LINEAR INTEGRATED CIRCUIT

VIDEO IF+SIF SYSTEM

The KA2914A, KA2918 are silicon monolithic integrated circuits designed for the VIF and SIF stage in color and B/W television receivers.

KA2914A: for Reverse AGC type KA2918: for Forward AGC type

VIF

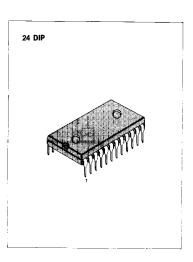
- Three controlled IF amplifier stages
- Video demodulator controlled by picture carrier
- Black noise and white noise inverter
 Peak AGC.
- · DC amplifier for RF AGC out

SIF

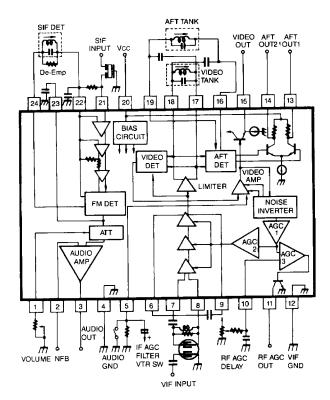
- DC controlled attenuator
- · Audio amplifier stage with NFB terminal

FEATURES

- PIF, SIF, ATT audio driver
- 2 chip color TV system is possible with the KA2153 or KA2154


ORDERING INFORMATION

VIE


- · High gain, wide band IF amplifier
- AGC characteristics with excellent stability
- Excellent DG/DP characteristics
- Excellent S/N characteristics due to delayed 3-stage AGC action
- Negative video output signal
- Switch off the video part with VTR SW

SIF

- · Excellent limiter characteristics
- Excellent attenuator characteristics

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Characteristic	Symbol	Value	Unit
Supply Voltage	Vcc	15	V
Terminal 11 Open Voltage	V ₁₁	15	V
Video DC Output Current	115	6	m A
Audio DC Output Current	l ₃	3	mA
Terminal 2 Voltage	V ₂	15	V
Power Dissipation (Note)	P _d	1.6	. w
Operating Temperature	Topr	- 20 ~ 65	°C
Storage Temperature	T _{stg}	- 55 ~ 150	° C

Note: Derated above $T_a = 25^{\circ}C$ in the proportion of 12.8 mW/°C.

ELECTRICAL CHARACTERISTICS PIF Section (T_a =25°C, V_{CC} =12V f_p =45.75MHz, f_s =41.25MHz)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit	Test Fig
Recommended Supply Voltage	V _{cc}	_	10.8	12.0	13.2	V	-
Supply Current	Icc		50	72	95	mA	1
Video DC Output Voltage	V ₁₅	SW ₁ : 1 (KA2914A) 2 (KA2918) SW ₂ : 2	5.2	5.5	5.8	V	1
AFT DC Output Voltage	V ₁₃	SW ₁ : 1 (KA2914A) 2 (KA2918) SW ₂ : 2	5.3	6.8	8.3	٧	1
	V ₁₄	SW ₁ . 1 (KA2914A) 2 (KA2918) SW ₂ : 2	5.3	6.8	8.3	٧	1
AFT DC Offset Voltage	ΔV ₁₃₋₁₄	SW: 1 (KA2914A) 2 (KA2918) SW: 2	- 1.5	0	1.5	V	1
RF AGC Residual Output Voltage	V₁₁ Sat	SW ₁ : 1 (KA2914A) 2 (KA2918) SW ₂ : 2	_	_	0.5	V	1
RF AGC Leak Current	J _{11 LEAK}	SW ₁ : 1 (KA2918) 2 (KA2914A) SW ₂ : 1	_	-,	1	uA	1
Video Sensitivity	υ ₎ Pin 7-8	(Note 1)	60	150	250	μV_{ms}	2
AGC Range	ΔA _{VIF}	(Note 2)	60	64		dΒ	2
SYNC TIP Level Voltage	V _{SYNC} (V ₁₅)	(Note 3)	2.3	2.5	2.7	v	2
Max. IF Input Voltage	vin Max PIF	(Note 4)	100	120		mV _{rms}	2
White Noise Threshold Level	V _{WTH} (V ₁₅)	(Note 5)	5.8	6.2	6.6	V	2
White Noise Clamp Level	V _{WCL} (V ₁₅)	(Note 5)	3.7	4.1	4.5	V	2

