered Mode where X-side receives data from the selected Input Registers; Readback Mode where X-side receives data from the selected Output Registers. A-side data from Ports A, B, C, or D can be selected to Port X via the XSEL data path select inputs. Ports B or D can be selected to Port Y via the YSEL data path select input.
When routing data from X-side to A-side, Data Path Control is provided for the following options via the ASEL inputs; Transparent mode where Output Register is bypassed but can simultaneously monitor X-side data; Registered Mode where the A-side Port receives data from the corresponding Output Register; Readback Mode where the A-side Port receives data from the corresponding Input Registers. MODE__WS asserted low selects Port X data to be passed to Ports A, B, C, and D. With MODE__WS asserted high, Port X data is passed to Ports A and C with Port Y data passed to Ports B and D.

All Data Path Control Inputs and Input/Output Register Load Enable Inputs are active high and can be asserted asynchronously or synchronously. When MODE_SC is low, these inputs operate asynchronously. When MODE__SC is high, the inputs are asserted synchronously on the positive edge of the CP__IN clock.
When operating the Data Path Control and/or the Output Enable Input groups with MODE__SC and/or MODE__SO "hard wired" high for synchronous mode, a single pre-clock of CP__IN will be required following power-up to insure that all internal synchronous control registers are in the appropriate known state. if the application requires "on the fly"' changes from asynchronous to synchronous operation, then the respective control/enable pin data must be preclocked via CP_IN and held steady prior to and during any low to high transition of the MODE__SO or MODE__SC to properly initiate the sync control registers for synchronous control mode.

Pin Descriptions

Pin Name	Description	Operation
OEa	Output Enable Inputs (Active Low)	Sync/Async
LDal	Load Enable Inputs for the Input Registers	Sync/Async
LDaO	Load Enable Inputs for the Output Registers	Sync/Async
ASEL(0,1)	A-Side Data Path Select Inputs	Sync/Async
SA2X(0,1)	X-Side Data Path Select Inputs	Sync/Async
XSEL(0,1)	X-Port Data Path Select Inputs	Sync/Async
YSEL	Y-Port Data Path Select Input	Sync/Async
MODE_W	Word Mode Select Input for the X/Y to A-Side Direction	Sync/Async
MODE_SO	Enable Input for Synchronous Output Enable Control	Async
MODE_SC	Enable Input for Synchronous Data Path Control	Async
CP_IN	Clock Input for Synchronous Control (Positive Edge Trigger)	
CP_AX	Clock Input for Input Registers (Positive Edge Trigger)	
CP_XA	Clock Input for Output Registers (Positive Edge Trigger)	

Function Tables

Output Enable Control Table					
Inputs			Outputs	Control Mode	Function
$\overline{O E}(\mathbf{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{X}, \mathrm{Y})$	MODE_SO	CP_IN	$\begin{gathered} \text { Port } \\ \mathbf{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{X}, \mathrm{Y} \end{gathered}$		
L	L	X	ENABLE	ASYNC	ENABLED OUTPUT, I/O input always active
H	L	X	DISABLE	ASYNC	DISABLED OUTPUT, I/O input always active
(Notes 2, 3)	H (Note 1)	\checkmark	(Note 3)	SYNC	(Note 3)

Note 1: Low to High transitions of MODE_SO must be immediately preceeded by a low to high transition (clock edge) on CP_IN while holding Synchronous Control Inputs $\overline{\mathrm{OE}}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{X}, \mathrm{Y})$ steady to preset internal registers and assure predictable operation during the control mode change from asynchronous to synchronous.
Note 2: $\overline{O E}(A, B, C, D, X, Y)$ levels are synchronously asserted by the positive transition of CP__IN when MODE__SO is high.
Note 3: Synchronous Control Mode Functions are same as Asynchronous at time T + 1 of CP_IN.
A Side Data Path Select Function Table

