

M62440FP

Electric Volume Control with Tone Controller for 4-Speaker Applications

REJ03F0211-0201 Rev.2.01 Mar 31, 2008

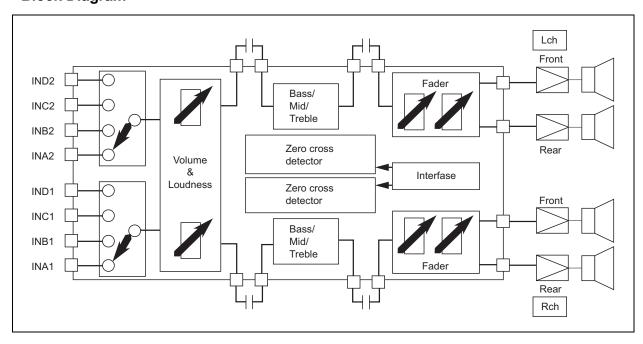
Description

The M62440FP is an IC developed for car audio, it has a built-in 4ch input selector, master volume, loudness, tone control and fader volume blocks. All of these blocks are controlled via serial data. Thank to the used zero crossing detector, very low click noise are obtained.

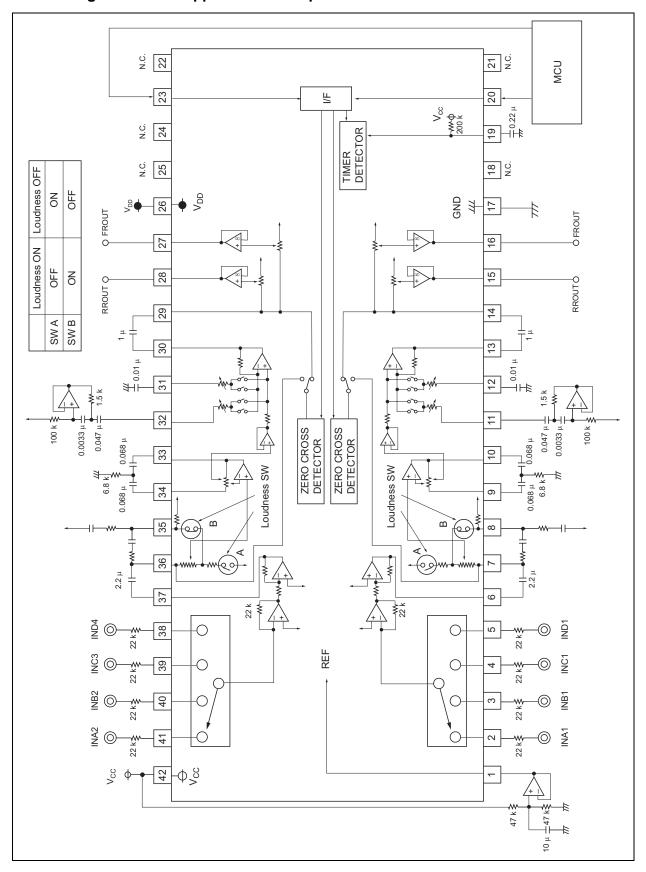
Features

- · Built-in zero cross detector prevents click noise
- 4-input selector
- Loudness
- Tone control bass/Mid/Treble
- Master volume/Fader Volume
- Serial data control

