FAIRCHILD

SEMICONDUCTOR®

74ABT573 Octal D-Type Latch with 3-STATE Outputs

General Description

The ABT573 is an octal latch with buffered common Latch Enable (LE) and buffered common Output Enable $(\overline{\text{OE}})$ inputs.

This device is functionally identical to the ABT373 but has broadside pinouts.

Features

Inputs and outputs on opposite sides of package allow easy interface with microprocessors

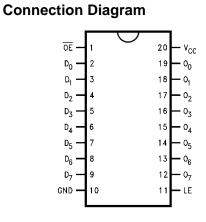
January 1993

Revised March 2005

- Useful as input or output port for microprocessors
- Functionally identical to ABT373
- 3-STATE outputs for bus interfacing
- Output sink capability of 64 mA, source capability of 32 mA
- Guaranteed output skew
- Guaranteed multiple output switching specifications
- Output switching specified for both 50 pF and 250 pF loads
- Guaranteed simultaneous switching, noise level and dynamic threshold performance
- Guaranteed latchup protection
- High impedance glitch-free bus loading during entire power up and power down
- Nondestructive hot insertion capability

Ordering Code:

Order Number	Package Number	Package Description
74ABT573CSC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74ABT573CSCX_NL (Note 1)	M20B	Pb-Free 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74ABT573CSJ	M20D	Pb-Free 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74ABT573CMSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide
74ABT573CMTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74ABT573CMTCX_NL (Note 1)	MTC20	Pb-Free 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74ABT573CPC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide


Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Pb-Free package per JEDEC J-STD-020B.

Note 1: "_NL" indicates Pb-Free package (per JEDEC J-STD-020B). Device available in Tape and Reel only.

© 2005 Fairchild Semiconductor Corporation DS011548

74ABT573

Descriptions

3-STATE Output Enable Input (Active LOW)

Latch Enable Input (Active HIGH)

3-STATE Latch Outputs

Pin Descriptions

Data Inputs

Pin Names

D₀-D₇

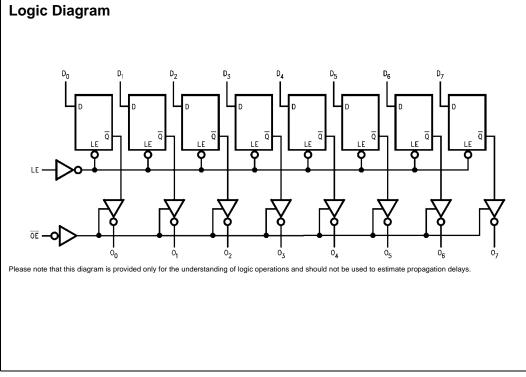
LE

OE

O₀-O₇

Functional Description

The ABT573 contains eight D-type latches with 3-STATE output buffers. When the Latch Enable (LE) input is HIGH, data on the D_n inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-STATE buffers are controlled by the Output Enable (\overline{OE}) input. When \overline{OE} is LOW, the buffers are in the bi-state mode. When \overline{OE} is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.


Function Table

Inputs Outputs OE LE D ο н н н L L н L L х O_0 L L Н Х Х Ζ

H = HIGH Voltage Level

L = LOW Voltage Level X = Immaterial

 $O_0 =$ Value stored from previous clock cycle

www.fairchildsemi.com

Absolute Maximum Ratings(Note 2)

Storage Temperature	–65°C to +150°C
Ambient Temperature under Bias	–55°C to +125°C
Junction Temperature under Bias	–55°C to +150°C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 3)	-0.5V to +7.0V
Input Current (Note 3)	-30 mA to +5.0 mA
Voltage Applied to Any Output	
in the Disabled or	
Power-Off State	-0.5V to +5.5V
in the HIGH State	-0.5V to V _{CC}
Current Applied to Output	
in LOW State (Max)	Twice the rated I_{OL} (mA)
DC Latchup Source Current	–500 mA
Over Voltage Latchup (I/O)	10V

Recommended Operating Conditions

Free Air Ambient Temperature	-40°C to +85°C
Supply Voltage	+4.5V to +5.5V
Minimum Input Edge Rate ($\Delta V/\Delta t$)	
Data Input	50 mV/ns
Enable Input	20 mV/ns