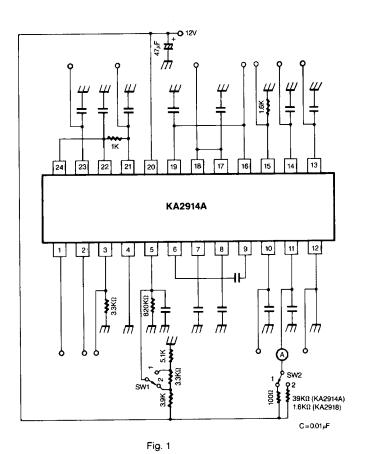
KA2914A/KA2918

ELECTRICAL CHARACTERISTICS PIF Section ($T_a=25^{\circ}C$, $V_{CC}=12V$, $f_p=45.75MHz$, $f_s=41.25MHz$)

Characteristic		Symbol	Test Conditions	Min	Тур	Max	Unit	Test Fig
Dlack Noice Threshold Level		V _{BTH} (V ₁₅)	(Note 5)	1.4	1.6	1.8	٧	2
		V _{8CL} (V ₁₅)	(Note 5)	2.9	3.3	3.7	٧	2
Video Frequency Res	ponse	f _{BW}	(Note 6)	4.5	5.5		MHz	3
Suppression of Carrie	r	CL	(Note 7)	40	50		— dB	
Suppression of 2nd C	arrier	l _{2nd}	(Note 8)	40	50	<u> </u>	_ dB	
920KHz Beat Level		l ₉₂₀	(Note 9)	33	38	L <u>–</u>	dB	4
Differential Phase		DP	(Note 10)	_	3.5	5	deg	5
Differential Gain		DG	(Note 10)	_	7	10	%	. 5
VIF Input Impedance		R _{IN} (VIF)		1.5	3.0	6.0	ΚΩ	- 6
		C _{IN} (VIF)	(Note 11)		3.0	10.0	pF	
AFT Sensitivity		ΔF/V ₁₃₋₁₄	(Note 12)	_	16		kHz/V	2
	Upper	V _{13U} V _{14U}	(Note 13)	11.7	11.9	12.0	٧	2
AFT Output Voltage	Lower	V _{13L} V _{14L}	(Note 13)	1.8	2.3	2.8	V	2
RF AGC Max Available Current		l₄ Max	SW ₁ : 1 SW ₂ : 1 (KA2914A)	0.3	_		mA	1
		j	SW ₁ : 2 SW ₂ :1(KA2918)	7.0	_	<u> </u>		
RF AGC Delay Setting Range V _{IN} D		V _{IN} Delay	(Note 14)	5	7	9	V	!
AFT Band width ΔF _W		ΔF _W	(Note 13)	1.4	'_	-	MHz	2
Video Output Voltage		υουτ	(Note 15)	2.25	2.50	2.75	V	2

ELECTRICAL CHARACTERISTICS SIF Section (T_a =25°C, V_{CC} =12V, f_p =45.75MHz, f_s =41.25MHz)