Recommended Operating Conditions


Supply voltage range: $V_{CC} = 6$ to 9 V

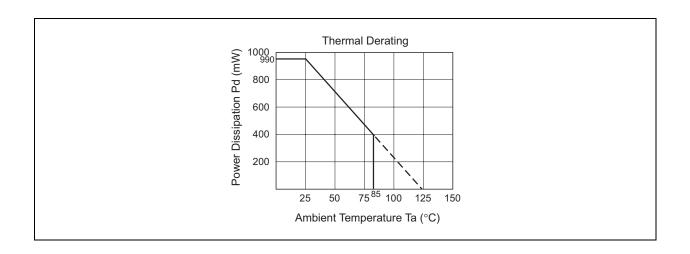
 $V_{DD} = 4 \text{ to } 6 \text{ V}$


Rated supply voltage: $V_{CC} = 8 \text{ V}$

 $V_{\rm DD} = 5 \ V$

Block Diagram

Pin Configuration and Application Example

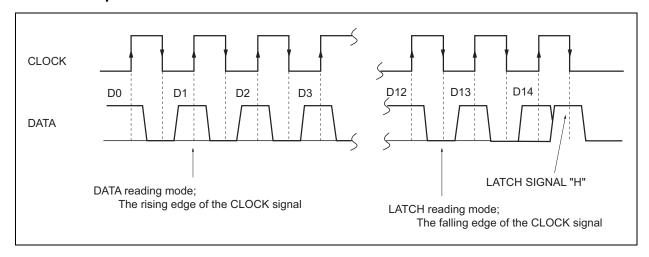


Pin Description

Pin No.	Symbol	Function	
1	REF	IC signal ground. Apply 1/2 V _{CC}	
2	INA1	Input pin for channel 1 of the input selector switch block	
3	INB1		
4	INC1		
5	IND1		
6	SELECT OUT1	Output pin of the input selector switch block	
7	VOL IN1	Input pin of the volume block	
8	LOUD IN1	Pin for setting the frequency characteristics of the loudness block	
9	BASSA1	Pin for setting the frequency characteristics of the tone (Bass) block	
10	BASSB1		
11	MID1	R-ladder terminal of tone (Mid)	
12	TRE1	R-ladder terminal of tone (Treble)	
13	TONE OUT1	Output pin of the tone block	
14	FADER IN1	Input pin of the fader volume	
15	REAR OUT1	Output pin of the fader volume (Rear)	
16	FRONT OUT1	Output pin of the fader volume (Front)	
17	GND	Ground	
18	N.C.	Non Connection	
19	TIM1	Timer setting terminal	
		The relationship between outside parts	
		C and setting time is $T = 13.8 \times 10^4 \cdot C$ (s).	
20	DATA	Input pin of the control data	
		This pin inputs data in synchronization with CLOCK	
21	N.C.	Non Connection	
22	N.C.	Non Connection	
23	CLOCK	Clock input pin for serial data transfer	
24	N.C.	Non Connection	
25	N.C.	Non Connection	
26	V_{DD}	Digital power supply pin, normally +5 V	
27	FRONT OUT2	Output pin of the fader volume (Front)	
28	REAR OUT2	Output pin of the fader volume (Rear)	
29	FADER IN2	Input pin of the fader volume	
30	TONE OUT2	Output pin of the tone block	
31	TRE2	R-ladder terminal of tone (Treble)	
32	MID2	R-ladder terminal of tone (Mid)	
33	BASSB2	Pin for setting the frequency characteristics of the tone (Bass) block	
34	BASSA2		
35	LOUD IN2	Pin for setting the frequency characteristics of the loudness block	
36	VOL IN2	Input pin of the volume block	
37	SELECT OUT2	Output pin of the input selector switch block	
38	IND2	Input pin for channel 2 of the input selector switch block	
39	INC2		
40	INB2		
41	INA2		
42	V _{CC}	Analog power supply pin	
L	1 00	1 01 1171	

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Conditions
Supply voltage	V_{CC}, V_{DD}	10, 7	V	_
Power dissipation	Pd	990	mW	Ta ≤ 25°C
Thermal derating ratio	Κθ	9.9	mW/°C	Ta ≥ 25°C
Operating temperature	Topr	-30 to 85	°C	_
Storage temperature	Tstg	-55 to 125	°C	_

