May 1999

LMC6009

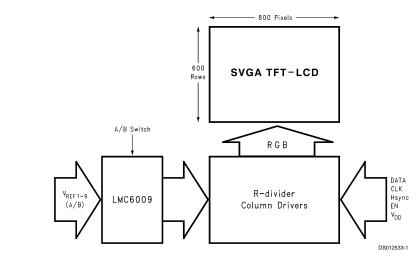
9 Channel Buffer Amplifier for TFT-LCD

General Description

The LMC6009 is a CMOS integrated circuit that buffers 9 reference voltages for gamma correction in a Thin Film Transistor Liquid Crystal Display (TFT-LCD). Guaranteed to operate at both 3.3V and 5V supplies, this integrated circuit contains nine, independent unity gain buffers that can source 130 mA into a capacitive load without oscillation.

The LMC6009 is useful for buffering gamma voltages into column drivers that employ the resistor-divider architecture. High output current capability and fast settling characteristics of this device improve display quality by minimizing rise time errors at the outputs of the column driver. The integration of nine buffers and a multiplexer eliminates the need for discrete buffers and a separate multiplexer (MUX) chip on the panel.

The LMC6009 is available in 48-pin surface mount TSSOP.


Features

- Number of inputs
- 3.3V and 5V operation
- Supply current 3.5 mA
 Settling time 3 μs
- A/B channel inputs for asymmetrical Gamma
- Number of outputs
- Number of control inputs
- Built-in thermal shutdown protection

Applications

- VGA/SVGA TFT-LCD drive circuits
- Electronic Notebooks
- Electronic Games
- Personal Communication Devices
- Personal Digital Assistants (PDA)

Application in VGA/SVGA TFT-LCD

Ordering Information

Package	Temperature Range	Transport Media	NSC Drawing
48-pin TSSOP	-20°C-+75°C		MTD48
	LMC6009MT		
	LMC6009MTX	Tape and Reel	

© 1999 National Semiconductor Corporation

DS012533

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance 1.0 kV

 $\begin{array}{c} \text{GND-0.3V} \leq \text{V}^{+} \leq \\ \text{V}_{\text{DD}}\text{+0.3V}_{\text{DC}} \end{array}$ Input Voltage

–0.3 to +6.5 $V_{\rm DC}$ Supply Voltage (V_{DD}) Operating Temperature -20°C to +75°C

Storage Temperature Range -55°C to +150°C

+150°C Maximum Junction Temperature (T_J) Maximum Power Dissipation (PD) 1.09W

Operating Ratings (Note 1)

Supply Voltage $2.7 \text{V} \le \text{V}_{\text{DD}} \le 5.5 \text{V}$ Frequency DC-50 kHz

Thermal Resistance (θ_{JA})

8.70 mW/°C Derating

3V DC Electrical Characteristics

Unless otherwise specified, all limits are guaranteed for T_J = 25°C, and V_{DD} = 3.0 V_{DC} .

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{DD} Supply Voltage			2.7	3.0	3.3	V
Vos	Offset Voltage	R _S = 10k			20	mV
I _B	Input Bias Current				1500	nA
V _{OL}	Output Voltage, Low	Amp A8 and A9 I _{SINK} = 13 mA			GND + 0.2	V
		Amp A1–A7 I _{SINK} = 13 mA			GND + 0.6	V
V _{OH}	Output Voltage, High	Amp A1 and A2 I _{SOURCE} = 13 mA	V _{DD} -0.2			V
		Amp A3-A9 I _{SOURCE} = 13 mA	V _{DD} -0.6			V
I _{sc}	Output Short Circuit Current	V _{OUT} - 1.65V (Note 1)	80	150		mA
I _{DD}	Supply Current	No Load		3.5	5	mA
ΔV_L	Load Regulation	$V_{IN} = 0.3-3 V_{DC}$ $I_{SOURCE} = 13 \text{ mA}$			-10	mV
		I _{SINK} = 13 mA			+10	mV
V _{IH}	A/B Switch Logic Voltage, High	Select A	2			V
V _{IL}	A/B Switch Logic Voltage, Low	Select B			0.8	V
I _{IH}	A/B Switch Logic Current, High				1.5	μA
I _{IL}	A/B Switch Logic Current, Low				1	μA
A _V	Voltage Gain		0.985			V/V

Note 1: See Test Circuit (Figure 2)

5V DC Electrical Characteristics

Unless otherwise specified, all limits are guaranteed for T_J = 25°C, and V_{DD} = 5 V_{DC} .