Inputs				Data Path		Control Mode	Function
ASEL(1)	ASEL(0)	MODE_SC	CP_IN	From Reg/Port	To Port		
L	L	L	X	($A, B, C, D)$ IR	A, B, C, D	ASYNC	Readback; Contents of Input Register (A, B, C, D) IR to Port (A, B, C, D)
L	H	L	X	(A, B, C, D) OR	A, B, C, D	ASYNC	Clocked Path; Contents of Output Register (A, B, C, D) OR to Port (A, B, C, D)
H	L	L	X	Port X	A, B, C, \& D	ASYNC	Transparent Path; Port X to Port A, B, C, \& D
H	H	L	X	Port X Port Y	A \& C $B \& D$	ASYNC	```Transparent Path; Port X to Port A & C Transparent Path; Port Y to Port B & D```
(Notes 2, 3)	(Notes 2, 3)	H (Note 1)	Ω	(Note 3)	(Note 3)	SYNC	(Note 3)

Note 1: Low to High transitions of MODE_SC must be immediately preceeded by a low to high transition (clock edge) on CP_IN while holding Synchronous Control Inputs ASEL(0) and ASEL(1) steady to preset internal registers and assure predictable operation during the control mode change from asynchronous to synchronous.
Note 2: $\operatorname{ASEL}(0)$ and $\operatorname{ASEL}(1)$ levels are synchronously asserted by the positive transition of CP_IN when MODE_SC is high.
Note 3: Synchronous Control Mode Functions are same as Asynchronous at time T + 1 of CP_IN.
Input Register Control Table

Inputs					Register	Control Mode	Function
$\begin{gathered} \text { Port } \\ (\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}) \end{gathered}$	LD(A, B, C, D) I	MODE_SC	CP_IN	CP_XA	(A, B, C, D) IR		
X	L	L	X	\checkmark	HOLD	ASYNC	HOLD; Input Register holds previous state.
L (H)	H	L	X	\checkmark	L (H)	ASYNC	LOAD; Port A, B, C, D clocked to Input Register (A, B, C, D) IR via CP__AX positive edge
(Note 3)	(Notes 2, 3)	H (Note 1)	Ω	(Note 3)	(Note 3)	SYNC	(Note 3)

Note 1: Low to High transitions of MODE__SO must be immediately preceeded by a low to high transition (clock edge) on CP_IN while holding Synchronous Control Inputs LDAI, LDBI, LDCI, and LDDI steady to preset internal registers and assure predictable operation during the control mode change from asynchronous to synchronous.
Note 2: LDAI, LDBI, LDCI and LDDI levels are synchronously asserted by the positive transition of CP__IN when MODE_SC is high.
Note 3: Synchronous Control Mode Functions are same as Asynchronous at time $T+1$ of CP_IN.

Function Tables (Continued)

Output Register Control Table

Inputs							Output Register		Control Mode	Function
Port X	Port Y	LD(A, B, C, D) O	MODE_W	MODE_SC	CP_IN	CP_XA	(A, C) OR	(B, D) OR		
X	X	L	X	L	X	\checkmark	HOLD	HOLD	ASYNC	$\begin{aligned} & \text { HOLD } \\ & \text { OR } \end{aligned}$
L (H)	X	H	L	L	X	$\widetilde{ }$	L (H)	L (H)	ASYNC	LOAD OR Port X to OR (A, B, C, D)
L (H)	L (H)	H	H	L	X	Ω	L (H)	L (H)	ASYNC	LOAD OR Port X to OR (A, C) Port Y to OR (B, D)
(Note 3)	(Note 3)	(Notes 2, 3)	(Notes 2, 3)	H (Note 1)	\checkmark	(Note 3)	(Note 3)	(Note 3)	SYNC	(Note 3)

Note 1: Low to High transitions of MODE_SC must be immediately preceeded by a low to high transition (clock edge) on CP_IN while holding Synchronous Control Inputs LDAO, LDBO, LDCO, LDDO and MODE_W steady to preset internal registers and assure predictable operation during the control mode change from asynchronous to synchronous.
Note 2: LDAO, LDBO, LDCO, LDDO and MODE_W levels are synchronously asserted by the positive transition of CP__IN when MODE_SC is high.
Note 3: Synchronous Control Mode Functions are same as Asynchronous at time T + 1 of CP_IN.

