

74ABT543A

Octal latched transceiver with dual enable (3-State)

Product specification
Supersedes data of 1995 Apr 19
IC23 Data Handbook

74ABT543A

FEATURES

- Combines 74ABT245 and 74ABT373 type functions in one device
- 8-bit octal transceiver with D-type latch
- Back-to-back registers for storage
- Separate controls for data flow in each direction
- Output capability: $+64 \mathrm{~mA} /-32 \mathrm{~mA}$
- Live insertion/extraction permitted
- Power-up 3-State
- Power-up reset
- Latch-up protection exceeds 500 mA per Jedec Std 17
- ESD protection exceeds 2000 V per MIL STD 883 Method 3015 and 200 V per Machine Model

DESCRIPTION

The 74ABT543A high-performance BiCMOS device combines low static and dynamic power dissipation with high speed and high output drive.

The 74ABT543A Octal Registered Transceiver contains two sets of D-type latches for temporary storage of data flowing in either direction. Separate Latch Enable (LEAB, $\overline{L E B A}$) and Output Enable (OEAB, OEBA) inputs are provided for each register to permit independent control of data transfer in either direction. The outputs are guaranteed to sink 64 mA .

FUNCTIONAL DESCRIPTION

The 74ABT543A contains two sets of eight D-type latches, with separate control pins for each set. Using data flow from A to B as an example, when the A-to-B Enable (EAB) input and the A-to-B Latch Enable (LEAB) input are Low the A-to-B path is transparent. A subsequent Low-to-High transition of the LEAB signal puts the A data into the latches where it is stored and the B outputs no longer change with the A inputs. With EAB and OEAB both Low, the 3 -State B output buffers are active and display the data present at the outputs of the A latches.

Control of data flow from B to A is similar, but using the EBA, LEBA, and OEBA inputs.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	$\begin{gathered} \text { CONDITIONS } \\ T_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \text { GND }=0 \mathrm{~V} \end{gathered}$	TYPICAL	UNIT
$\begin{aligned} & \text { tpLH } \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay An to Bn or Bn to An	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\begin{aligned} & 2.9 \\ & 3.6 \end{aligned}$	ns
$\mathrm{ClN}_{\text {IN }}$	Input capacitance	$\mathrm{V}_{1}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {cc }}$	4	pF
$\mathrm{Cl}_{1 / 0}$	I/O capacitance	Outputs disabled; $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ or V_{CC}	7	pF
ICCz	Total supply current	Outputs disabled; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	110	$\mu \mathrm{A}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
24-Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	74ABT543A N	74ABT543A N	SOT222-1
24-Pin plastic SO	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	74ABT543A D	74ABT543A D	SOT137-1
24-Pin Plastic SSOP Type II	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	74ABT543A DB	74ABT543A DB	SOT340-1
24-Pin Plastic TSSOP Type I	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	74ABT543A PW	7ABT543APW DH	SOT355-1

PIN CONFIGURATION

PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
14,1	LEAB / LEBA	A to B / B to A Latch Enable input (active-Low)
11,23	EAB / EBA	A to B / B to A Enable input (active-Low)
13,2	OEAB / OEBA	A to B / B to A Output Enable input (active-Low)
$3,4,5,6$, $7,8,9,10$	A0 - A7	Port A, 3-State outputs
$22,21,20,19$, $18,17,16,15$	B0 - B7	Port B, 3-State outputs
12	GND	Ground (0V)
24	VCC	Positive supply voltage

Octal latched transceiver with dual enable (3-State)

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS				OUTPUTS	
STATUS					
	EXX	LEXX	An or Bn	Bn or An	
H	X	X	X	Z	Disabled
X	H	X	X	Z	Disabled
L	\uparrow	L	h	Z	Disabled + Latch
L	\uparrow	L	I	Z	
L	L	\uparrow	h	H	Latch + Display
L	L	\uparrow	I	L	
L	L	L	H	H	Transparent
L	L	L	L	L	
L	L	H	X	NC	Hold

