

74ABT843
9-bit interface latch with set and reset (3-State)

Product specification
Supersedes data of 1995 Sep 06
1998 Jan 16 IC23 Data Handbook

9-bit bus interface latch with set and reset (3-State)

74ABT843

FEATURES

- High speed parallel latches
- Extra data width for wide address/data paths or buses carrying parity
- Ideal where high speed, light loading, or increased fan-in are required with MOS microprocessors
- Slim DIP 300 mil package
- Broadside pinout
- Output capability: $+64 \mathrm{~mA} /-32 \mathrm{~mA}$
- Latch-up protection exceeds 500mA per Jedec Std 17
- ESD protection exceeds 2000V per MIL STD 883 Method 3015 and 200V per Machine Model
- Power-up 3-State
- Power-up reset

DESCRIPTION

The 74ABT843 Bus interface latch is designed to eliminate the extra packages required to buffer existing registers and provide extra data width for wider data/address paths of buses carrying parity.

The 74ABT843 consists of nine D-type latches with 3-State outputs. In addition to the LE and $\overline{O E}$ pins, it has a Master Reset (MR) pin and Preset (PRE) pin. These pins are ideal for parity bus interfacing in high performance systems. When MR is Low, the outputs are Low if $\overline{O E}$ is Low. When MR is High, data can be entered into the latch. When PRE is Low, the outputs are High, if OE is Low. PRE overrides MR.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{GND}=0 \mathrm{~V}$	TYPICAL	UNIT
$\begin{aligned} & \text { tpLH } \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay Dn to Qn	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	5.0	ns
$\mathrm{C}_{\text {IN }}$	Input capacitance	$V_{1}=0 \mathrm{~V}$ or V_{CC}	4	pF
Cout	Output capacitance	Outputs disabled; $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ or V_{CC}	7	pF
ICCz	Total supply current	Outputs disabled; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	500	nA

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
24-Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$74 \mathrm{ABT843} \mathrm{~N}$	$74 \mathrm{ABT843N}$	SOT222-1
24-Pin plastic SO	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$74 \mathrm{ABT843D}$	$74 \mathrm{ABT843D}$	SOT137-1
24-Pin Plastic SSOP Type II	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	74 ABT 843 DB	$74 \mathrm{ABT843} \mathrm{DB}$	SOT340-1
24-Pin Plastic TSSOP Type I	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$74 \mathrm{ABT843} \mathrm{PW}$	$74 \mathrm{ABT843PW}$ DH	SOT355-1

PIN CONFIGURATION

סe \square D0 2 D1 3 D2 4 D3 5 5 D4 6 D5 7 D6 8 D7 9 D8 10 MR \square GND 12	TOP VIEW	$\begin{array}{\|ll} \hline 24 & V_{C C} \\ \hline 23 & Q 0 \\ \hline 22 & Q 1 \\ \hline 21 & Q 2 \\ \hline 20 & Q 3 \\ \hline 19 & Q 4 \\ \hline 18 & Q \\ \hline 17 & Q \\ \hline 16 & Q 6 \\ \hline 15 & Q \\ \hline 14 & \mathrm{Q} \\ \hline 14 & P R E \\ \hline 13 & L E \\ \hline \text { SAOO25O } \\ \hline \end{array}$

PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
1	OE	Output enable input (active-Low)
$2,3,4,5,6$, $7,8,9,10$	D0-D8	Data inputs
$23,22,21,20$, $19,18,17,16,15$	Q0-Q8	Data outputs
11	MR	Master reset input (active-Low)
13	LE	Latch enable input (active rising edge)
14	PRE	Preset input (active-Low)
12	GND	Ground (OV)
24	VCC	Positive supply voltage

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE

INPUTS					OUTPUTS	OPERATING MODE
$\mathbf{O E}$	PRE	MR	LE	Dn	Qn	
L	L	X	X	X	H	Preset
L	H	L	X	X	L	Clear
L	H	H	H	L	L	Transparent
L	H	H	H	H	H	
L	H	H	\downarrow	I	L	Latched
L	H	H	\downarrow	h	H	
H	X	X	X	X	Z	High impedance
L	H	H	L	X	NC	Hold

[^0]
9 -bit bus interface latch with set and reset (3-State)

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V_{CC}	DC supply voltage		-0.5 to +7.0	V
I_{IK}	DC input diode current	$V_{1}<0$	-18	mA
V_{1}	DC input voltage ${ }^{3}$		-1.2 to +7.0	V
IOK	DC output diode current	$\mathrm{V}_{\mathrm{O}}<0$	-50	mA
$\mathrm{V}_{\text {OUT }}$	DC output voltage ${ }^{3}$	output in Off or High state	-0.5 to +5.5	V
IOUT	DC output current	output in Low state	128	mA
$\mathrm{T}_{\text {stg }}$	Storage temperature range		-65 to 150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed $150^{\circ} \mathrm{C}$.
3. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

