

Functional Description

INPUTS

Data Inputs $\left(D_{0}-D_{8}\right)$

Data inputs for 9 －bit wide data are TTL－compatible．Word width can be reduced by trying unused inputs to ground and leaving the corresponding outputs open．

Reset（ $\overline{\mathrm{MR}}$ ）

Reset is accomplished by pulsing the $\overline{\mathrm{MR}}$ input LOW．Dur－ ing normal operation $\overline{\mathrm{MR}}$ is HIGH．A reset is required after power up to guarantee correct operation．On reset，the data outputs go LOW，IR goes HIGH，OR goes LOW，FH and FULL go LOW．During reset，both internal read and write pointers are set to the first location in the array．

Shift－In（SI）

Data is written into the FIFO by pulsing SI HIGH．When Shift－In goes HIGH，the data is loaded into an internal data latch．Data setup and hold times need to be adhered to with respect to the falling edge of SI．The write cycle is complete after the falling edge of SI ．The shift－in is inde－ pendent of any ongoing shift－out operation．After the first word has been written into the FIFO，the falling edge of SI makes HF go HIGH，indicating a non－empty FIFO．The first data word appears at the output after the falling edge of SI ． After half the memory is filled，the next rising edge of SI makes FULL go HIGH indicating a half－full FIFO．When the FIFO is full，any further shift－ins are disabled．
When the FIFO is empty and $\overline{\mathrm{OE}}$ is LOW，the falling edge of the first SI will cause the first data word just shifted－in to appear at the output，even though SO may be LOW．

Shift－Out（SO）

Data is read from the FIFO by the Shift－Out signal provided the FIFO is not empty．SO going HIGH causes OR to go LOW indicating that output stage is busy．On the falling edge of SO，new data reaches the output after propagation delay t_{D} ．If the last data has been shifted－out of the mem－ ory，OR continues to remain LOW，and the last word shifted－out remains on the output pins．

Output Enable（ $\overline{\mathrm{OE}}$ ）

$\overline{\mathrm{OE}}$ LOW enables the 3－STATE output buffers．When $\overline{\mathrm{OE}}$ is HIGH，the outputs are in a 3－STATE mode．

OUTPUTS

Data Outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{8}\right)$

Data outputs are enabled when $\overline{\mathrm{OE}}$ is LOW and in the 3－ STATE condition when $\overline{\mathrm{OE}}$ is HIGH．

Input Ready（IR）

IR HIGH indicates data can be shifted－in．When SI goes HIGH，IR goes LOW，indicating input stage is busy．IR stays LOW when the FIFO is full and goes HIGH after the falling edge of the first shift－out．

Output Ready（OR）

OR HIGH indicates data can be shifted－out from the FIFO． When SO goes HIGH，OR goes LOW，indicating output stage is busy．OR is LOW when the FIFO is reset or empty and goes HIGH after the falling edge of the first shift－in．

Half－Full（HF）

This status flag along with the FULL status flag indicates the degree of fullness of the FIFO．On reset，HF is LOW；it rises on the falling edge of the first SI ．The rising edge of the SI pulse that fills up the FIFO makes HF go LOW． Going from the empty to the full state with SO LOW，the falling edge of the first SI causes HF to go HIGH，the rising edge of the 33rd SI causes FULL to go HIGH，and the ris－ ing edge of the 64th SI causes HF to go LOW．
When the FIFO is full，HF is LOW and the falling edge of the first shift－out causes HF to go HIGH indicating a＂non－ full＂FIFO．

Full Flag（FULL）

This status flag along with the HF status flag indicates the degree of fullness of the FIFO．On reset，FULL is LOW． When half the memory is filled，on the rising edge of the next SI，the FULL flag goes HIGH．It remains set until the difference between the write pointer and the read pointer is less than or equal to one－half of the total memory of the device．The FULL flag then goes LOW on the rising edge of the next SO．

Status Flags Truth Table

HF	FULL	Status Flag Condition
L	L	Empty
L	H	Full
H	L	<32 Locations Filled
H	H	≥ 32 Locations Filled

$\mathrm{H}=$ HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level
L＝LOW Voltage Level
Reset Truth Table

Inputs			Outputs				
$\overline{\text { MR }}$	SI	SO	IR	OR	HF	FULL	$\mathbf{O}_{\mathbf{0}}-\mathbf{O}_{\mathbf{8}}$
H	X	X	X	X	X	X	X
L	X	X	H	L	L	L	L

H＝HIGH Voltage Level
L＝LOW Voltage Level
$X=$ Immaterial

Note: SO and $\overline{\mathrm{OE}}$ are LOW; $\overline{\mathrm{MR}}$ is HIGH.
FIGURE 1. Modes of Operation Mode 1

Mode 2: Master Reset

Sequence of Operation

1. Input and Output Ready, HF and FULL can be in any state before the reset sequence with Master Reset ($\overline{\mathrm{MR}}) \mathrm{HIGH}$.
2. Master Reset goes LOW and clears the FIFO, setting up all essential internal states. Master Reset must be LOW pulse width $\mathrm{t}_{\text {MRW }}$ before rising again.
3. Master Reset rises.

