DATA SHEET

74ABT16952
 16-bit registered transceiver (3-State)

FEATURES

- Two 8-bit registered transceivers
- Live insertion/extraction permitted
- Power-up 3-State
- Power-up reset
- Multiple V_{CC} and GND pins minimize switching noise
- Independent registers for A and B buses
- Output capability: +64 mA/-32 mA
- Latch-up protection exceeds 500 mA per Jedec Std 17
- ESD protection exceeds 2000 V per MIL STD 883 Method 3015 and 200 V per Machine Model
- Bus-hold data inputs eliminate the need for external pull-up resistors to hold unused inputs

DESCRIPTION

The 74ABT16952 high-performance BiCMOS device combines low static and dynamic power dissipation with high speed and high output drive.

The 74ABT16952 is a dual octal registered transceiver. Two 8-bit registers store data flowing in both directions between two bidirectional buses. Data applied to the inputs is entered and stored on the rising edge of the Clock (nCPXX) provided that the Clock Enable ($n \overline{C E X X}$) is LOW. The data is then present at the 3-State output buffers, but is only accessible when the Output Enable ($n \overline{O E X X}$) is LOW. Data flow from A inputs to B outputs is the same as for B inputs to A outputs.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{GND}=0 \mathrm{~V}$	TYPICAL	UNIT
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay nCPBA to nAx or $n C P A B$ to $n B x$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\begin{aligned} & 2.8 \\ & 2.3 \end{aligned}$	ns
$\mathrm{C}_{\text {IN }}$	Input capacitance	$\mathrm{V}_{1}=0 \mathrm{~V}$ or V_{CC}	4	pF
$\mathrm{Cl}_{1 / \mathrm{O}}$	I/O capacitance	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ or V_{CC}; 3-State	7	pF
$\mathrm{I}_{\text {ccz }}$	Quiescent supply current	Outputs disabled; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	500	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CCL }}$		Outputs LOW; $\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$	8	mA

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE	DWG NUMBER
56 -Pin Plastic SSOP Type III	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$74 \mathrm{ABT16952DL}$	SOT371-1
56-Pin Plastic TSSOP Type II	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$74 \mathrm{ABT16952DGG}$	SOT364-1

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
$\begin{gathered} \hline 2,55 \\ 18,22 \end{gathered}$	$\begin{aligned} & \hline \text { 1CPAB / 1CPBA } \\ & \text { 2CPAB / 2CPBA } \end{aligned}$	Clock input A-to-B / Clock input B-to-A
$\begin{aligned} & \hline 3,54, \\ & 26,31 \end{aligned}$	$\begin{aligned} & \text { 1CEAB / 1CEBA } \\ & \text { 2पЕAB / 2CEBA } \end{aligned}$	Clock enable input A-to-B / Clock enable input B-to-A
$\begin{aligned} & 52,51,49,48,47,45,44,43 \\ & 42,41,40,38,37,36,34,33 \end{aligned}$	$\begin{aligned} & 1 \mathrm{AO}-1 \mathrm{~A} 7 \\ & 2 \mathrm{~A} 0-2 \mathrm{~A} 7 \\ & \hline \end{aligned}$	Data inputs/outputs (A side)
$\begin{aligned} & 1,56 \\ & 8,29 \end{aligned}$	$\begin{aligned} & 1 \mathrm{BO} 0-1 \mathrm{B7} \\ & 2 \mathrm{BO} 0-2 \mathrm{~B} 7 \end{aligned}$	Data inputs/outputs (B side)
4, 11, 18, 25, 32, 39, 45, 53	$\begin{aligned} & 1 \overline{O E A B} / 1 \overline{O E B A} \\ & 2 \overline{O E A B} / 2 \overline{O E B A} \end{aligned}$	Output enable inputs
4, 17, 30, 43	GND	Ground (0 V)
7, 22, 35, 50	V_{CC}	Positive supply voltage

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE for Register nAx or nBx

INPUTS			INTERNAL	OPERATING
QODE				
nAx or nBx	nCPXX	nCEXX	MODE	
X	X	H	NC	Hold data
L	\uparrow	L	L	Load data
H	\uparrow	L	H	

[^0]FUNCTION TABLE for Output Enable

INPUTS	INTERNAL Q	nAx or nBx OUTPUTS	OPERATING MODE
nOEXX		Z	Disable outputs
H	L	L	Enable outputs
L	H	H	
L			

[^1]
LOGIC DIAGRAM

16-bit registered transceiver (3-State)