Logic Diagrams

TL/F/11582-2
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.
FIGURE 1. 18-Bit Synchronous Datapath Multiplexer

Absolute Maximum Ratings (Note 1)

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias Ceramic
Plastic
$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Any Output in the Disabled or Power-off State in the HIGH STATE
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
-0.5 V to +7.0 V
-0.5 V to +7.0 V
-30 mA to +5.0 mA
-0.5 V to +5.5 V -0.5 V to V_{CC}

Current Applied to Output in LOW State (Max)

DC Latchup Source Current -300 mA
Over Voltage Latchup (I/O)
10V
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under hese conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs
Recommended Operating Conditions

Free Air Ambient Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Commercial	
Supply Voltage	+4.5 V to +5.5 V
Commercial	$(\Delta \mathrm{V} / \Delta \mathrm{t})$
Minimum Input Edge Rate	$50 \mathrm{mV} / \mathrm{ns}$
Data Input	$20 \mathrm{mV} / \mathrm{ns}$
Enable Input	$100 \mathrm{mV} / \mathrm{ns}$
Clock Input	

DC Electrical Characteristics

Symbol	Parameter	ABT3284		Units	V_{Cc}	Conditions
		Min	Typ Max			
V_{IH}	Input HIGH Voltage	2.0		V		Recognized HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		0.8	V		Recognized LOW Signal
$V_{C D}$	Input Clamp Voltage		-1.2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$		V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}(\text { Note 3) } \end{aligned}$
V_{OL}	Output LOW Voltage		0.55	V	Min	$\mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA}$ (Note 4)
$\mathrm{IIH}^{\text {I }}$	Input HIGH Current		5	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test		7	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$ Control Inputs
$\mathrm{I}_{\text {BVIT }}$	Input HIGH Current Breakdown Test (I/O)		100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}\left(A_{n}, \mathrm{~B}_{\mathrm{n}}, \mathrm{C}_{\mathrm{n}}, D_{n}, X_{n}, Y_{n}\right)$
IIL	Input LOW Current		-5	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$ Control Inputs
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	4.75		V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ Control Inputs All Data Pins Grounded
$\begin{aligned} & \hline \mathrm{I}_{\mathrm{H}}+ \\ & \mathrm{I}_{\mathrm{OZH}} \end{aligned}$	Output Leakage Current		50	$\mu \mathrm{A}$	0-5.5	$\begin{aligned} & V_{\text {OUT }}=2.7 \mathrm{~V}\left(A_{n}, B_{n}, C_{n}, D_{n}, X_{n}, Y_{n}\right) \\ & \text { All Output Enables }=2.0 \mathrm{~V} \end{aligned}$
$\begin{aligned} & \hline \mathrm{I}_{\mathrm{IL}}+ \\ & \mathrm{I}_{\mathrm{OZL}} \\ & \hline \end{aligned}$	Output Leakage Current		-50	$\mu \mathrm{A}$	0-5.5	$\begin{aligned} & V_{\text {out }}=0.5 \mathrm{~V}\left(A_{n}, B_{n}, C_{n}, D_{n}, X_{n}, Y_{n}\right) \\ & \text { All Output Enables }=2.0 \mathrm{~V} \end{aligned}$
los	Output Short-Circuit Current	-100	-275	mA	Max	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}, \mathrm{C}_{\mathrm{n}}, \mathrm{D}_{\mathrm{n}}, \mathrm{X}_{\mathrm{n}}, \mathrm{Y}_{\mathrm{n}}\right)($ Note 5)
ICEX	Output High Leakage Current		50	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}\left(A_{n}, B_{n}, C_{n}, D_{n}, X_{n}, Y_{n}\right)$
Izz	Bus Drainage Test		100	$\mu \mathrm{A}$	0.0	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}, \mathrm{C}_{\mathrm{n}}, \mathrm{D}_{\mathrm{n}}, \mathrm{X}_{\mathrm{n}}, \mathrm{Y}_{\mathrm{n}}\right)$
$\mathrm{I}_{\mathrm{CCH}}$	Power Supply Current		2.5	mA	Max	All Outputs HIGH
$\mathrm{I}_{\text {CCL }}$	Power Supply Current		140	mA	Max	36 Outputs LOW
ICCZ	Power Supply Current		2.5	mA	Max	Output Enables $=\mathrm{V}_{\mathrm{CC}}$; All Others at GND
$I_{\text {CCT }}$	Additional $\mathrm{I}_{\mathrm{CC}} /$ Input		2.5	mA	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V} \\ & \text { All Others at } \mathrm{V}_{\mathrm{CC}} \text { or GND } \end{aligned}$
$I_{\text {CCD }}$	Dynamic ICC No Load		0.35	$\begin{aligned} & \mathrm{mA/} \\ & \mathrm{MHz} \end{aligned}$	Max	Outputs Open, Transparent Mode Output Enables = GND One Bit Toggling, 50\% Duty Cycle