FIGURE 2. Mode of Operation Mode 2

Mode 4: Shift-Out Sequence, FIFO Full to Empty

Sequence of Operation

1. FIFO is initially full and OR is HIGH, indicating valid data is at the output. IR is LOW.
2. SO goes HIGH, resulting in OR going LOW one propagation delay, t_{OR}, after SO rises. OR LOW indicates output stage is busy.
3. SO goes LOW, new data reaches output one propagation delay, t_{D}, after SO falls; OR goes HIGH one propagation delay, t_{OR}, after SO falls and HF rises one
propagation delay, t_{OF}, after SO falls. IR rises one fallthrough time, t_{FT}, after SO falls.
4. Repeat process through the 64th SO pulse. FULL flag goes LOW one propagation delay, $\mathrm{t}_{\mathrm{OHF}}$, after the rising edge of 33 rd SO, indicating that the FIFO is less than half full. On the falling edge of the 64th SO, HF goes LOW one propagation delay, t_{OE}, after SO , indicating the FIFO is empty. The SO pulse may rise and fall again with an attempt to unload an empty FIFO. This results in no change in the data on the outputs as the 64th word stays latched.

Note: SI and $\overline{\mathrm{OE}}$ are LOW; $\overline{\mathrm{MR}}$ is $\mathrm{HIGH} ; \mathrm{D}_{0}-\mathrm{D}_{8}$ are immaterial
FIGURE 4. Modes of Operation Mode 4

FIFO Expansion

Word Width Expansion
Word width can be increased by connecting the corresponding input control signals of multiple devices．Flags can be mon－ itored to obtain a composite signal by ANDing the corresponding flags．

Absolute Maximum Ratings $\mathbf{(N o t e ~}^{1)}$
Supply Voltage (V_{CC}) DC Input Diode Current (I_{IK})
$V_{1}=-0.5 \mathrm{~V}$
$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Voltage (V_{I})
DC Output Diode Current (lok)
$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Output Voltage (V_{O})
DC Output Source
or Sink Current (l_{O})
DC $V_{C C}$ or Ground Current
per Output Pin (I_{CC} or $\mathrm{I}_{\mathrm{GND}}$)
Storage Temperature ($\mathrm{T}_{\mathrm{STG}}$)
-0.5 V to +7.0 V
$-20 \mathrm{~mA}$
$+20 \mathrm{~mA}$
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\begin{array}{r}-20 \mathrm{~mA} \\ \hline 20 \mathrm{~mA}\end{array}$
$+20 \mathrm{~mA}$
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\pm 32 \mathrm{~mA}$
$\pm 32 \mathrm{~mA}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Junction Temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$
PDIP
$140^{\circ} \mathrm{C}$

Recommended Operating Conditions

Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	4.5 V to 5.5 V
Input Voltage $\left(\mathrm{V}_{\mathrm{l}}\right)$	0 V to V_{CC}
Output Voltage $\left(\mathrm{V}_{\mathrm{O}}\right)$	0 V to V_{CC}
Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Minimum Input Edge Rate $(\Delta \mathrm{V} / \Delta \mathrm{t})$	$125 \mathrm{mV} / \mathrm{ns}$

$$
\mathrm{V}_{\mathrm{IN}} \text { from } 0.8 \mathrm{~V} \text { to } 2.0 \mathrm{~V}
$$

$$
\mathrm{V}_{\mathrm{Cc}} @ 4.5 \mathrm{~V}, 5.5 \mathrm{~V}
$$

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT ${ }^{\text {TM }}$ circuits outside databook specifications.