74ABT573

Note 2: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 3: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter	Min	Тур	Max	Units	V _{cc}	Conditions
V _{IH}	Input HIGH Voltage	2.0			V		Recognized HIGH Signal
V _{IL}	Input LOW Voltage			0.8	V		Recognized LOW Signal
V _{CD}	Input Clamp Diode Voltage			-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage	2.5			V	Min	I _{OH} = -3 mA
		2.0			v	IVIIII	$I_{OH} = -32 \text{ mA}$
V _{OL}	Output LOW Voltage			0.55	V	Min	I _{OL} = 64 mA
I _{IH}	Input HIGH Current			1	μA	Max	V _{IN} = 2.7V (Note 5)
				1	μΑ	IVICIA	$V_{IN} = V_{CC}$
I _{BVI}	Input HIGH Current			7	μA	Max	V _{IN} = 7.0V
	Breakdown Test			1	μΑ	IVICIA	
I _{IL}	Input LOW Current			-1	μA	Max	V _{IN} = 0.5V (Note 5)
				-1	μΛ	IVIAA	$V_{IN} = 0.0V$
V _{ID}	Input Leakage Test	4.75			V	0.0	I _{ID} = 1.9 μA
							All Other Pins Grounded
I _{OZH}	Output Leakage Current			10	μA	0 – 5.5V	$V_{OUT} = 2.7V; \overline{OE} = 2.0V$
I _{OZL}	Output Leakage Current			-10	μA	0 – 5.5V	$V_{OUT} = 0.5V; \overline{OE} = 2.0V$
I _{OS}	Output Short-Circuit Current	-100		-275	mA	Max	$V_{OUT} = 0.0V$
I _{CEX}	Output HIGH Leakage Current			50	μA	Max	V _{OUT} = V _{CC}
I _{ZZ}	Bus Drainage Test			100	μA	0.0	$V_{OUT} = 5.5V$; All Others GND
I _{CCH}	Power Supply Current			50	μA	Max	All Outputs HIGH
I _{CCL}	Power Supply Current			30	mA	Max	All Outputs LOW
I _{CCZ}	Power Supply Current			50	μA	Max	$\overline{OE} = V_{CC}$
							All Others at V _{CC} or GND
ICCT	Additional I _{CC} /Input Outputs Enabled			2.5	mA		V _I = V _{CC} - 2.1V
	Outputs 3-STATE			2.5	mA	Max	Enable Input V _I = V _{CC} - 2.1V
	Outputs 3-STATE			2.5	mA		Data Input $V_I = V_{CC} - 2.1V$
							All Others at V _{CC} or GND
ICCD	Dynamic I _{CC} No Load				mA/	Max	Outputs Open
	(Note 5)			0.12	MHz		OE = GND, LE = V _{CC} (Note 4)
							One Bit Toggling, 50% Duty Cycl

Note 4: For 8 bits toggling, $I_{CCD} < 0.8 \mbox{ mA/MHz}.$

Note 5: Guaranteed but not tested.

www.fairchildsemi.com

74ABT573

DC Electrical Characteristics

Conditions Min Units v_{cc} Symbol Parameter Тур Max $\textbf{C}_{\textbf{L}}=\textbf{50}~\textbf{pF},~\textbf{R}_{\textbf{L}}=\textbf{500}\,\Omega$ $T_A = 25^{\circ}C$ (Note 6) Quiet Output Maximum Dynamic V_{OL} 0.7 1.0 V 5.0 V_{OLP} Quiet Output Minimum Dynamic VOL -1.5 -1.2 V 5.0 T_A = 25°C (Note 6) V_{OLV} Minimum HIGH Level Dynamic Output Voltage VOHV 2.5 3.0 V 5.0 $T_A = 25^{\circ}C$ (Note 7) $T_A = 25^{\circ}C \text{ (Note 8)}$ Minimum HIGH Level Dynamic Input Voltage 2.2 1.8 V_{IHD} V 5.0 5.0 T_A = 25°C (Note 8) Maximum LOW Level Dynamic Input Voltage 1.0 0.7 ٧ V_{ILD}

Note 6: Max number of outputs defined as (n). n – 1 data inputs are driven 0V to 3V. One output at LOW. Guaranteed, but not tested Note 7: Max number of outputs defined as (n). n – 1 data inputs are driven 0V to 3V. One output HIGH. Guaranteed, but not tested.

