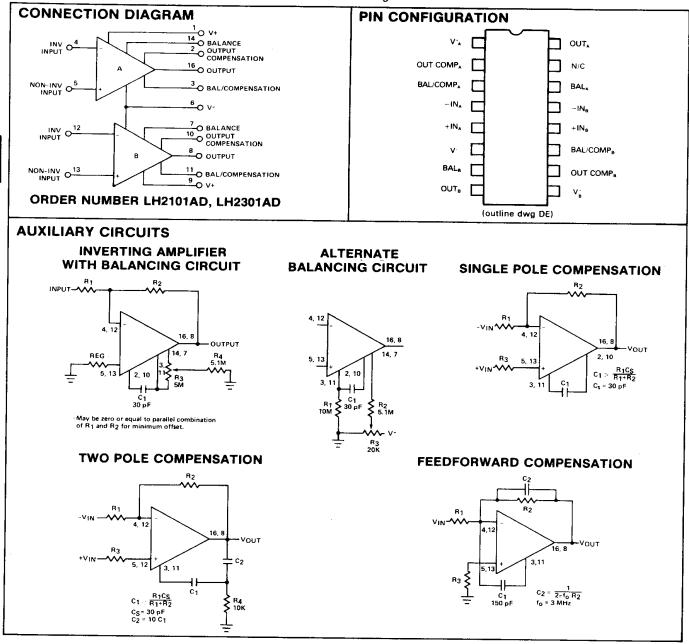
LH2101A/LH2301A Dual High Performance Op Amp


FEATURES

- Low offset voltage
- Low offset current
- Guaranteed drift characteristics
- Offsets guaranteed over entire common mode and supply voltage ranges
- Slew rate of 10V/μs

GENERAL DESCRIPTION

The LH2101A series of dual operational amplifiers consist of two LM101A type op amps in a single hermetic package. Featuring all the same performance characteristics of the single, these duals offer in addition closer thermal tracking, lower weight, and reduced insertion cost.

The LH2101A is specified for operation over the −55°C to +125°C military temperature range, while the LH2301A is specified for operation over the 0°C to +70°C temperature range.

5-114

Powered by ICminer.com Electronic-Library Service CopyRight 2003

INTERSIL

LH2101A/LH2301A

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±22V
Power Dissipation (Note 1)	500 mW
Differential Input Voltage	±30V
Input Voltage (Note 2)	
Output Short-Circuit Duration	Continuous
Operating Temperature RangeLH2101A	−55°C to 125°C
LH2301A	0°C to 70°C
Storage Temperature Range	~65°C to 150°C
Lead Temperature (Soldering, 10 sec)	300° C

ELECTRICAL CHARACTERISTICS Each side (Note 3)

PARAMETER	CONDITIONS	LIMITS		
		LH2101A	LH2301A	UNITS
Offset Voltage	$T_A = 25^{\circ}C$, $R_S \le 50k\Omega$	(2.0)	7.5	mV Max
Input Offset Current	T _A = 25°C	10	50	nA Max
Input Bias Current	T _A = 25° C	75	250	
Input Resistance	T _A = 25° C	1.5	0.5	MΩ Min
Supply Current	$T_A = 25^{\circ} C, V_S = \pm 20V$	3.0	3.0	mA Max
Large Signal Voltage Gain	$T_A = 25^{\circ}\text{C}, V_S = \pm 15V$ $V_{OUT} = \pm 10V, R_L \ge 2k\Omega$	50	25	V/mV Min
Input Offset Voltage Average Temperature	$R_S \le 50 \text{ k}\Omega$	3.0	10	mV Max
Coefficient of Input Offset Voltage		15	30	μV/°C Max
Input Offset Current		20	70	nA Max
Average Temperature	25° C ≤ T _A ≤ 125° C	0.1	0.3	nA/°C Max
Coefficient of Input Offset Current	-55° C ≤ T _A ≤ 25° C	0.2	0.6	
Input Bias Current		100	300	nA Max
Supply Current	$T_A = +125^{\circ}C$, $V_S = \pm 20V$	2.5		mA Max
Large Signal Voltage Gain	$V_S = \pm 15V$, $V_{OUT} = \pm 10V$ $R_L \ge 2 \text{ k}\Omega$	25	15	V/mV Min
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 10 \text{ k}\Omega$	±12	±12	
3	$R_L = 2 k\Omega$	±10	±10	V Min
Input Voltage Range Common Mode	V _S = ±20V	±15	±12	V IVIII1
Rejection Ratio Supply Voltage	$R_S \le 50 \text{ k}\Omega$	80	70	dB Min
Rejection Ratio	$R_S \le 50 \text{ k}\Omega$	80	70	

Note 1: The maximum junction temperature of the LH2101A is 150°C, and the thermal resistance is 100°C/W, junction to ambient. Note 2: For supply voltages less than $\pm 15V$, the absolute maximum input voltage is equal to the supply voltage. Note 3: These specifications apply for $\pm 5V \le V_S \le \pm 20V$ and $\pm 50^\circ C \le T_A \le 125^\circ C$, unless otherwise specified. For the LH2301A these specifications apply for $0^\circ C \le T_A \le 70^\circ C$, $\pm 5V$ and $\pm 5V_S \le \pm 15V$. Supply current and input voltage range are specified as $V_S = \pm 15V$ for the LH2301A. $C_1 = 30$ pF unless otherwise specified.