H = High voltage level
$h=$ High voltage level one set-up time prior to the Low-to-High transition of LEXX or EXX (XX $=A B$ or BA)
$\mathrm{L}=$ Low voltage level
। = Low voltage level one set-up time prior to the Low-to-High transition of LEXX or EXX (XX = AB or BA)
$X=$ Don't care
$\uparrow=$ Low-to-High transition of LEXX or EXX (XX = AB or BA)
NC= No change
$\mathrm{Z}=$ High impedance or "off" state

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
$\mathrm{V}_{\text {CC }}$	DC supply voltage		-0.5 to +7.0	
$\mathrm{I}_{\text {IK }}$	DC input diode current	$\mathrm{V}_{\mathrm{I}}<0$	-18	
$\mathrm{~V}_{\text {I }}$	DC input voltage ${ }^{3}$		V	
$\mathrm{I}_{\text {OK }}$	DC output diode current	$\mathrm{V}_{\mathrm{O}}<0$	-1.2 to +7.0	
$\mathrm{~V}_{\text {OUT }}$	DC output voltage ${ }^{3}$	output in Off or High state	-50	V
$\mathrm{I}_{\text {OUT }}$	DC output current	output in Low state	-0.5 to +5.5	
$\mathrm{~T}_{\text {Stg }}$	Storage temperature range		128	mA

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed $150^{\circ} \mathrm{C}$.
3. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS		UNIT
		Min	Max	
V_{CC}	DC supply voltage	4.5	5.5	V
$\mathrm{~V}_{\mathrm{I}}$	Input voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IH}	High-level input voltage	2.0		V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage		0.8	V
I_{OH}	High-level output current		-32	mA
I_{OL}	Low-level output current		64	mA
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input transition rise or fall rate	0	10	$\mathrm{~ns} / \mathrm{V}$
$\mathrm{T}_{\mathrm{amb}}$	Operating free-air temperature range	-40	+85	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS	LIMITS					UNIT	
			$\mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\mathrm{V}_{\text {IK }}$	Input clamp vo	tage		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{l}_{\mathrm{IK}}=-18 \mathrm{~mA}$		-0.9	-1.2		-1.2	V
V_{OH}	High-level output voltage			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}	2.5	3.2		2.5		V
			$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}	3.0	3.7		3.0		V	
			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IL }}$ or V_{IH}	2.0	2.3		2.0		V	
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or $\mathrm{V}_{\text {IH }}$		0.3	0.55		0.55	V	
$\mathrm{V}_{\text {RST }}$	Power-up output low voltage ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA} ; \mathrm{VI}=\mathrm{GND}$ or V_{CC}		0.13	. 55		. 55	V	
1	Input leakage current	Control pins	$\mathrm{V}_{C C}=5.5 \mathrm{~V} ; \mathrm{V}_{1}=$ GND or 5.5 V		± 0.01	± 1.0		± 1.0	$\mu \mathrm{A}$	
		Data pins	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or 5.5 V		± 5	± 100		± 100	$\mu \mathrm{A}$	
IOFF	Power-off leakage current		$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}$ or $\mathrm{V}_{1} \leq 4.5 \mathrm{~V}$		± 5.0	± 100		± 100	$\mu \mathrm{A}$	
IPU/PD	Power-up/down 3-State output current ${ }^{4}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.1 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{OE}}=\text { Don't care } \end{aligned}$		± 5.0	± 50		± 50	$\mu \mathrm{A}$	
$\mathrm{I}_{\mathrm{IH}}+\mathrm{I}_{\text {OZH }}$	3-State output High current		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}		5.0	50		50	$\mu \mathrm{A}$	
$\mathrm{I}_{\text {IL }}+\mathrm{I}_{\text {OZL }}$	3-State output Low current		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IL }}$ or V_{IH}		-5.0	-50		-50	$\mu \mathrm{A}$	
$I_{\text {CEX }}$	Output high leakage current		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}		5.0	50		50	$\mu \mathrm{A}$	
10	Output current ${ }^{1}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-40	-65	-180	-40	-180	mA	
$\mathrm{I}_{\mathrm{CCH}}$	Quiescent supply current		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; Outputs High, $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}		110	250		250	$\mu \mathrm{A}$	
ICCL			$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; Outputs Low, $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}		20	30		30	mA	
Iccz			$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; Outputs 3-State; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}}$		110	250		250	$\mu \mathrm{A}$	
$\Delta_{\text {cc }}$	Additional supply current per input pin ${ }^{2}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; one input at 3.4 V , other inputs at V_{CC} or GND ; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$		0.3	1.5		1.5	mA	