Note 8: Max number of data inputs (n) switching. n - 1 inputs switching 0V to 3V. Input-under-test switching: 3V to threshold (V_{ILD}), 0V to threshold (V_{ILD}).

Guaranteed, but not tested.

AC Electrical Characteristics

Symbol	Parameter		$T_{A} = +25 \degree C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CC} = 4.5V \text{ to } 5.5V$ $C_L = 50 \text{ pF}$	
		Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay	1.9	2.7	4.5	1.9	4.5	ns
t _{PHL}	D _n to O _n	1.9	2.8	4.5	1.9	4.5	
t _{PLH}	Propagation Delay	2.0	3.1	5.0	2.0	5.0	
t _{PHL}	LE to O _n	2.0	3.0	5.0	2.0	5.0	ns
t _{PZH}	Output Enable Time	1.5	3.1	5.3	1.5	5.3	20
t _{PZL}		1.5	3.1	5.3	1.5	5.3	ns
t _{PHZ}	Output Disable Time	2.0	3.6	5.4	2.0	5.4	
t _{PLZ}	Time	2.0	3.4	5.4	2.0	5.4	ns

AC Operating Requirements

(SOIC and SSOP Package)

Symbol	Parameter		$T_{A} = +25 ^{\circ}\text{C}$ $V_{CC} = +5.0\text{V}$ $C_{L} = 50 \text{pF}$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CC} = 4.5V \text{ to } 5.5V$ $C_L = 50 \text{ pF}$		Units
		Min	Тур	Max	Min	Max	
f _{TOGGLE}	Max Toggle Frequency		100				MHz
t _S (H)	Set Time, HIGH	1.5			1.5		ns
t _S (L)	or LOW D _n to LE	1.5			1.5		
t _H (H)	Hold Time, HIGH	1.0			1.0		
t _H (L)	or LOW D _n to LE	1.0			1.0		ns
t _W (H)	Pulse Width,	3.0			3.0		ns
	LE HIGH						

www.fairchildsemi.com

Extended AC Electrical Characteristics

Symbol	Parameter	V _{CC} = 4.5 C _L = 8 Outputs	$\label{eq:Constraint} \begin{array}{l} T_{A}=-40^{\circ}\text{C to }+85^{\circ}\text{C} \\ V_{CC}=4.5\text{V to }5.5\text{V} \\ C_{L}=50\ \text{pF} \\ 8\ \text{Outputs Switching} \\ (\text{Note 9}) \end{array}$		$T_{A} = -40^{\circ}$ C to +85°C V _{CC} = 4.5V to 5.5V C _L = 250 pF (Note 10)		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CC} = 4.5V \text{ to } 5.5V$ $C_L = 250 \text{ pF}$ 8 Outputs Switching (Note 11)	
		Min	Max	Min	Max	Min	Max	
t _{PLH}	Propagation Delay	1.5	5.2	2.0	6.8	2.0	9.0	ns
t _{PHL}	D _n to O _n	1.5	5.2	2.0	6.8	2.0	9.0	
t _{PLH}	Propagation Delay	1.5	5.5	2.0	7.5	2.0	9.5	
t _{PHL}	LE to On	1.5	5.5	2.0	7.5	2.0	9.5	ns
t _{PZH}	Output Enable Time	1.5	6.2	2.0	8.0	2.0	10.5	
t _{PZL}		1.5	6.2	2.0	8.0	2.0	10.5	ns
t _{PHZ}	Output Disable Time	1.0	5.5	(Note 12)		(Note 12)		
t _{PLZ}		1.0	5.5					ns

Note 9: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.).

Note 10: This specification is guaranteed but not tested. The limits represent propagation delay with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. This specification pertains to single output switching only.

Note 11: This specification is guaranteed but not tested. The limits represent propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.) with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load.

Note 12: The 3-STATE delay times are dominated by the RC network (500Ω, 250 pF) on the output and has been excluded from the datasheet.