DC Electrical Characteristics

Symbol	Parameter	$\begin{aligned} & \mathrm{v}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Typ	Guaranteed Limits	anteed Limits		
$\overline{\mathrm{V}_{\mathrm{IH}}}$	Minimum High Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V} \text { IL }}$	Maximum Low Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{OH}	Minimum High Level	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & \hline 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	V	$\mathrm{l}_{\text {OUT }}=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 3.76 \\ & 4.76 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}(\text { Note 2) } \end{aligned}$
$\overline{\mathrm{V}} \mathrm{OL}$	Maximum Low Level Output Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	V	lout $=50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}(\text { Note } 2) \\ & \hline \end{aligned}$
I_{N}	Maximum Input	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
l_{Oz}	Maximum 3-STATE Current	5.5		± 0.5	± 5.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \end{aligned}$
$\mathrm{I}_{\text {CCT }}$	Maximum ICC/Input	5.5	0.6	1.0	1.5	mA	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}-2.1 \mathrm{~V}$
IoLD	Maximum Dynamic	5.5			32	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$
IOHD	Output Current (Note 3)	5.5			-32	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$
${ }_{\text {CC }}$	Maximum Quiescent Supply Current	5.5		8.0	80	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND
${ }^{\text {CCD }}$	Supply Current 20 MHz Loaded	5.5	125	150	150	mA	$\begin{aligned} & \mathrm{f}=20 \mathrm{MHz} \\ & \text { (Note 4) } \end{aligned}$
Note 2: All outputs loaded; thresholds on input associated with outp Note 3: Maximum test duration 2.0 ms , one output loaded at a time. Note 4: Test load $50 \mathrm{pF}, 500 \Omega$ to ground							

AC Electrical Characteristics

Symbol	Parameter	V_{cc} （V） （Note 5）	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
tpLH	Propagation Delay， t_{IR} SI to IR	5.0	2.0	6.5	11.0	1.5	12.5	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay， t_{IR} SI to IR	5.0	2.0	6.5	11.0	1.5	12.0	ns
tpLH	Propagation Delay， $\mathrm{t}_{\text {IHF }}$ SI to＞HF	5.0	4.0	10.5	17.0	4.0	19.5	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay， t_{IF} SI to Full Condition	5.0	4.5	10.5	16.5	4.5	19.5	ns
$t_{\text {PLH }}$	Propagation Delay， t_{IE} SI to Not Empty	5.0	4.0	10.0	15.5	4.0	17.5	ns
$t_{\text {PLH }}$	Propagation Delay， $\mathrm{t}_{\mathrm{IOR}}$ SI to OR	5.0	4.0	13.5	16.5	4.0	19.0	ns
tpLH	Propagation Delay $\mathrm{t}_{\text {MRIRH }}$ $\overline{\mathrm{MR}}$ to IR	5.0	3.0	8.5	13.5	3.0	15.5	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay， $\mathrm{t}_{\text {MRORL }}$ $\overline{\mathrm{MR}}$ to OR	5.0	7.0	16.5	25.5	7.0	29.0	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay， $\mathrm{t}_{\text {MRO }}$ MR to Full Flag	5.0	3.5	9.0	14.0	3.5	16.0	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay， $\mathrm{t}_{\mathrm{MRE}}$ MR to HF Flag	5.0	8.0	17.5	27.5	8.0	30.5	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay， $\mathrm{t}_{\text {MRONL }}$ $\overline{\mathrm{MR}}$ to O_{n} ，LOW	5.0	3.0	9.0	15.0	3.0	17.0	ns
tpLH	Propagation Delay，t_{D} SO to Data Out	5.0	6.5	18.5	27.0	6.5	31.0	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay，t_{D} SO to Data Out	5.0	6.5	18.5	29.5	6.5	34.5	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay， $\mathrm{t}_{\mathrm{OHF}}$ SO to $<\mathrm{HF}$	5.0	3.5	8.5	13.5	3.5	15.5	ns
$t_{\text {PLH }}$	Propagation Delay， t_{OF} SO to Not Full	5.0	5.0	12.5	19.5	5.0	22.0	ns
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Propagation Delay， t_{OR} SO to OR	5.0	2.5	7.0	11.5	2.5	13.5	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay， t_{OE} SO to Empty	5.0	3.5	9.5	15.5	3.0	17.5	ns
tpLH	Propagation Delay，tod5 SI to New Data Out	5.0	7.0	19.0	30.5	6.0	35.5	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay，tod5 SI to New Data Out	5.0	7.0	19.0	29.5	6.0	34.5	ns
tpLH	Propagation Delay， $\mathrm{t}_{\mathrm{X} 1}$ SI to HF	5.0	3.5	10.0	16.0	2.5	18.0	ns
tpLH	Fall－Through Time， $\mathrm{t}_{\text {FTO }}$ SI to OR	5.0	3.5	13.5	21.0	1.5	24.0	ns
${ }_{\text {tw }}$	R Pulse Width，top	5.0	12.5	17.0	26.0	12.5	30.5	ns

Physical Dimensions inches (millimeters) unless otherwise noted

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
