

CA3273

April 1994 High-Side Driver

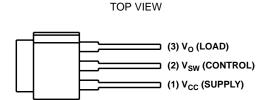
Features

•	Equivalent High Pass P-N-P Transistor
•	Current Limiting0.6A to 1.2A
•	Over-Voltage Shutdown+25V to +40V

- Junction Temperature Thermal Limit.....+150°C
- Equivalent Beta of 25......400mA/0.5V
- Internal Bandgap Voltage and Current Reference

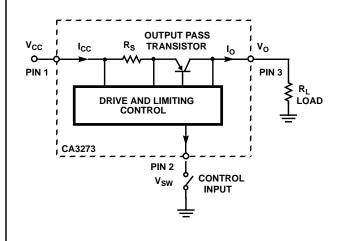
Applications

- Fuel Pump Driver
- Relay Driver
- Solenoid Driver
- Stepper Motor Driver
- · Remote Power Switch
- · Logic Control Switch


Description

The CA3273 is a power IC equivalent of a P-N-P pass transistor operated as a high-side-driver current switch in either the saturated (ON) or cutoff (OFF) modes. The CA3273 incorporates circuitry to protect the pass currents, excessive input voltage, and thermal overstress. The high-side driver is intended for general purpose, automotive and potentially high-stress applications. If high-stress conditions exist, the use of an external zener diode of 35V or less between supply and load terminals may be required to prevent damage due to severe conditions (such as load dump, reverse battery and positive or negative transients). The CA3273 is designed to withstand a nominal reverse-battery (VBAT = 13V) condition without permanent damage to the IC. The CA3273 is supplied in a modified 3-lead TO-202 plastic power package.

Ordering Information


PART NUMBER	TEMPERATURE RANGE	PACKAGE			
CA3273	-40°C to +85°C	TO-202 Modified SIP			

Pinout

CA3273 (SIP)

Block Diagram

Specifications CA3273

Absolute Maximum Ratings

$\label{eq:Fault Max, Supply Voltage, VCC} Fault Max, Supply Voltage, VCC} \\ \text{Maximum Operating V}_{\text{CC}} \\ \text{At I}_{\text{O}} = 400\text{mA} \ (-40^{\text{O}}\text{C to } +85^{\text{O}}\text{C Ambient}) \\ \text{At I}_{\text{O}} = 600\text{mA} \ (-40^{\text{O}}\text{C to } +25^{\text{O}}\text{C Ambient}) \\ \text{Max. Positive Output Peak Pulse, V}_{\text{SW}} \ \text{Open} \\ \text{Max. Operating Output Load Current} \\ \text{Short Circuit Load Current, I}_{\text{SC}} \\ \text{Internal Limiting Reverse Battery} \\ -13V \\ \\ \end{array}$

Thermal Information

Thermal Resistance θ_{JA} Plastic SIP Package +70°C/W Maximum Power Dissipation, P _D	/
At +25°C Ambient, T _A (Note 1)	

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications T_A = -40°C to +85°C, Unless Otherwise Noted, See Block Diagram for Test Pin Reference

PARAMETERS	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Operating Voltage Range	V _{CC}	V _{CC} Reference to V _{SW}	4	-	24	V
Saturation Voltage(V _{CC} - V _O)	V _{SAT}	I _O = -400mA, V _{SW} = 0V, V _{CC} = 16V	-	-	0.5	V
Operating Load	R_{L}	V _{SW} = 0V (Switch ON)				
		$T_A = +85^{\circ}C, V_{CC} = 16V$	40	-	-	Ω
		$T_A = +25^{\circ}C, V_{CC} = 24V$	40			Ω
Over-Voltage Shutdown Threshold	V _{CC(THD)}	V_{SW} = 0V, R_L = 1k Ω , Increase V_{CC} , (V_O goes low)	25	33	40	V
Over-Current Limiting	I _{O(LIM)}	V _{CC} =16V, V _{SW} = 1V (Switch ON)	-	-	1.2	А
Over-Temperature Limiting	T _{LIM}		-	150	-	°C
Control Current, Switch ON	I _{SW}	V _{CC} =16V, V _{SW} = 0V				
		$I_O = 0mA$	-	-15	-	mA
		I _O = -400mA	-	-22	-	mA
Control Current, Max. Load, Switch ON		V _{CC} = 24V, V _{SW} = 0V, I _O = -600mA	-	-33	-	mA
Max. Control Current, High and	I _{SW(MAX)}	$R_L = 40\Omega$, $V_{SW} = 1V$				
Low V _{CC}		V _{CC} = 24V	-50	-	-	mA
		V _{CC} = 7V	-50	-	-	mA
Min. Control Current, No Load,	I _{SW(NL)}	V _O = Open, (Switch OFF)				
Switch OFF		$V_{CC} = 24V, V_{SW} = 23V$	-200	-	+50	μΑ
		V _{CC} = 7V, V _{SW} = 6V	-200	-	+50	μΑ
Output Current Leakage	I _{O(LEAK)}	$V_O = 0V$, $V_{CC} = 16V$, (Switch OFF)				
		V _{SW} =16V	-100	-	+100	μΑ
		V _{SW} =15V	-100	-	+100	μΑ