Skew

(Note 13) (SOIC Package)

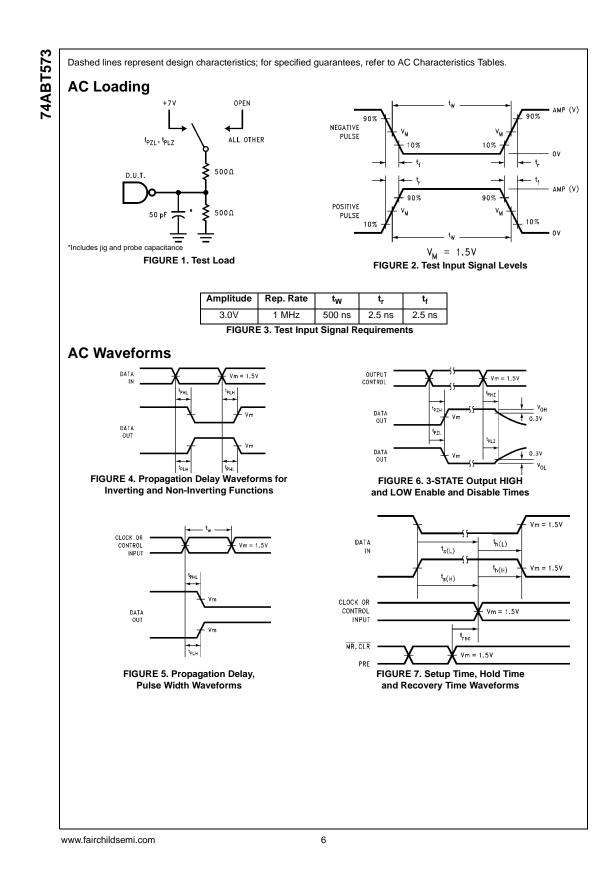
Symbol	Parameter	$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CC} = 4.5V \text{ to } 5.5V$ $C_{L} = 50 \text{ pF}$ 8 Outputs Switching (Note 13) Max	$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CC} = 4.5V \text{ to } 5.5V$ $C_{L} = 250 \text{ pF}$ 8 Outputs Switching (Note 14) Max	Units
t _{OSHL} (Note 15)	Pin to Pin Skew, HL Transitions	1.0	1.5	ns
t _{OSLH} (Note 15)	Pin to Pin Skew, LH Transitions	1.0	1.5	ns
t _{PS} (Note 16)	Duty Cycle, LH–HL Skew	1.4	3.5	ns
t _{OST} (Note 15)	Pin to Pin Skew, LH/HL Transitions	1.5	3.9	ns
t _{PV} (Note 17)	Device to Device Skew LH/HL Transitions	2.0	4.0	ns

Note 13: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.)

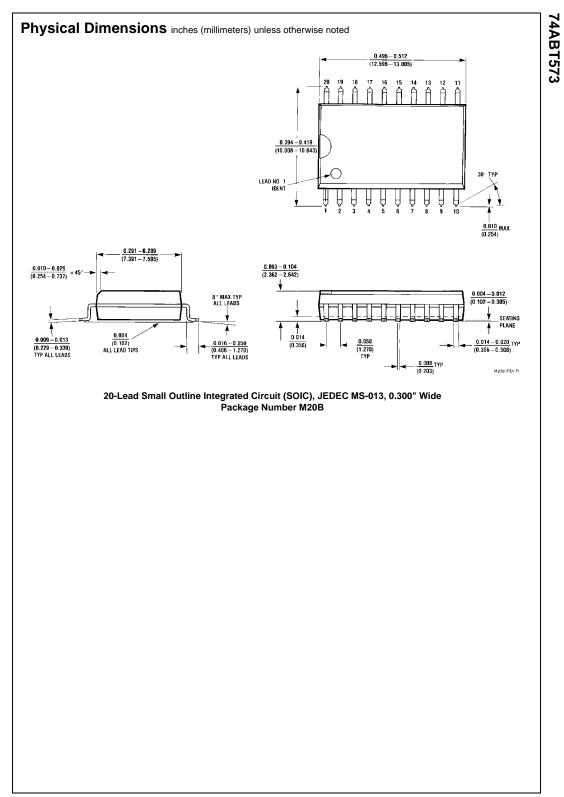
Note 14: This specification is guaranteed but not tested. The limits represent propagation delays with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load.