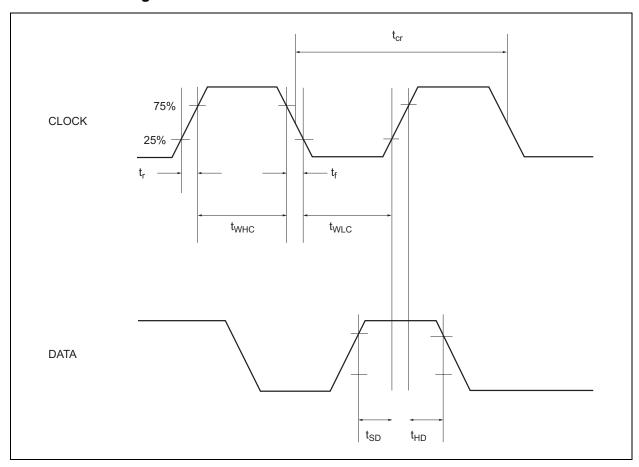


Electrical Characteristics

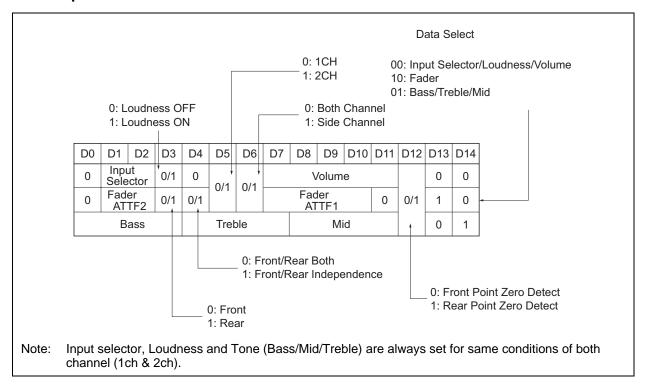
 $Ta = 25 ^{\circ}C,\ V_{CC} = 8\ V,\ V_{DD} = 5\ V,\ VOL/FADER = 0\ dB,\ TONE/FLAT,\ Loudness\ OFF\ unless\ otherwise\ noted$

		Limits				
Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Circuit current	Icc	_	20	35	mA	No input signal
Pass gain	Gv	-3.5	0	3.5	dB	Outside resister 22 k Ω of pin 2 to 5, pin 38 ~ 41
Maximum attenuation	A _{TT} (VOL)	-32.5	-30	-27.5	dB	Vi = 1 Vrms, f = 1 kHz ATT (VOL) = -30 dB
Attenuation error	ΔA _{TT} (VOL)	-2.5	0	2.5	dB	ATT (VOL) = 0 dB
Maximum input voltage	V _{IM}	1.8	2.2	_	Vrms	f = 1 kHz, BW: 400 ~ 30 kHz THD = 1%
Bass boost	G (Bass) B	13	16	19	dB	f = 100 Hz
Bass cut	G (Bass) C	-15	-12	-9	dB	f = 100 Hz
MID boost	G (MID) B	9	12	15	dB	f = 1 kHz
MID cut	G (MID) C	-15	-12	-9	dB	f = 1 kHz
Treble boost	G (Tre) B	9	12	15	dB	f = 10 kHz
Treble cut	G (Tre) C	-15	-12	-9	dB	f = 10 kHz
Maximum attenuation	A _{TT} (FED)	_	-90	-80	dB	Vi = 1 Vrms, f = 1 kHz ATT (FED) = $-\infty$ dB
Maximum output voltage	V _{OM}	1.8	2.2	_	Vrms	f = 1 kHz, BW: 400 to 30 kHz THD = 1%
Output noise voltage	V _{no} 1	_	10	18	μVrms	Rg = 0, DIN-AUDIO
	V _{no} 2	_	3	8		ATT (VOL) = -30 dB ATT (FED) = $-\infty \text{ dB}$ Rg = 0, DIN-AUDIO
Total harmonic distortion	THD	_	0.01	0.05	%	f = 1 kHz, Vo = 0.5 Vrms BW: 400 Hz to 30 kHz
Channel separation	CS	_	-90	-80	dB	f = 1 kHz
Cross talk of input selector	СТ	_	- 75	-65	dB	f = 1 kHz
Voltage gain of loudness	G (LOUD) L	7.0	11.0	15.0	dB	Loudness ON f = 100 Hz, ATT (VOL) = -30 dB
	G (LOUD) H	3.5	6.5	9.5		Loudness ON f = 10 kHz, ATT (VOL) = -30 dB

Relationship between Data and Clock


Digital Circuit DC Characteristics

		Limits					
Item	Symbol	Min	Тур	Max	Unit	Те	st Conditions
"L" level input voltage	V_{IL}	0	~	0.2 V _{DD}	V	DATA, CLOCK pins	
"H" level input voltage	V _{IH}	0.8 V _{DD}	~	V_{DD}			
"L" level input current	I _{IL}	-10	_	10	μΑ	$V_I = 0$	DATA, CLOCK pins
"H" level input current	I _{IH}	_	_	10		$V_I = V_{DD}$	


Digital Circuit AC Characteristics

		Limits			
Item	Symbol	Min	Тур	Max	Unit
CLOCK cycle time	t _{cr}	4	_	_	μS
CLOCK pulse width ("H" level)	t _{WHC}	1.6	_	_	
CLOCK pulse width ("L" level)	t _{WLC}	1.6	_	_	
CLOCK rise time	t _r	_	_	0.4	1
CLOCK fall time	t _f	_	_	0.4	1
DATA setup time	t _{SD}	0.8	_	_	1
DATA hold time	t _{HD}	0.8	_	_	