9 -bit bus interface latch with set and reset (3-State)

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS		UNIT
		Min	Max	
V_{CC}	DC supply voltage	4.5	5.5	V
$\mathrm{~V}_{\mathrm{I}}$	Input voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IH}	High-level input voltage	2.0		V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage		0.8	V
I_{OH}	High-level output current		-32	mA
I_{OL}	Low-level output current		64	mA
$\Delta \mathrm{t} / \Delta \mathrm{v}$	Input transition rise or fall rate	0	10	$\mathrm{~ns} / \mathrm{V}$
$\mathrm{T}_{\mathrm{amb}}$	Operating free-air temperature range	-40	+85	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{IK}}=-18 \mathrm{~mA}$		-0.9	-1.2		-1.2	V
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}	2.5	2.9		2.5		V
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}	3.0	3.4		3.0		V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IL }}$ or V_{IH}	2.0	2.4		2.0		V
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or $\mathrm{V}_{\text {IH }}$		0.42	0.55		0.55	V
$\mathrm{V}_{\text {RST }}$	Power-up output low voltage ${ }^{3}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{l}_{\mathrm{O}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND		0.13	0.55		0.55	V
1	Input leakage current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or 5.5 V		± 0.01	± 1.0		± 1.0	$\mu \mathrm{A}$
IOFF	Power-off leakage current	$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}$ or $\mathrm{V}_{1} \leq 4.5 \mathrm{~V}$		± 5.0	± 100		± 100	$\mu \mathrm{A}$
IPU/PD	Power-up/down 3-state output current ${ }^{4}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{OE}}=\mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{I}}= \\ & \text { GND or } \mathrm{V}_{\mathrm{CC}} \end{aligned}$		± 5.0	± 50		± 50	$\mu \mathrm{A}$
IOZH	3-State output High current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$		5.0	50		50	$\mu \mathrm{A}$
lozl	3-State output Low current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IL }}$ or V_{IH}		-5.0	-50		-50	$\mu \mathrm{A}$
$I_{\text {CEX }}$	Output high leakage current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}		5.0	50		50	$\mu \mathrm{A}$
10	Output current ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-50	-80	-180	-50	-180	mA
$\mathrm{I}_{\mathrm{CCH}}$	Quiescent supply current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; Outputs High, $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}		0.5	250		250	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CCL }}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; Outputs Low, $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}		25	34		34	mA
ICCz		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text {; Outputs 3-State; } \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \end{aligned}$		0.5	250		250	$\mu \mathrm{A}$
$\Delta_{\text {l }} \mathrm{C}$	Additional supply current per input pin ${ }^{2}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; one input at 3.4 V , other inputs at V_{CC} or GND		0.5	1.5		1.5	mA

NOTES:

1. Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
2. This is the increase in supply current for each input at 3.4 V .
3. For valid test results, data must not be loaded into the flip-flops (or latches) after applying the power.
4. This parameter is valid for any $V_{C C}$ between $O \mathrm{~V}$ and 2.1 V with a transition time of up to 10 msec . For $\mathrm{V}_{\mathrm{CC}}=2.1 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$, a transition time of up to $100 \mu \mathrm{sec}$ is permitted.

AC CHARACTERISTICS

SYMBOL	PARAMETER	WAVEFORM	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40 \text { to } \\ +85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Dn to Qn	1	$\begin{aligned} & 1.6 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5.2 \\ & 6.3 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 2.2 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 7.2 \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHHL}} \\ & \hline \end{aligned}$	Propagation delay LE to Qn	2	$\begin{aligned} & 2.0 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 4.1 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 5.6 \\ & 6.3 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.9 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHHL}} \\ & \hline \end{aligned}$	Propagation delay PRE to Qn	1	$\begin{aligned} & 2.2 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.7 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 6.2 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.2 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.4 \\ & 7.2 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay MR to Qn	1	$\begin{aligned} & 2.5 \\ & 3.1 \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 6.3 \\ & 6.8 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7.1 \\ & 8.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{pZH}} \\ & \mathrm{t}_{\mathrm{PZLL}} \\ & \hline \end{aligned}$	Output enable time OE to Qn	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.7 \\ & 4.2 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.2 \\ & 6.5 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \text { tpHz } \\ & \text { tpLZ } \\ & \hline \end{aligned}$	Output disable time OE to Qn	$\begin{aligned} & 4 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.9 \\ & 2.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.9 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.2 \\ & 6.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.9 \\ & 2.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.8 \\ & 6.7 \\ & \hline \end{aligned}$	ns