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{DD}	Supply Voltage		4.5	5	5.5	V
Vos	Offset Voltage	R _S = 10k			20	mV
I _B	Input Bias Current				1500	nA
V _{OL}	Output Voltage, Low	Amp A8 and A9			GND +	V
		I _{SINK} = 20 mA			0.2	_ v
		Amp A1-A7			GND +	V
		I _{SINK} = 20 mA			1.0	_ v
V _{OH}	Output Voltage, High	Amp A1 and A2	V _{DD} -0.2			l v
		I _{SOURCE} = 20 mA	V _{DD} =0.2			_ v
		Amp A3–A9	V _{DD} -1.0	.		V
		I _{SOURCE} = 20 mA	V _{DD} -1.0			_ v
I _{sc}	Output Short Circuit Current	V _{OUT} - 1.65V (Note 1)	120	200		mA
I _{DD}	Supply Current	No Load		4.5	6	mA

5V DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits are guaranteed for T_J = 25°C, and V_{DD} = 5 V_{DC} .

Symbol	Parameter	Conditions	Min	Тур	Max	Units
ΔV_L	Load Regulation	$V_{IN} = 0.5-4.5 V_{DC}$ $I_{SOURCE} = 20 \text{ mA}$			-10	mV
		I _{SINK} = 20 mA			+10	mV
V _{IH}	A/B Switch Logic Voltage, High	Select A	2			V
V _{IL}	A/B Switch Logic Voltage, Low	Select B			0.8	V
I _{IH}	A/B Switch Logic Current, High				1.5	μΑ
I _{IL}	A/B Switch Logic Current, Low				1	μA
A _V	Voltage Gain		0.985			V/V

AC Electrical Characteristics Unless otherwise specified, all limits are guaranteed for T_J = 25°C, and V_{DD} = 3 V_{DC} .

Symbol	Parameter	Conditions	Min	Тур	Max	Units
T _{S1}	Settling Time 1 (Note 2)	I _{DC} = 13 mA (Sink/Source)		3	6	μs
T _{S2}	Settling Time 2 (Note 2)	I _{DC} = 13 mA (Sink/Source)		3	6	μs

Note 2: See test circuits (Figure 3 , Figure 4 and Figure 5)

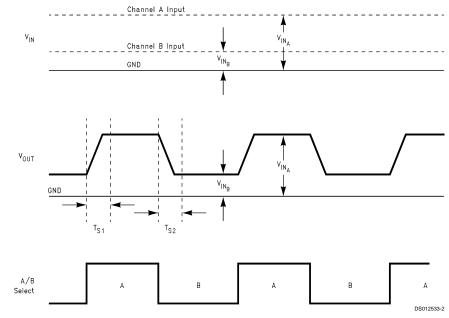


FIGURE 1. Rise and Fall Times at Outputs

AC Electrical Characteristics

(Continued)

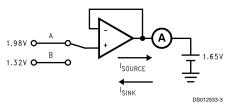


FIGURE 2.

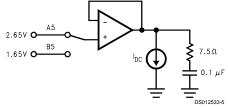


FIGURE 4. 13 mA Sink/Source

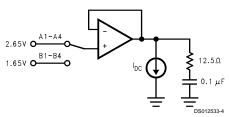


FIGURE 3. A1: 13 mA Source only A2-A4: 13 mA Sink/Source

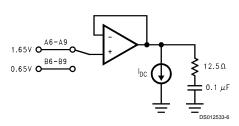
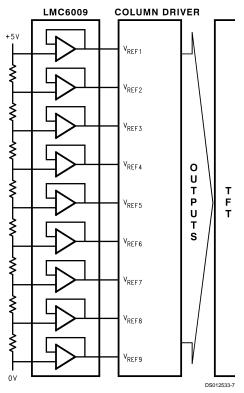