NOTES:

1. Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
2. This is the increase in supply current for each input at 3.4 V .
3. For valid test results, data must not be loaded into the flip-flops (or latches) after applying the power.
4. This parameter is valid for any $\mathrm{V}_{C C}$ between 0 V and 2.1 V , with a transition time of up to 10 msec . From $\mathrm{V}_{C C}=2.1 \mathrm{~V}$ to $\mathrm{V}_{C C}=5 \mathrm{~V} \pm 10 \%$, a transition time of up to $100 \mu \mathrm{sec}$ is permitted.

AC CHARACTERISTICS

$\mathrm{GND}=0 \mathrm{~V}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$

SYMBOL	PARAMETER	WAVEFORM	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40 \text { to } \\ +85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \text { tpLH } \\ & t_{\text {tPHL }} \end{aligned}$	Propagation delay An to Bn, Bn to An	2	$\begin{aligned} & 1.0 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 5.7 \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & t_{\text {PHLL }} \end{aligned}$	Propagation delay LEBA to An, LEAB to Bn	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 6.2 \\ & 6.7 \end{aligned}$	ns
$\begin{aligned} & \text { tpzH } \\ & \text { tpZL } \end{aligned}$	Output enable time OEBA to An, OEAB to Bn	$\begin{aligned} & 4 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.2 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.2 \\ & 6.6 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \text { tpHz } \\ & \text { tpLZ } \end{aligned}$	Output disable time OEBA to An, OEAB to Bn	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 4.6 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 6.2 \\ & 5.0 \end{aligned}$	ns
$\begin{aligned} & \text { tpZH } \\ & \text { tpzZ } \end{aligned}$	Output enable time EBA to An, EAB to Bn	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 6.1 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.2 \\ & 6.8 \end{aligned}$	ns
$\begin{aligned} & \text { tphz } \\ & \text { tpLZ } \\ & \hline \end{aligned}$	Output disable time EBA to An, EAB to Bn	$\begin{aligned} & 4 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 3.6 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 4.6 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 5.9 \\ & 5.0 \end{aligned}$	ns

AC SETUP REQUIREMENTS
$G N D=0 V, t_{R}=t_{F}=2.5 n s, C_{L}=50 p F, R_{L}=500 \Omega$

SYMBOL	PARAMETER	WAVEFORM	LIMITS			UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{amb}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}} & =+5.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40 \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{gathered}$	
			Min	Typ	Min	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time An to LEAB, Bn to LEBA	3	$\begin{aligned} & \hline 2.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{th}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold time An to LEAB, Bn to LEBA	3	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \hline-0.8 \\ & -0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup time An to $\overline{E A B}, B n$ to $\overline{E B A}$	3	$\begin{aligned} & 3.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.0 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{th}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold time An to EAB, Bn to EBA	3	$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} -0.8 \\ -0.6 \\ \hline \end{array}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	Latch enable pulse width, Low	3	3.5	1.0	3.5	ns

AC WAVEFORMS

Waveform 1. Propagation Delay For Inverting Output

Waveform 2. Propagation Delay For Non-Inverting Output

Octal latched transceiver with dual enable (3-State)

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$, the shaded areas indicate when the input is permitted to change for predictable output performance.