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
$\mathrm{V}_{\text {CC }}$	DC supply voltage		-0.5 to +7.0	V
I_{IK}	DC input diode current	$\mathrm{V}_{\mathrm{I}}<0$	-18	mA
$\mathrm{~V}_{\mathrm{I}}$	DC input voltage ${ }^{3}$		-1.2 to +7.0	V
I_{OK}	DC output diode current	$\mathrm{V}_{\mathrm{O}}<0$	-50	mA
$\mathrm{~V}_{\text {OUT }}$	DC output voltage ${ }^{3}$	Output in Off or HIGH state	-0.5 to +5.5	V
$\mathrm{I}_{\text {OUT }}$	DC output current	Output in LOW state	128	mA
		Output in HIGH state	-64	
	Storage temperature range		-65 to +150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed $150^{\circ} \mathrm{C}$.
3. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMBOL PARAMETER		LIMITS		UNIT
		MIN	MAX	
V_{CC}	DC supply voltage	4.5	5.5	V
$\mathrm{~V}_{\mathrm{I}}$	Input voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IH}	HIGH-level input voltage	2.0	-	V
V_{IL}	LOW-level Input voltage	-	0.8	V
I_{OH}	HIGH-level output current	-	-32	mA
I_{OL}	LOW-level output current	-	64	mA
$\Delta t / \Delta \mathrm{V}$	Input transition rise or fall rate	0	10	$\mathrm{~ns} / \mathrm{V}$
$\mathrm{T}_{\mathrm{amb}}$	Operating free-air temperature range	-40	+85	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS	LIMITS					UNIT	
			$\mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \end{gathered}$						
			MIN	TYP	MAX	MIN	MAX			
V_{IK}	Input clamp vo			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{K}}=-18 \mathrm{~mA}$		-0.9	-1.2		-1.2	V
V_{OH}	HIGH-level output voltage			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}	2.5	2.9		2.5		V
			$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}	3.0	3.4		3.0		V	
			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$; $\mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}	2.0	2.4		2.0		V	
$\mathrm{V}_{\text {OL }}$	LOW-level output voltage		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IL }}$ or V_{IH}		0.42	0.55		0.55	V	
$\mathrm{V}_{\mathrm{RST}}$	Power-up output low voltage ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; $\mathrm{IOL}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}		0.13	0.55		0.55	V	
1	Input leakage current	Control pins	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or 5.5 V		± 0.01	± 1.0		± 1.0	$\mu \mathrm{A}$	
IOFF	Power-off leakage current		$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}$ or $\mathrm{V}_{1} \leq 4.5 \mathrm{~V}$		± 5.0	± 100		± 100	$\mu \mathrm{A}$	
IPU/PD	Power-up/down 3-State output current ${ }^{4}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.1 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{OE}}=\text { Don't care } \end{aligned}$		± 5.0	± 50		± 50	$\mu \mathrm{A}$	
$\mathrm{I}_{\text {IH }}+\mathrm{I}_{\text {OZH }}$	3-State output HIGH current		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$		5.0	50		50	$\mu \mathrm{A}$	
$\mathrm{I}_{\text {IL }}+\mathrm{I}_{\text {OZL }}$	3-State output LOW current		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$		-5.0	-50		-50	$\mu \mathrm{A}$	
$I_{\text {CEX }}$	Output HIGH leakage current		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{cc}		5.0	50		50	$\mu \mathrm{A}$	
10	Output current ${ }^{1}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-50	-70	-180	-50	-180	mA	
ICCH	Quiescent supply current		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; Outputs HIGH, $V_{1}=G N D \text { or } V_{C C}$		0.5	1.5		1.5	mA	
$\mathrm{I}_{\text {CCL }}$			$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; Outputs LOW, $\mathrm{V}_{1}=$ GND or V_{CC}		8	19		19	mA	
Iccz			$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; Outputs 3-State; $V_{1}=G N D$ or $V_{C C}$		0.5	1.5		1.5	mA	
$\Delta_{\text {l }} \mathrm{Cc}$	Additional supply current per input pin ${ }^{2}$		$\mathrm{V}_{C C}=5.5 \mathrm{~V}$; one input at 3.4 V , other inputs at V_{CC} or GND		5	100		100	$\mu \mathrm{A}$	

NOTES:

1. Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
2. This is the increase in supply current for each input at 3.4 V .
3. For valid test results, data must not be loaded into the flip-flops (or latches) after applying the power.
4. This parameter is valid for any V_{CC} between 0 V and 2.1 V with a transition time of up to 10 msec . From $\mathrm{V}_{\mathrm{CC}}=2.1 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \mathrm{a}$ transition time of up to $100 \mu \mathrm{sec}$ is permitted.
5. Unused pins at V_{CC} or GND.