Clock Data Timing

Data Input Format

Volume Code

ATT V1	D7	D8	D9
0 dB	1	0	1
–4 dB	0	0	1
–8 dB	1	1	0
–12 dB	0	1	0
–16 dB	1	0	0
–20 dB	0	0	0
–24 dB	0	1	1
–28 dB	1	1	1

ATT V2	D10	D11
0 dB	1	1
−1 dB	0	1
−2 dB	1	0
−3 dB	0	0

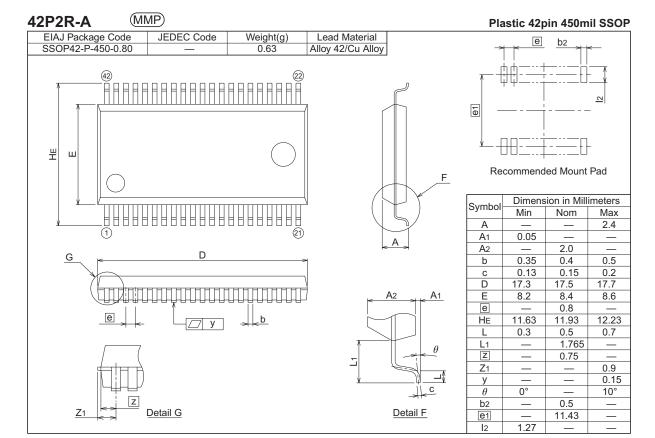
Fader Code

ATT F1	D7	D8	D9	D10
0 dB	1	0	0	1
–8 dB	1	1	1	0
–16 dB	0	1	1	0
–24 dB	1	0	1	0
–32 dB	0	0	1	0
–40 dB	1	1	0	0
–48 dB	0	1	0	0
–56 dB	1	0	0	0
–∞ dB	0	0	0	0

ATT F2	D1	D2
0 dB	1	1
–2 dB	0	1
–4 dB	1	0
_6 dB	0	0

Tone Code

Bass	D0	D1	D2	D3
16 dB	0	0	0	1
14 dB	1	1	1	0
12 dB	0	1	1	0
10 dB	1	0	1	0
8 dB	0	0	1	0
6 dB	1	1	0	0
4 dB	0	1	0	0
2 dB	1	0	0	0
0 dB	0	0	0	0
−2 dB	1	0	0	1
–4 dB	0	1	0	1
−6 dB	1	1	0	1
–8 dB	0	0	1	1
–10 dB	1	0	1	1
−12 dB	0	1	1	1


Treble	D4	D5	D6	D7
12 dB	0	1	1	0
10 dB	1	0	1	0
8 dB	0	0	1	0
6 dB	1	1	0	0
4 dB	0	1	0	0
2 dB	1	0	0	0
0 dB	0	0	0	0
−2 dB	1	0	0	1
−4 dB	0	1	0	1
−6 dB	1	1	0	1
−8 dB	0	0	1	1
–10 dB	1	0	1	1
–12 dB	0	1	1	1

Mid	D8	D9	D10	D11
12 dB	0	1	1	0
10 dB	1	0	1	0
8 dB	0	0	1	0
6 dB	1	1	0	0
4 dB	0	1	0	0
2 dB	1	0	0	0
0 dB	0	0	0	0
−2 dB	1	0	0	1
–4 dB	0	1	0	1
−6 dB	1	1	0	1
−8 dB	0	0	1	1
–10 dB	1	0	1	1
–12 dB	0	1	1	1

Input Selector

Input Selector	D1	D2
D (5, 38 pin)	1	1
C (4, 39 pin)	1	0
B (3, 40 pin)	0	1
A (2, 41 pin)	0	0

Package Dimensions

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

 Notes:

 1. This document is provided for reference purposes only so that Penesas customers may select the appropriate Renesas products for their use. Renesas neither makes in the selection of the provided for reference purposes only so that Penesas customers may select the appropriate Renesas products for their use. Renesas neither makes are all the secondary of the products of the secondary of completeness of the information in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document nor grants any license to any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of ways and application circuit examples. It can be applicable export control laws and included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information however, is subject to change without any prior notice. Before purchase or such as a function of the products of the comment of the products of the prod

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510