Note 3: Up to 18 outputs can each source 32 mA continuously, or any combination of outputs can source up to a total of 324 mA . For example, 36 outputs can continuously each source 16 mA .
Note 4: Up to 18 outputs can each sink 64 mA continuously, or any combination of outputs can sink up to a total of 648 mA . For example, 36 outputs can continuously each sink 32 mA .
Note 5: One output at a time, duration 1 second maximum.

DC Electrical Characteristics (Continued)

Symbol	Parameter	Min	Typ	Max	Units	$\mathbf{V}_{\mathbf{C C}}$	Conditions $\mathbf{C}_{\mathbf{L}}=\mathbf{5 0} \mathbf{p F}, \mathbf{R}_{\mathbf{L}}=\mathbf{5 0 0 \Omega}$
$\mathrm{V}_{\mathrm{OLP}}$	Quiet Output Maximum Dynamic V_{OL}		0.7	1.0	V	5.0	$\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}($ Note 1)
$\mathrm{V}_{\mathrm{OLV}}$	Quiet Output Minimum Dynamic V_{OL}	-0.8	-0.5		V	5.0	$\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 1)
$\mathrm{V}_{\mathrm{OHV}}$	Minimum High Level Dynamic Output Voltage	2.5	3.0		V	5.0	$\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 3)
$\mathrm{V}_{\text {IHD }}$	Minimum High Level Dynamic Input Voltage	2.0	1.7		V	5.0	$\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 2)
$\mathrm{V}_{\text {ILD }}$	Maximum Low Level Dynamic Input Voltage		1.2	0.8	V	5.0	$\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 2)

Note 1: Max number of outputs defined as (n). $n-1$ data inputs are driven $0 V$ to $3 V$. One output at LOW. Guaranteed, but not tested.
Note 2: Max number of data inputs (n) switching. $n-1$ inputs switching 0 V to 3 V . Input-under-test switching: 3 V to theshold ($\mathrm{V}_{\mathrm{ILD}}$), 0 V to threshold ($\mathrm{V}_{\mathrm{IHD}}$). Guaranteed, but not tested.
Note 3: Max number of outputs defined as (n). $n-1$ data inputs are driven $O V$ to $3 V$. One output HIGH. Guaranteed, but not tested.
AC Electrical Characteristics single Output Switching