Note 15: Skew is defined as the absolute value of the difference between the actual propagation delays for any two separate outputs of the same device. The specification applies to any outputs switching HIGH-to-LOW (t_{OSHL}), LOW-to-HIGH (t_{OSLH}), or any combination switching LOW-to-HIGH and/or HIGH-to-LOW (t_{OST}). This specification is guaranteed but not tested.

Note 16: This describes the difference between the delay of the LOW-to-HIGH and the HIGH-to-LOW transition on the same pin. It is measured across all the outputs (drivers) on the same chip, the worst (largest delta) number is the guaranteed specification. This specification is guaranteed but not tested. Note 17: Propagation delay variation for a given set of conditions (i.e., temperature and V_{CC}) from device to device. This specification is guaranteed but not tested.

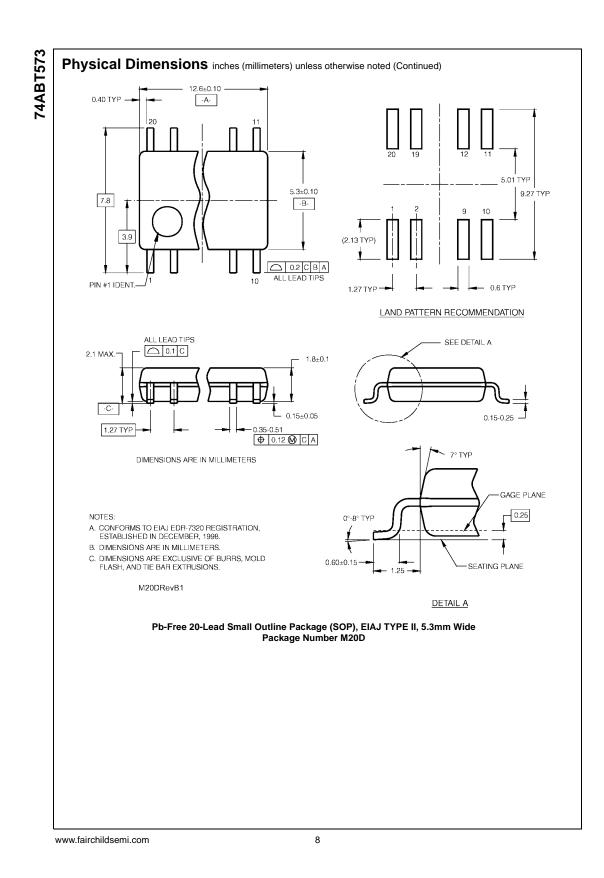

Capacitance

Symbol	Parameter	Тур	Units	Conditions (T _A = 25°C)
C _{IN}	Input Capacitance	5	pF	$V_{CC} = 0V$
C _{OUT} (Note 18)	Output Capacitance	9	pF	$V_{CC} = 5.0V$

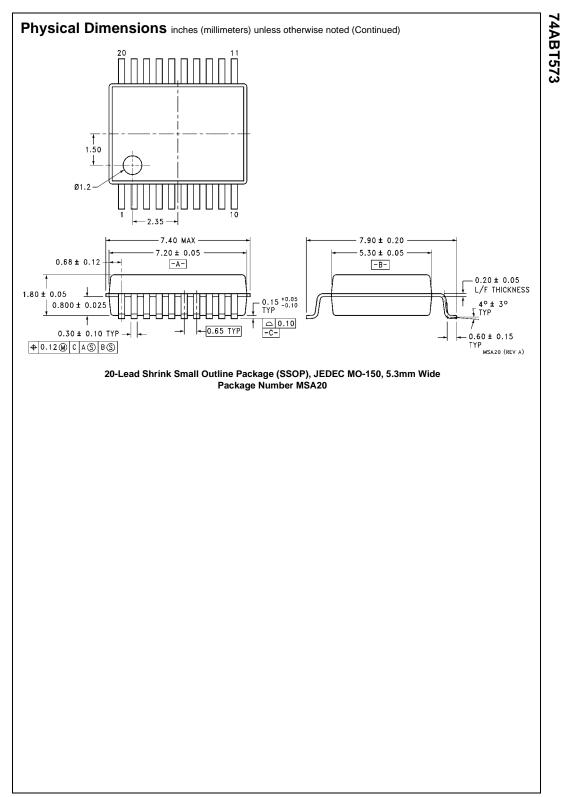

Note 18: C_{OUT} is measured at frequency f = 1 MHz per MIL-STD-883B, Method 3012.