Characteristic		Symbol	Test Conditions	Min	Тур	Max	Unit	Test Fig
SIF Output Voltage		S _{OUT}	(Note 16)	200	400	600	mV _{rms}	3
Input Limiting Voltage		UIN (LIM)	(Note 17) R _D = ∞	<u> </u>	200	400	uV _{rms}	8
AM Rejection Ratio		AMR	SIF IN: f = 4.5 MHz fm = 400Hz, Δf = ± 25kHz AM 30%, V _{IN} = 100dBu	40	45	_	dB	8
Recovered Output Voltage		V _{OD}	SIF IN: $f=4.5MHz$ $fm=400Hz$, $\Delta f=\pm 25kHz$ $V_{IN}=80dBu$, $R_{D}=12k\Omega$	0.5	0.75	! 	V _{rms}	8
Total Harmonic Distortion		THD _{DET}	SIF IN: $f=4.5MHz$ $fm=400Hz$, $\Delta f=\pm25kHz$ $V_{IN}=80dBu$	_	1.0		%	8
Max. Audio Output Voltage		$v_{\sf om}$	SIF IN: f=4.4 ~ 4.6MHz	4.0	i —	-	V _{p-p}	8
SIF Input Impedance		R _{IN (SIF)}	f=4.5MHz	10.0	20.0	30.0	ΚΩ	7
		C _{IN (SIF)}	1=4.5IVITZ	_	3.0		рF	
DET Output Impedance		R₀ (DET)	(Note 18)	10.0	15.0	20.0	ΚΩ	9
DC Voltage	Terminal 21	V ₂₁	SW ₁ : 1 (KA2914A) 2 (KA2918)	3.5	4.4	5.3	٧	1
	Terminal 23	V ₂₃	2 (KA2918) SW ₂ ; 2	4.8	6.0	7.2	ν	
	Terminal 1	V ₁	; SVV ₂ , Z	6.0	6.7	7.4	٧	
Max. Attenuati	on	ATT Max	(Note 19)	60	_		dB	10
DC Volume Gain		G _{ATT} Min	$R_A = 0$ $G_{ATT} Min = 20log \frac{v_2}{v_{23}}$	- 5.5	- 3.5	- 1.5	dB	10
ATT Characteristics		V ₁ (1)	*	3.4	3.8	4.2	ν	10
Al i Cilalacteri	2	V ₁ (2)	**	4.5	4.9	5.3	٧	10
Signal Leakage		V _{PT}	(Note 20)	_	1.0	3.0	mV _{rms}	11
AF AMP. Gain		G _V AF	(Note 21)		20	_	dB	13
AF AMP. Distortion		THD AF	P _{23A} =1V _{pp} , 400Hz SW ₃ : On ATT: -26dB Setting	_	1.5	_	%	12
AF AMP. Max. Output Voltage		UOAF Max	(Note 21) THD _{AF} 5%	1.5	2.0	_	V_{rms}	13
AF Output DC	Voltage	V ₃	SW ₁ : 1 (KA2914A) 2 (KA2918) SW ₂ : 2	6.7	7.7	8.8	٧	1


^{*} Read the 400Hz component of V_{AI} at P₂ with R_A = 0, set R_A so that V_{AI} = 1/2 V_{AI} (-6dB), then read DC voltage of terminal 1 (V_A).

^{**} Read the 400Hz component of V_{AI} at P₂ with R_A = 0. Set R_A so that V_{AI} = 3.16×10⁻³ V_{AI} (-50dB) then read DC voltage of terminal 1 (V1).