Symbol	Parameter	74ABT		74ABT		Units
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
		Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Max Operating Frequency	150				
${ }_{\text {tpHL }}$ tpLH	Propagation Delay A, B, C, D or X Inputs to X or A, B, C, D Outputs. Transparent Mode	1.5	5.5	1.5	5.5	ns
$\mathrm{t}_{\mathrm{PHL}}$ tpLH	Propagation Delay B, D or Y Inputs to Y or B, D Outputs. Transparent Mode	1.0	5.0	1.0	5.0	ns
$\mathrm{t}_{\mathrm{PHL}}$ tpLH	Propagation Delay CP_XA \uparrow to A, B, C, or D. Registered Mode	1.5	6.0	1.5	6.0	ns
$t_{\text {PHL }}$ $t_{\text {pLH }}$	Propagation Delay CP_AX \uparrow to X. Registered Mode	1.5	7.0	1.5	7.0	ns
$t_{\text {PHL }}$ $t_{\text {PLH }}$	Propagation Delay CP_AX \uparrow to Y. Registered Mode	1.5	6.5	1.5	6.5	ns
t_{PHL} $t_{\text {PLH }}$	Propagation Delay ASELn to A, B, C or D. Asynchronous Mode	2.0	7.5	2.0	7.5	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHL}} \\ & \mathrm{t}_{\mathrm{PLLH}} \\ & \hline \end{aligned}$	Propagation Delay CP_IN \uparrow to A, B, C or D. ASELn Synchronous Mode	2.5	8.5	2.5	8.5	ns
$t_{\text {PHL }}$ tplH	Propagation Delay SA2Xn to X or Y. Asynchronous Mode	1.5	7.5	1.5	7.5	ns
$t_{\text {PHL }}$ $t_{\text {pLH }}$	Propagation Delay CP_IN \uparrow to X or Y. SA2Xn Synchronous Mode	2.0	8.5	2.0	8.5	ns
$\mathrm{t}_{\mathrm{PHL}}$ tplH	Propagation Delay XSELn to X. Asynchronous Mode	1.5	6.0	1.5	6.0	ns
$\mathrm{t}_{\mathrm{PHL}}$ $t_{\text {PLH }}$	Propagation Delay CP_IN \uparrow to X. XSELn Synchronous Mode	2.0	7.5	2.0	7.5	ns
t_{PHL} $\mathrm{t}_{\mathrm{tPLH}}$	Propagation Delay YSELn to Y. Asynchronous Mode	1.0	5.5	1.0	5.5	ns
t_{PHL} tpLH	Propagation Delay CP_IN \uparrow to Y. YSELn Synchronous Mode	1.5	6.5	1.5	6.5	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Asynchronous Enable Time	1.0	6.0	1.0	6.0	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Synchronous Enable Time	1.5	7.0	1.5	7.0	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \\ & \hline \end{aligned}$	Asynchronous Disable Time	1.0	7.5	1.0	7.5	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PPLZ}} \\ & \hline \end{aligned}$	Synchronous Disable Time	1.5	8.5	1.5	8.5	ns

9

AC Operating Requirements single Output Switching

Symbol	Parameter	74ABT	74ABT	Units
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$	
		Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time High or Low A, B, C, D X or Y. Data to CP__AX \uparrow or CP_XA \uparrow (Registered Mode)	4.0	4.0	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold Time High or Low A, B, C, D X or Y. Data to CP__AX \uparrow or CP_XA \uparrow (Registered Mode)	0.0	0.0	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time High or Low Control Inputs to CP__IN \uparrow. (Synchronous Mode)	3.0	3.0	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time High or Low Control Inputs to CP__IN \uparrow. (Synchronous Mode)	0.0	0.0	ns
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Setup Time High, CP__IN \uparrow to CP__AX \uparrow or CP__XA \uparrow.	5.0	5.0	ns
$\mathrm{t}_{\mathrm{h}}(\mathrm{L})$	Hold Time Low, CP_IN \uparrow to CP__AX \uparrow or CP__XA \uparrow.	0.0	0.0	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	CLK Pulsewidth High CLK Pulsewidth Low	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	ns

Capacitance

Symbol	Parameter	Typ	Units	Conditions $\mathbf{T}_{\mathbf{A}}=\mathbf{2 5} \mathbf{C}$
C_{IN}	Input Capacitance	5	pF	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ Control Inputs
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$ (Note 1)	I/O Capacitance	11	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ $\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}, \mathrm{C}_{\mathrm{n}}, \mathrm{D}_{\mathrm{n}}, \mathrm{X}_{\mathrm{n}}, \mathrm{Y}_{\mathrm{n}}\right)$

Note 1: $\mathrm{C}_{\| / O}$ is measured at frequency $\mathrm{f}=1 \mathrm{MHz}$, per MIL-STD-883B, Method 3012.

LIFE SUPPORT POLICY
NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge @tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