AC SETUP REQUIREMENTS
$G N D=0 V, t_{R}=t_{F}=2.5 n s, C_{L}=50 p F, R_{L}=500 \Omega$

SYMBOL	PARAMETER	WAVEFORM	LIMITS			UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40 \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{gathered}$	
			Min	Typ	Min	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low Dn to LE	3	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low Dn to LE	3	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & -1.0 \\ & -1.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	LE pulse width, High	3	3.3	1.8	3.3	ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	PRE pulse width, Low	6	4.5	3.0	4.5	ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	MR pulse width, Low	6	5.5	4.0	5.5	ns
$\mathrm{t}_{\text {rec }}$	PRE recovery time	6	2.9	1.6	2.9	ns
$\mathrm{t}_{\text {rec }}$	$\overline{M R}$ recovery time	6	3.6	2.0	3.6	ns

9 -bit bus interface latch with set and reset (3-State)

AC WAVEFORMS

Waveform 1. Propagation Delay, Data to Output, Master Reset to Output, Preset to Output

Waveform 3. Data Setup and Hold Times and Latch Enable Pulse Width

Waveform 5. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

Waveform 2. Propagation Delay, Latch Enable to Output

Waveform 4. 3-State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 6. Master Reset and Preset Pulse Width, Master Reset and Preset to Latch Enable Recovery Time

9-bit bus interface latch with set and reset

 (3-State)

DIMENSIONS (millimetre dimensions are derived from the original inch dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$ $\mathbf{m i n}$.	$\mathbf{A}_{\mathbf{2}}$ max.	\mathbf{b}	$\mathbf{b}_{\mathbf{1}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(1)}$	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	\mathbf{L}	$\mathbf{M}_{\mathbf{E}}$	$\mathbf{M}_{\mathbf{H}}$	\mathbf{w}
mm	4.70	0.38	3.94	1.63 1.14	0.56 $\mathbf{m a x}$									
inches	0.43	0.36 0.25	31.9 31.5	6.73 6.48	2.54	7.62	3.51 3.05	8.13 7.62	10.03 7.62	0.25	2.05			
0	0.015	0.155	0.064 0.045	0.022 0.017	0.014 0.010	1.256 1.240	0.265 0.255	0.100	0.300	0.138 0.120	0.32 0.30	0.395 0.300	0.01	0.081

Note

1. Plastic or metal protrusions of 0.01 inches maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT222-1		MS-001AF		\square -	95-03-11

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \text { max. } \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$z^{(1)}$	θ
mm	2.65	$\begin{aligned} & 0.30 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 15.6 \\ & 15.2 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$	1.27	$\begin{aligned} & 10.65 \\ & 10.00 \end{aligned}$	1.4	$\begin{aligned} & 1.1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$	0.25	0.25	0.1	0.9 0.4	$\begin{aligned} & 8^{0} \\ & 0^{\circ} \end{aligned}$
inches	0.10	$\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.61 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$	0.050	$\begin{aligned} & 0.419 \\ & 0.394 \end{aligned}$	0.055	$\begin{aligned} & 0.043 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.043 \\ & 0.039 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT137-1	075E05	MS-013AD			$\begin{aligned} & -95-01-24 \\ & 97-05-22 \end{aligned}$

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(1)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(1)}$	$\boldsymbol{\theta}$
mm	2.0	0.21	1.80	0.25	0.38	0.20	8.4	5.4	0.65	7.9	1.25	1.03	0.9	0.2	0.13	0.1	0.8	8°
		0.05	1.65	0.2	0.25	0.09	8.0	5.2	0.65	7.6	1.25	0.63	0.7		0.4	0°		

Note

1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT340-1		MO-150AG		- (\$)	$\begin{aligned} & -93-09-08 \\ & 95-02-04 \end{aligned}$

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(2)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{z}^{(1)}$	θ
mm	1.10	0.15	0.95	0.25	0.30	0.2	7.9	4.5	0.65	6.6	1.0	0.75	0.4	0.2	0.13	0.1	0.5	8°
0.0	0.80	0.19	0.1	7.7	4.3	0.65	6.2		0.50	0.3	0.2							

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT355-1		MO-153AD			$\begin{gathered} \hline 93-06-16 \\ 95-02-04 \end{gathered}$

9 -bit bus interface latch with set and reset

 (3-State)9-bit bus interface latch with set and reset (3-State)

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support - These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors

811 East Arques Avenue
P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381

PHILIPS

[^0]: $\mathrm{H}=$ High voltage level
 $\mathrm{h}=$ High voltage level one set-up time prior to the High-to-Low LE transition
 $\mathrm{L}=$ Low voltage level
 I = Low voltage level one set-up time prior to the High-to-Low LE transition
 NC= No change
 X = Don't care
 Z = High impedance "off" state
 $\downarrow=$ High-to-Low transition