TEST CIRCUIT

1. DC Characteristic

2. AC Characteristic

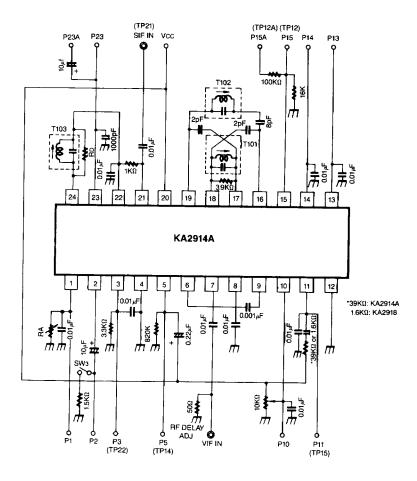


Fig. 2

3. Video Frequency Response and SIF Output Voltage

Fig. 3

4. Inter Modulation

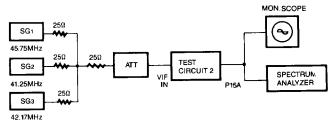


Fig. 4

5. DG, DP

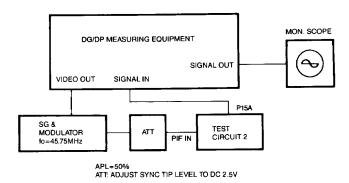


Fig. 5

6. VIF Input Impedance

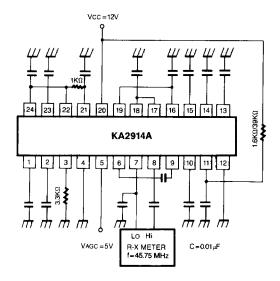


Fig. 6

7. SIF Input Impedance

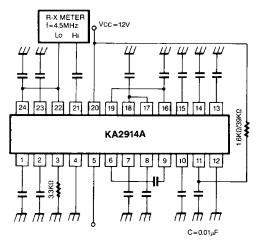


Fig. 7

8. VIN (LIM), AMR, VOD, THD, VOM

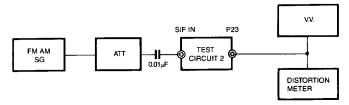


Fig. 8

9. Audio Output Impedance

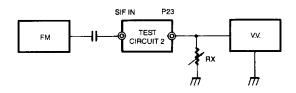


Fig. 9

10. ATT MAX., GATT MIN, V1 (1), V1 (2)

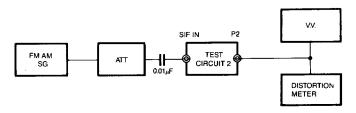


Fig. 10

11. $v_{\rm PT}$

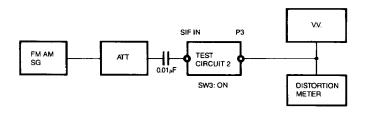


Fig. 11

12. THDAF

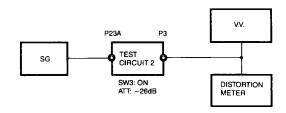


Fig. 12

13. Gv AF, VOAF MAX

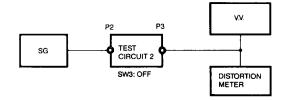
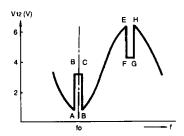


Fig. 13

TEST CONDITIONS

Note 1) V_{AGC} (P5 EXT. Applying voltage)=11.5V VIF in: f=45.75MHz 1kHz 30% AM modulation Adjust the VIF input level v so that the detected output of P15A with high impedance probe will be $0.8V_{pp}$ and measure the input level.

Note 2) V_{AGC} =4V Measure VIF input level $\mathcal V$ same as note 1 ΔA =20 $\log \frac{\mathcal V}{\mathcal U}$ (dB)


Note 3) VIF IN: f=45.75MHz CW 15mVrms Measure the DC level of P15

Note 4) VIF IN: f=45.75MHZ APL 100%, 87.5% AM modulation. P5: open

(1) Adjust the VIF input level 50mV_{p-p} and measure the detected output level v_{01pp}

(2) Then increase the input level so that the detected output level will be $1.1 \times v_{\text{Olip-p}}$ and measure the input level.

Note 5) V_{AGC} =8V V_{IF} in: f = 45.75MHz ± 10MHz variable or sweep 15mVrms measure the DC level of P15.

Note 6) V_{AGC} = 8V (GR ≈ 30dB)

SG₁: 45.75MHz CW

SG₂: 45.75 ~ 40MHz variable

(1) Setting output of SG_1 so that the DC level of P15 will be 4.0V

(2) Setting output off SG2 (45.75MHz) so that the AC level of P15 will be 0.5Vpp

(3) Decreasing frequency of SG₂ until the AC level of P15 will be $0.35V_{PP}$ (- 3dB of $0.5V_{PP}$) then read $f_{SG2} = F f_{BW} = 45.75$ -F MHz

Note 7) SG₁: 45.75MHz, 1kHz 80% AM modulation 100mVrms

SG₂, SG₃; off

Setting VAGC so that the output AC level of P15 will be 2.7Vpp

Measure CL of P15 after setting to 0% AM of SG₁

CL=20
$$\log \frac{2.7}{v_{CR} (V_{PP})}$$
 (dB)

Note 8) Measure I_{2nd} of P15 the same as note 7

Note 9) VAGC = 8V

SG₁: 45.75MHz (P: picture) 100mVrms

SG₂: 41.25MHz (S: sound) 32mVrms (-10dB of SG₁)

SG₃: 42.17MHz (C: chroma) 32mVrms (-10dB of SG₁)

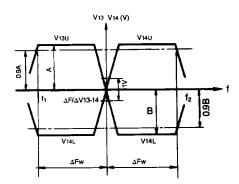
- (1) Setting VAGC so that the output tip level (lower) of P15 will be 3.0V DC
- (2) Measure the level difference (dB) between the C-level and 920kHz level

Note 10) V_{AGC} = 8V

VIF IN: f=45.75MHz video signal (RAMP) 87.5% AM 100mV_{PP} Setting ATT so that the SYNC TIP level of P15 will be 2.5V DC.