FIGURE 5. A6-A8: 13 mA Sink/Source A9: 13 mA Sink Only

Description of Pins; LMC6009

Pin 1	NC	Pin 25	NC
Pin 2	NC	Pin 26	NC
Pin 3	NC	Pin 27	NC
Pin 4	A1 in (A)	Pin 28	NC
Pin 5	A1 in (B)	Pin 29	A/B Switch
Pin 6	A2 in (A)	Pin 30	V _{DD} (C)
Pin 7	A2 in (B)	Pin 31	GND (C)
Pin 8	A3 in (A)	Pin 32	A9 out
Pin 9	A3 in (B)	Pin 33	A8 out
Pin 10	A4 in (A)	Pin 34	A7 out
Pin 11	A4 in (B)	Pin 35	A6 out
Pin 12	A5 in (A)	Pin 36	A5 out
Pin 13	A5 in (B)	Pin 37	GND (B)
Pin 14	A6 in (A)	Pin 38	V _{DD} (B)
Pin 15	A6 in (B)	Pin 39	A4 out
Pin 16	A7 in (A)	Pin 40	A3 out
Pin 17	A7 in (B)	Pin 41	A2 out
Pin 18	A8 in (A)	Pin 42	A1 out
Pin 19	A8 in (B)	Pin 43	GND (A)
Pin 20	A9 in (A)	Pin 44	V _{DD} (A)
Pin 21	A9 in (B)	Pin 45	NC
Pin 22	NC	Pin 46	NC
Pin 23	NC	Pin 47	NC
Pin 24	NC	Pin 48	NC


FIGURE 6. Block Diagram of LMC6009

Applications

The LMC6009 is useful for buffering the nine reference voltages for gamma correction in a TFT-LCD as shown in Figure 7. The A/B channel inputs allow the user to alternate two sets of gamma references to compensate for asymmetrical Gamma characteristic during Row Inversion. The LMC6009 eliminates the need for nine external switches or an 18-to-9 multiplexer.

Since the buffers in the LMC6009 draw extremely low bias current (1.5 μA max), large resistance values can be used in the reference voltage string. This allows the power dissipation in the gamma reference circuit to be minimized. The nine buffers are guaranteed to deliver 80 mA to the load, allowing the pixel voltages of the TFT-LCD to settle very quickly.

Applications (Continued)

FIGURE 7.

Example: Below is a calculation of pixel charge time (for a black to black transition) in a VGA display operating at a vertical refresh rate of 60 Hz, with a panel capacitance of 50 pF per sub-pixel:

A full black to black transition represents the maximum charging time for the panel, since it requires that the panel capacitance be driven by a 4V swing from node V_{REF1}

Total capacitive load presented to the LMC6009 is

 C_L = 50 pF x 3 x 640 = 96 nF

Output current of the LMC6009 is:

 I_{SC} = 80 mA

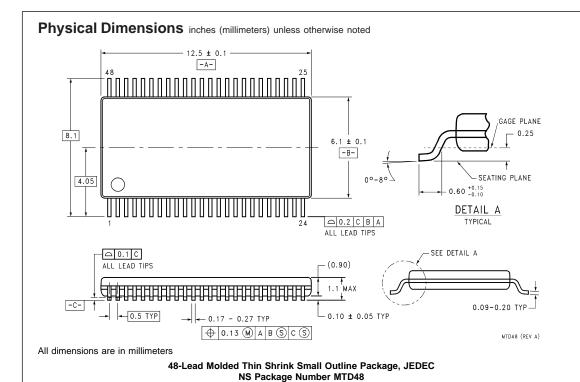
Hence, slew time t_{SLEW} = (96 nF x 4V)/80 mA = 3.07 μs

The total line time for a VGA system is approximately 34 μ s. Therefore, the LMC6009 easily meets the drive requirements for the application. The input resistance seen between the V_{REFn} and V_{REF(n+1)} inputs, (where n = 0 thru 8) of the

Column Driver (*Figure 7*) also draw current from the LMC6009. Thus, the actual current available for charging the panel capacitance is:

 $lpx = 80 mA - (V_{VREF1} - V_{VREF2})/R_{CD}$

where


V_{V REFn} = Voltage at node V_{REFn},

 $V_{VREF(n+1)}$ = Voltage at node $V_{REF(n+1)}$, and

R_{CD} = Column driver input resistance between

VREFn and VREF(n+1)

Since the LMC6009 is capable of sourcing 80 mA, the pixel charging time is primarily limited only by the length of the $R_{\rm CD}.$ C_L time constant. To implement a high quality display, column drivers that allow the shortest possible time constant (lower values of $R_{\rm CD})$ are desirable. However, lower values of $R_{\rm CD}$ result in increased system quiescent power dissipation. It is therefore important to optimize system performance by carefully considering speed vs power tradeoffs.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

National Semiconductor Europe

Fax: +49 (0) 1 80-530 85 86 Fax: +49 (0) 1 80-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 1 80-530 85 85 English Tel: +49 (0) 1 80-532 78 32 Français Tel: +49 (0) 1 80-532 93 58 Italiano Tel: +49 (0) 1 80-534 16 80

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.