DATA SHEET

74ABT162827A

 20-bit buffer/line driver, non-inverting, with 30Ω termination resistors (3-State)Product data

PHILIPS

FEATURES

- Multiple V_{CC} and GND pins minimize switching noise
- Live insertion/extraction permitted
- 3-State output buffers
- Power-up 3-State
- Output capability: +64 mA/-32 mA
- Latch-up protection exceeds 500 mA per Jedec Std 17
- ESD protection exceeds 2000 V per MIL STD 883 Method 3015 and 200 V per Machine Model

DESCRIPTION

The 74ABT162827A high-performance BiCMOS device combines low static and dynamic power dissipation with high speed and high output drive.

The 74ABT162827A 20-bit buffers provide high performance bus interface buffering for wide data/address paths or buses carrying parity. They have NOR Output Enables ($\mathrm{nOE} 1, \mathrm{nOE} 2$) for maximum control flexibility.

The 74ABT162827A is designed with 30Ω series resistance in both the pull-up and pull-down output structures. This design reduces line noise in applications such as memory address drivers, clock drivers and bus receivers/transmitters.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{GND}=0 \mathrm{~V}$	TYPICAL	UNIT
$\begin{aligned} & \hline \text { tPLH } \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay nAx to nYx	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\begin{aligned} & 1.8 \\ & 1.9 \end{aligned}$	ns
$\mathrm{C}_{\text {IN }}$	Input capacitance	$\mathrm{V}_{1}=0 \mathrm{~V}$ or V_{CC}	4	pF
COUT	Output capacitance	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {CC }} ; 3$-State	6	pF
ICCz	Quiescent supply current	Outputs disabled; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	500	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CCL }}$		Outputs LOW; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	9	mA

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE	DWG NUMBER
56-Pin Plastic SSOP Type III	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$74 \mathrm{ABT162827ADL}$	SOT371-1
56-Pin Plastic TSSOP Type II	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	74 ABT 162827 ADGG	SOT364-1

PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
$\begin{aligned} & 55,54,52,51,49,48,47,45,44,43, \\ & 42,41,40,38,37,36,34,33,31,30 \end{aligned}$	$\begin{aligned} & \hline \text { 1A0 - 1A9 } \\ & 2 \mathrm{AO}-2 \mathrm{~A} 9 \end{aligned}$	Data inputs
$\begin{gathered} 2,3,5,6,8,9,10,12,13,14 \\ 15,16,17,19,20,21,23,24,26,27 \end{gathered}$	$\begin{aligned} & \hline \text { 1YO-1Y9 } \\ & 2 \mathrm{YO}-2 \mathrm{Y} 9 \end{aligned}$	Data outputs
$\begin{aligned} & 1,56, \\ & 28,29 \end{aligned}$	$\begin{aligned} & 1 \overline{\mathrm{OE}}, 1 \overline{\mathrm{OE}} 1 \\ & 2 \overline{\mathrm{OE}}, 2 \mathrm{OE} 1 \end{aligned}$	Output enable inputs (Active-LOW)
4, 11, 18, 25, 32, 39, 46, 53	GND	Ground (0 V)
7, 22, 35, 50	V_{CC}	Positive supply voltage

20-bit buffer/line driver, non-inverting, with 30Ω termination resistors (3-State)

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE

INPUTS		OUTPUTS	OPERATING MODE
$\mathbf{n O E x}$	$\mathbf{n A x}$	$\mathbf{n Y x}$	
L	L	L	Transparent
L	H	H	Transparent
H	X	Z	High impedance

[^0]20-bit buffer/line driver, non-inverting, with 30Ω termination resistors (3-State)

SCHEMATIC OF Y OUTPUTS

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V_{CC}	DC supply voltage		-0.5 to +7.0	V
I_{IK}	DC input diode current	$\mathrm{V}_{\mathrm{I}}<0 \mathrm{~V}$	-18	mA
$\mathrm{~V}_{\mathrm{I}}$	DC input voltage ${ }^{3}$		-1.2 to +7.0	V
$\mathrm{I}_{\text {OK }}$	DC output diode current	$\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}$	-50	mA
$\mathrm{~V}_{\text {OUT }}$	DC output voltage ${ }^{3}$	Output in Off or HIGH state	-0.5 to +5.5	V
$\mathrm{I}_{\text {OUT }}$	DC output current	Output in LOW state	128	mA
		Output in HIGH state	-64	mA

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed $150^{\circ} \mathrm{C}$.
3. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

20-bit buffer/line driver, non-inverting, with 30Ω termination resistors (3-State)