Measure DP and DG

Note 11) V_{AGC} = 5V f = 45.75MHz


Measure R_{IN}, C_{IN}

Note 12) AFT sensitivity $\Delta F/\Delta$ (V₁₃-V₁₄)

- (1) INT, AGC (P5 open)
- (2) VIF input: 45.75MHz ± 1.0MHz, CW 15mVrms
- (3) Read the frequency (f_1) of VIF when V_{13} - $V_{14} = -IV$
- (4) Read the frequency (f_2) of VIF when V_{13} - $V_{14} = 1V$ then calculate $\Delta F/\Delta (V_{13}-V_{14}) = |f_1-f_2|$

Note 13) ΔF_W , V_{13U} , V_{14U} , V_{13L} , V_{14L}

- (1) INT AGC (P5 open)
- (2) VIF IN: 45.75MHz±10MHz CW 15MVrms
- (3) 8pF at Pin 16 should be shorted
- (4) Read the frequency (f_1 or f_2) when the V_5 or V_6 is reduced to 90% of the level of A or B with varying the frequency. Then the band width is the difference from center frequency (f₀).

Note 14) P5: Open

VIF IN: 45.75MHz CW 20mVrms

- (1) Adjust the voltage of Terminal 3 so that the voltage of Terminal 4 will be 6.0V DC
- (2) Measure the voltage of Terminal 3

Note 15) P5: Open

VIF in: 45.75MHz 100% APL 87.5% AM modulation signal amplitude 50mV_{pp} Measure the detected output voltage (White peak to sync tip)

Note 16) P5: Open

SG₁: 45.75MHz CW 100mVrms

SG₂: 41.25MHz CW 25mVrms₃

Measure SiF (4.5MHz) output voltage at P15

- Note 17) SIF IN: f=4.5MHz FM $f_{MOD}=400Hz$ $\Delta f=\pm25kHz$,
 - (1) Adjust the SIF input level 100mV_{pp} and measure the detected output level v_{OS}
 - (2) Then decrease the input level so that the detented output level will be 3dB down of Vos and measure the input level

Note 18) Output impedance

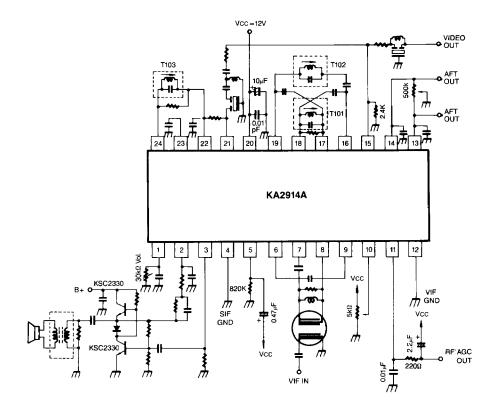
- (1) SIF IN: $f=4.5MHz f_{MOD}=400Hz$, $\Delta f=\pm25kHz$, $80dB\mu$
- (2) At P23 read the V_{01} at $R_X = 0$, then read the R_X when the recovered output becomes $V_{01/2}$ by varying the R_X . The R_X is the output impedance.

Note 19) ATT MAX

- (1) SIF in: f=4.5MHz, $f_{MOD}=400Hz$, $f=\pm25kHz$, $80dB_{\mu}$
- (2) Read the 400Hz component of V_{Ai} at P2 with $R_A=0$, then read V_{Ai} with $R_A=1\infty$

ATT MAX=20
$$\log \frac{V_{A1}}{V_{A1}}$$

Note 20) UPT


- (1) SIF IN: f=4.5MHz, $f_{MOD}=400$ Hz, $\Delta f=\pm 25$ kHz, 80dB μ
- (2) Read the 400Hz component at P3

Note 21) G_v AF

- (1) Apply 400Hz 0.1Vrms signal to P2
- (2) Read the output voltage at P3

TYPICAL APPLICATION CIRCUIT