AC CHARACTERISTICS

$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$

SYMBOL	PARAMETER	WAVEFORM	LIMITS					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{amb}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	1	150			150		MHz
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay nCPBA to $n A x$, nCPAB to $n B x$	1	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 2.8 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 3.9 \\ & 3.9 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 4.3 \\ & 4.3 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{pZH}} \\ & \mathrm{t}_{\text {PZLL }} \end{aligned}$	Output enable time nOEBA to $n A x, n \overline{O E A B}$ to $n B x$	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 3.8 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.6 \\ & 4.6 \end{aligned}$	ns
$\begin{aligned} & \text { tpHz } \\ & \text { tpLZ } \end{aligned}$	Output disable time nOEBA to $n A x, n$ neAB to $n B x$	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.3 \end{aligned}$	$\begin{aligned} & \hline 3.4 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 3.9 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 4.2 \end{aligned}$	ns

AC SET-UP REQUIREMENTS

SYMBOL	PARAMETER	WAVEFORM	LIMITS			UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{amb}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{gathered}$	
			MIN	TYP	MIN	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Set-up time $n A x$ to $n C P A B$ or $n B x$ to nCPBA	2	$\begin{aligned} & 1.2 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{th}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time nAx to nCPAB or nBx to nCPBA	2	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & \hline-1.2 \\ & -0.9 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Set-up time $n C E A B$ to $n C P A B$, $n \overline{C E B A}$ to $n C P B A$	2	$\begin{aligned} & 1.2 \\ & 1.6 \end{aligned}$	$\begin{aligned} & \hline 0.9 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.6 \end{aligned}$	ns
$\begin{aligned} & \hline t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time $n \overline{C E A B}$ to $n C P A B$, $n \overline{C E B A}$ to $n C P B A$	2	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	$\begin{array}{r} \hline-1.1 \\ -0.9 \end{array}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{w}(\mathrm{~L}) \end{aligned}$	nCPAB or nCPBA pulse width, HIGH or LOW	1	$\begin{aligned} & 3.3 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 2.5 \end{aligned}$	ns

AC WAVEFORMS

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{GND}$ to 3.0 V

Waveform 1. Propagation Delay, Clock Input to Output, Clock Pulse Width, and Maximum Clock Frequency

Waveform 2. Data Set-up and Hold Times

Waveform 3. 3-State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 4. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

TEST CIRCUIT AND WAVEFORMS

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(1)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(1)}$
mm	2.8	0.4	2.35	0.25	0.3	0.22	18.55	7.6	0.635	10.4	1.4	1.0	1.2	0.25	0.18	0.1	0.85

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

| OUTLINE
 VERSION | REFERENCES | | | EUROPEAN
 PROJECTION | ISSUE DATE |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | IEC | JEDEC | EIAJ | | |
| SOT371-1 | | MO-118 | | | $-95-02-04$ |

detail X

DIMENSIONS (mm are the original dimensions).

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(2)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	\mathbf{Z}
mm	1.2	0.15	1.05	0.25	0.28 0.17	0.2 0.1	14.1 13.9	6.2 6.0	0.5	8.3 7.9	1.0	0.8 0.4	0.50 0.35	0.25	0.08	0.1	0.5
0.1	8^{0}																
0.0																	

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT364-1		MO-153		\square	$\begin{aligned} & -95-02-10 \\ & 99-12-27 \end{aligned}$

Data sheet status

Data sheet status ${ }^{[1]}$	Product status ${ }^{[2]}$	Definitions
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

[1] Please consult the most recently issued data sheet before initiating or completing a design.
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support - These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information please visit
http://www.semiconductors.philips.com. Fax: +31 402724825
© Koninklijke Philips Electronics N.V. 2002
All rights reserved. Printed in U.S.A.

For sales offices addresses send e-mail to:
sales.addresses@www.semiconductors.philips.com.

[^0]: H = HIGH voltage level
 L = LOW voltage level
 $\uparrow=$ LOW-to-HIGH transition
 $\mathrm{X}=$ Don't care
 $X X=A B$ or $B A$
 $\mathrm{NC}=$ No change

[^1]: $\mathrm{H}=\mathrm{HIGH}$ voltage level
 L = LOW voltage level
 $X=$ Don't care
 $X X=A B$ or $B A$
 $Z=$ High impedance "off" state