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS		UNIT
		MIN	MAX	
V_{CC}	DC supply voltage	4.5	5.5	V
V_{1}	Input voltage	0	V_{CC}	V
V_{IH}	HIGH-level input voltage	2.0	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level Input voltage	-	0.8	V
$\mathrm{IOH}^{\text {O }}$	HIGH-level output current	-	-32	mA
I_{OL}	LOW-level output current	-	12	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	0	10	ns/V
$\mathrm{T}_{\mathrm{amb}}$	Operating free-air temperature range	-40	+85	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	
V_{IK}	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{IK}}=-18 \mathrm{~mA}$		-0.9	-1.2		-1.2	V
V_{OH}	HIGH-level output voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}	2.5	3.1		2.5		V
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IL }}$ or V_{IH}	3.0	3.6		3.0		V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$	2.0	2.7		2.0		V
$\mathrm{V}_{\text {OL }}$	LOW-level output voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IN}			0.65		0.65	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$			0.80		0.80	V
1	Input leakage current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or 5.5 V		± 0.01	± 1.0		± 1.0	$\mu \mathrm{A}$
IOFF	Power-off leakage current	$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or 5.5 V		± 5.0	± 100		± 100	$\mu \mathrm{A}$
Ipu/lpd	Power-up/down 3-State output current ${ }^{3}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.1 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{OE}}=\text { Don't care } \end{aligned}$		± 5.0	± 50		± 50	$\mu \mathrm{A}$
IOZH	3-State output High current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}		1.0	10		10	$\mu \mathrm{A}$
Iozl	3-State output Low current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} ; \mathrm{V}_{\text {I }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$		-1.0	-10		-10	$\mu \mathrm{A}$
$I_{\text {CEX }}$	Output High leakage current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}		1.0	50		50	$\mu \mathrm{A}$
10	Output current ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-50	-70	-180	-50	-180	mA
$\mathrm{I}_{\mathrm{CCH}}$	Quiescent supply current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; Outputs HIGH, $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}		0.5	1		1	mA
$\mathrm{I}_{\text {CCL }}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; Outputs LOW, $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}		9	19		19	mA
ICCz		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; Outputs 3-State; $\mathrm{V}_{\mathrm{I}}=$ GND or $\mathrm{V}_{\text {CC }}$		0.5	1		1	mA
$\Delta_{\text {l }} \mathrm{C}$	Additional supply current per input pin ${ }^{2}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; one input at 3.4 V , other inputs at V_{CC} or GND		0.2	1		1	mA

NOTES:

1. Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
2. This is the increase in supply current for each input at 3.4 V .
3. This parameter is valid for any V_{Cc} between 0 V and 2.1 V with a transition time of up to 10 msec . From $\mathrm{V}_{\mathrm{CC}}=2.1 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ a transition time of up to $100 \mu \mathrm{sec}$ is permitted.

20-bit buffer/line driver, non-inverting, with 30Ω termination resistors (3-State)

AC CHARACTERISTICS
$\mathrm{GND}=0 \mathrm{~V}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$

SYMBOL	PARAMETER	WAVEFORM	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40{ }^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay nAx to nYx	1	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 2.9 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\text {PZH }} \\ & \mathrm{t}_{\text {PZL }} \end{aligned}$	Output enable time to High and Low level	2	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 4.9 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 5.2 \\ & 6.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{pHz}} \\ & \mathrm{t}_{\mathrm{pLZ}} \end{aligned}$	Output disable time from High and Low level	2	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 4.3 \end{aligned}$	ns

AC WAVEFORMS

Waveform 1. Input (nAx) to Output (nYx) Propagation Delays

Waveform 2. 3-State Output Enable and Disable Times

TEST CIRCUIT AND WAVEFORM

20-bit buffer/line driver, non-inverting, with 30Ω termination resistors (3-State)

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(1)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(1)}$	θ
mm	2.8	0.4	2.35	0.25	0.3	0.22	18.55	7.6	0.635	10.4	1.4	1.0	1.2	0.25	0.18	0.1	0.85	8^{0}
0.2	2.20	0.2	0.13	18.30	7.4	0.635	10.1	1.4	0.6	1.0	0.25	0^{0}						

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN	ISSUE DATE
	PROJECTION	EIAJ			
SOT371-1		JEDEC	MO-118		

20-bit buffer/line driver, non-inverting, with 30Ω termination resistors (3-State)

detail X

DIMENSIONS (mm are the original dimensions).

UNIT	$\underset{\text { max. }}{\mathrm{A}}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(2)}$	e	H_{E}	L	L_{p}	Q	v	w	y	Z	θ
mm	1.2	$\begin{aligned} & 0.15 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 1.05 \\ & 0.85 \end{aligned}$	0.25	$\begin{aligned} & 0.28 \\ & 0.17 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 14.1 \\ & 13.9 \end{aligned}$	$\begin{aligned} & 6.2 \\ & 6.0 \end{aligned}$	0.5	$\begin{aligned} & 8.3 \\ & 7.9 \end{aligned}$	1.0	$\begin{aligned} & 0.8 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.35 \end{aligned}$	0.25	0.08	0.1	0.5 0.1	8^{0} 0°

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

Data sheet status

Data sheet status ${ }^{[1]}$	Product status ${ }^{[2]}$	Definitions
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

[1] Please consult the most recently issued data sheet before initiating or completing a design.
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support - These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information please visit
http://www.semiconductors.philips.com. Fax: +31 402724825
© Koninklijke Philips Electronics N.V. 2002
All rights reserved. Printed in U.S.A.

For sales offices addresses send e-mail to:
sales.addresses@www.semiconductors.philips.com.

[^0]: $X=$ Don't care
 Z = High impedance "off" state
 $\mathrm{H}=\mathrm{HIGH}$ voltage level
 L = LOW voltage level