www.fairchildsemi.com

74ABT573

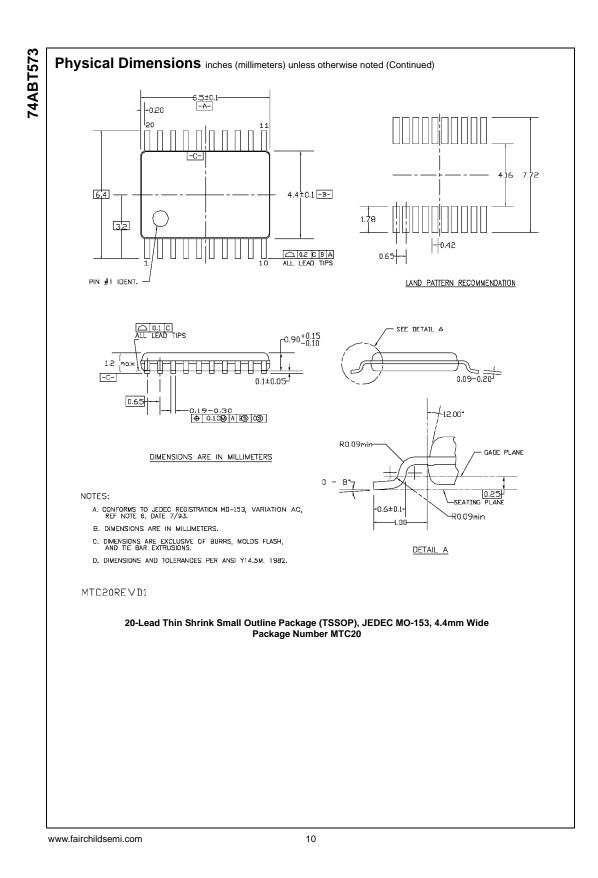


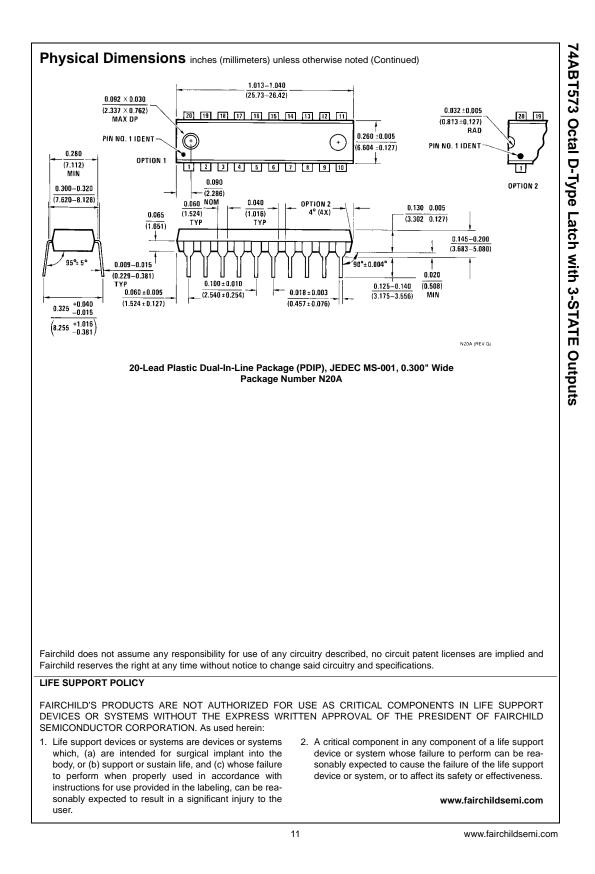
Downloaded from **Elcodis.com** electronic components distributor



www.fairchildsemi.com

7




Downloaded from Elcodis.com electronic components distributor

www.fairchildsemi.com

9