SA00174
Waveform 3. Data Setup and Hold Times And Latch Enable Pulse Width

Waveform 4. 3-State Output Enable Time to High Level and Output Disable Time from High Level

TEST CIRCUIT AND WAVEFORM

TEST	$\mathbf{S 1}$
t_{pd}	open
$\mathrm{t}_{\mathrm{PLZ}} \mathrm{t}_{\mathrm{PZL}}$	7 V
$\mathrm{t}_{\mathrm{PHZ}} / \mathrm{t}_{\mathrm{PZH}}$	open

DEFINITIONS

$C_{L}=\quad$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.

Waveform 5. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

Octal latched transceiver with dual enable (3-State)

DIMENSIONS (millimetre dimensions are derived from the original inch dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$ $\mathbf{m i n}$.	$\mathbf{A}_{\mathbf{2}}$ max.	\mathbf{b}	$\mathbf{b}_{\mathbf{1}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(1)}$	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	\mathbf{L}	$\mathbf{M}_{\mathbf{E}}$	$\mathbf{M}_{\mathbf{H}}$	\mathbf{w}
mm	4.70	0.38	3.94	1.63 1.14	0.56 $\mathbf{m a x}$									
inches	0.43	0.36 0.25	31.9 31.5	6.73 6.48	2.54	7.62	3.51 3.05	8.13 7.62	10.03 7.62	0.25	2.05			
0	0.015	0.155	0.064 0.045	0.022 0.017	0.014 0.010	1.256 1.240	0.265 0.255	0.100	0.300	0.138 0.120	0.32 0.30	0.395 0.300	0.01	0.081

Note

1. Plastic or metal protrusions of 0.01 inches maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT222-1		MS-001AF		\square (95-03-11

Octal latched transceiver with dual enable (3-State)

74ABT543A

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \text { max. } \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$z^{(1)}$	θ
mm	2.65	$\begin{aligned} & 0.30 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 15.6 \\ & 15.2 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$	1.27	$\begin{aligned} & 10.65 \\ & 10.00 \end{aligned}$	1.4	$\begin{aligned} & 1.1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$	0.25	0.25	0.1	0.9 0.4	$\begin{aligned} & 8^{0} \\ & 0^{\circ} \end{aligned}$
inches	0.10	$\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.61 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$	0.050	$\begin{aligned} & 0.419 \\ & 0.394 \end{aligned}$	0.055	$\begin{aligned} & 0.043 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.043 \\ & 0.039 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN
	ISSUE DATE				
SOT137-1	IEC	JEDEC	EIAJ		

Octal latched transceiver with dual enable (3-State)

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(1)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(1)}$	$\boldsymbol{\theta}$
mm	2.0	0.21	1.80	0.25	0.38	0.20	8.4	5.4	0.65	7.9	1.25	1.03	0.9	0.2	0.13	0.1	0.8	8°
		0.05	1.65	0.2	0.25	0.09	8.0	5.2	0.65	7.6	1.25	0.63	0.7		0.4	0°		

Note

1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT340-1		MO-150AG		-	$\begin{aligned} & 93-09-08 \\ & 95-02-04 \end{aligned}$

Octal latched transceiver with dual enable (3-State)

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(2)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(1)}$	$\boldsymbol{\theta}$
mm	1.10	0.15	0.95	0.25	0.30	0.2	7.9	4.5	0.65	6.6	1.0	0.75	0.4	0.2	0.13	0.1	0.5	8°
	0.05	0.80	0.2	0.19	0.1	7.7	4.3	0.6	6.2	1.2	0.50	0.3	0.2	0°				

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT355-1		MO-153AD		\square ($\begin{aligned} & -93-06-16 \\ & 95-02-04 \end{aligned}$

Octal latched transceiver with dual enable (3-State)

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support - These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors

811 East Arques Avenue

P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381

PHILIPS

