

Functional Description

The AC／ACT257 is quad 2 －input multiplexer with 3－STATE outputs．It selects four bits of data from two sources under control of a Common Data Select input．When the Select input is LOW，the $\mathrm{I}_{0 \mathrm{x}}$ inputs are selected and when Select is HIGH ，the $\mathrm{I}_{1 \mathrm{x}}$ inputs are selected．The data on the selected inputs appears at the outputs in true（noninverted） form．The device is the logic implementation of a 4－pole，2－ position switch where the position of the switch is deter－ mined by the logic levels supplied to the Select input．The logic equations for the outputs are as follows

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{a}}=\overline{\mathrm{OE}} \cdot\left(1_{1 \mathrm{a}} \cdot \mathrm{~S}+\mathrm{I}_{0 \mathrm{a}} \cdot \overline{\mathrm{~S}}\right) \\
& \mathrm{Z}_{\mathrm{b}}=\overline{\mathrm{OE}} \cdot\left(1_{1 \mathrm{~b}} \cdot \mathrm{~S}+\mathrm{I}_{\mathrm{Ob}} \cdot \overline{\mathrm{~S}}\right) \\
& \mathrm{Z}_{\mathrm{c}}=\overline{\mathrm{OE}} \cdot\left(1_{1 \mathrm{c}} \cdot \mathrm{~S}+\mathrm{I}_{\mathrm{Oc}} \cdot \overline{\mathrm{~S}}\right) \\
& \mathrm{Z}_{\mathrm{d}}=\overline{\mathrm{OE}} \cdot\left(1_{1 \mathrm{~d}} \cdot \mathrm{~S}+\mathrm{I}_{\mathrm{Od}} \cdot \overline{\mathrm{~S}}\right)
\end{aligned}
$$

When the Output Enable（OE）is HIGH，the outputs are forced to a high impedance state．If the outputs are tied together，all but one device must be in the high impedance state to avoid high currents that would exceed the maxi－ mum ratings．Designers should ensure the Output Enable signals to 3－STATE devices whose outputs are tied together are designed so there is no overlap．

Truth Table

Output Enable	Select Input	Data Inputs		Outputs
$\overline{\text { OE }}$	S	I $_{\mathbf{0}}$	I $_{\mathbf{1}}$	Z
H	X	X	X	Z
L	H	X	L	L
L	H	X	H	H
L	L	L	X	L
L	L	H	X	H

H＝HIGH Voltage Level
L＝LOW Voltage Leve
X＝Immaterial
Z＝High Impedance

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays．

Absolute Maximum Ratings(Note 1)		Recommended Operating
Supply Voltage (V_{CC})	-0.5 V to +7.0 V	Conditions
DC Input Diode Current (1/1)		Supply Voltage (V_{CC})
$\mathrm{V}_{1}=-0.5 \mathrm{~V}$	-20 mA	AC 2.0 V to 6.0 V
$\mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	+20 mA	ACT 4.5 V to 5.5 V
DC Input Voltage (V_{1})	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	Input Voltage (V_{l}) $\left.\mathrm{V}^{(}\right) \quad \mathrm{V}$ to V_{CC}
DC Output Diode Current (lok)		Output Voltage (V_{O}) $\mathrm{O}^{\text {a }}$ to V_{CC}
$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$	-20 mA	Operating Temperature (T_{A}) $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}+0.5 \mathrm{~V}$	+20 mA	Minimum Input Edge Rate ($\Delta \mathrm{V} / \Delta \mathrm{t}$)
DC Output Voltage (V_{O})	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	AC Devices
DC Output Source ort		$\mathrm{V}_{\text {IN }}$ from 30% to 70% of $\mathrm{V}_{\text {CC }}$
Sink Curren (1)	$\pm 50 \mathrm{~mA}$	
DC V_{CC} or Ground Current		Minimum Input Edge Rate ($\Delta \mathrm{V} / \Delta \mathrm{t}$)
Per Output Pin (licc or $\mathrm{I}_{\mathrm{GND}}$)	$\pm 50 \mathrm{~mA}$	ACT Devices
Storage Temperature ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$\mathrm{V}_{1 \text { IN }}$ from 0.8 V to 2.0 V
Junction Temperature (T_{J})		$\mathrm{V}_{\text {CC }} @ 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$ ($125 \mathrm{mV} / \mathrm{ns}$
PDIP	$140^{\circ} \mathrm{C}$	Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, with- out exception, to ensure that the system design is reliable over its power supply, temperature, and outputinput loading variables. Fairchild does not recommend operation of FACTM circuits outside databook specifications.

DC Electrical Characteristics for AC

Symbol	Parameter	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Typ	Guaranteed Limits			
$\overline{\mathrm{V}_{\mathrm{IH}}}$	Minimum HIGH Level Voltage Input	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1.5 \\ 2.25 \\ 2.75 \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.1 \\ 3.15 \\ 3.85 \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.1 \\ 3.15 \\ 3.85 \\ \hline \end{gathered}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V}} \mathrm{IL}$	Maximum LOW Level Voltage Input	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 2.25 \\ & 2.75 \end{aligned}$	$\begin{gathered} \hline 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	$\begin{gathered} \hline 0.9 \\ 1.35 \\ 1.65 \\ \hline \end{gathered}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V} \text { OH }}$	Minimum HIGH Level Voltage Output	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.99 \\ & 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 4.4 \\ & 5.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.9 \\ & 4.4 \\ & 5.4 \end{aligned}$	V	IOUT $=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 2.56 \\ & 3.86 \\ & 4.86 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.46 \\ & 3.76 \\ & 4.76 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \left.\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \text { (Note } 2\right) \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Maximum LOW Level Voltage Output	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.002 \\ & 0.001 \\ & 0.001 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V	$\mathrm{l}_{\text {OUT }}=50 \mu \mathrm{~A}$
		$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \\ & 0.36 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{IOL}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \text { (Note 2) } \end{aligned}$
$\overline{1 / 2}$ (Note 4)	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
$\mathrm{l}_{\text {OZ }}$	Maximum 3-STATE Leakage Current	5.5		± 0.25	± 2.5	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}(\mathrm{OE})=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \end{aligned}$
Iold	Minimum Dynamic (Note 3)	5.5			75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
IOHD	Output Current	5.5			-75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
$\mathrm{ICC}^{\text {(Note 4) }}$	Maximum Quiescent Supply Current	5.5		4.0	40.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND
Note 2: All outputs loaded; thresholds on input associated with output under test. Note 3: Maximum test duration 2.0 ms , one output loaded at a time. Note 4: I_{IN} and $\mathrm{I}_{\mathrm{CC}} @ 3.0 \mathrm{~V}$ are guaranteed to be less than or equal to the respective limit @ $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$.							

Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body Package Number M16A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