NOTES:

- 1. The calculation for dissipation and junction temperature rise due to dissipation is: $P_D = (V_{CC} V_O)x I_O + V_{CC}x I_{SW}$ and $T_J = T_A + P_D x \theta_{JA}$ where T_J is device junction temperature, T_A is ambient temperature and θ_{JA} is the junction-to-ambient thermal resistance.
- 2. Thermal limiting occurs at +150°C on the chip.

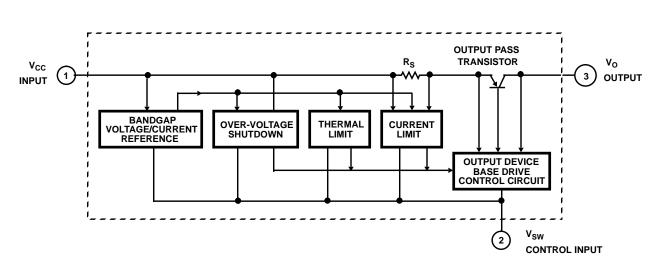


FIGURE 1. FUNCTIONAL BLOCK DIAGRAM OF CA3273

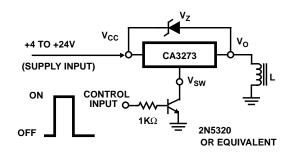


FIGURE 2. TYPICAL APPLICATION WITH ZENER DIODE FOR OVER-VOLTAGE PROTECTION WITH INDUCTIVE LOAD SWITCHING. V_Z SHOULD BE LESS THAN 35V. WHEN CURRENT IS SWITCHED OFF IN THE OUTPUT LOAD (L), THE INDUCTIVE KICK PULSE GOES NEGATIVE. THE CLAMPED CLAMP LEVEL OF THE NEGATIVE GOING PULSE IS V_{CC} - V_Z .

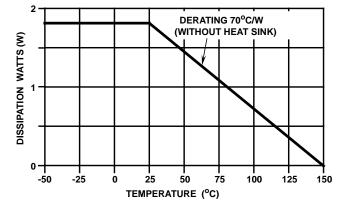


FIGURE 4. DISSIPATION DERATING CURVES

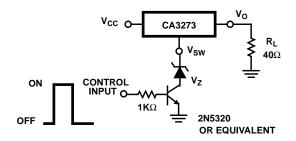


FIGURE 3. OPTIONAL RANGE SHIFTING OF THE V_{CC} INPUT VOLTAGE USING A ZENER DIODE TO OFFSET THE V_{SW} CONTROL PIN. (I.E.,THE OVER-VOLTAGE SHUTDOWN THRESHOLD WILL BE INCREASED TO $V_{CC(THD)} + V_Z$ AND THE MINIMUM V_{CC} OPERATING VOLTAGE IS $V_Z + 4V$).

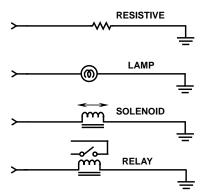


FIGURE 5. TYPICAL LOADS

CA3273

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Sales Office Headquarters

NORTH AMERICA

Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 727-9207 FAX: (407) 724-7240

EUROPE

Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05

ASIA

Intersil (Taiwan) Ltd.
Taiwan Limited
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310

TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029