PRELIMINARY

intercil

Data Sheet

#### October 15, 2004

# FN7455.0

# Micropower, Single Supply Op Amp

The EL8186 is a micropower operational amplifier optimized for single supply operation at 5V and can operate down to 2.4V.

Micropower performance of competing devices is achieved at the expense of seriously degrading precision, noise, speed, and output drive specifications. The EL8186 reduces supply current without sacrificing other parameters. Offset current, voltage and current noise, slew rate, and gainbandwidth product are all two to ten times better than on previous micropower op amps.

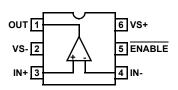
The 1/f corner of the voltage noise spectrum is at 1kHz. This results in low frequency noise performance which can only be found on devices with an order of magnitude higher supply current.

The EL8186 can be operated from one lithium cell or two Ni-Cd batteries. The input range goes below ground. The all-NPN output stage swings to ground while sinking current no pull-down resistors are needed.

## **Ordering Information**

| PART<br>NUMBER | PACKAGE      | TAPE & REEL  | PKG. DWG. # |
|----------------|--------------|--------------|-------------|
| EL8186IW-T7    | 6-Pin SOT-23 | 7" (3K pcs)  | MDP0038     |
| EL8186IW-T7A   | 6-Pin SOT-23 | 7" (250 pcs) | MDP0038     |

#### Features


- 65µA max supply current
- 1mV max offset voltage
- · 500pA input bias current
- 0.4µV/°C offset voltage drift
- · 1MHz gain-bandwidth product
- 0.15V/µs slew rate
- · Single supply operation
  - Input voltage range includes ground
  - Output swings to ground while sinking current
  - No pull-down resistors are needed
- · Output sources and sinks 5mA load current
- Open loop gain of 150kV/V

### Applications

- · Battery- or solar-powered systems
- · 4mA to 25mA current loops
- · Handheld consumer products
- Medical devices
- · Photodiode pre amps

#### Pinout





#### Absolute Maximum Ratings (T<sub>A</sub> = 25°C)

| Supply Voltage                            | V |
|-------------------------------------------|---|
| Differential Input Current 5m             | А |
| Input Voltage0.5V to V <sub>S</sub> + 0.5 | V |

 Output Short-Circuit Duration
 Indefinite

 Ambient Operating Temperature Range
 -40°C to +85°C

 Storage Temperature Range
 -65°C to +150°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore:  $T_J = T_C = T_A$ 

#### **Electrical Specifications** $V_S = 5V$ , 0V, $V_{CM} = 0.1V$ , $V_O = 1.4V$ , $T_A = 25^{\circ}C$ unless otherwise specified.

| PARAMETER                                  | DESCRIPTION                              | CONDITIONS                                            | MIN   | TYP  | MAX  | UNIT   |
|--------------------------------------------|------------------------------------------|-------------------------------------------------------|-------|------|------|--------|
| V <sub>OS</sub>                            | Input Offset Voltage                     |                                                       |       | 0.4  | 1    | mV     |
| $\frac{\Delta V_{OS}}{\Delta \text{Time}}$ | Long Term Input Offset Voltage Stability |                                                       |       | TBD  |      | μV/Mo  |
| I <sub>OS</sub>                            | Input Offset Current                     |                                                       |       | 0.4  | 2    | nA     |
| IB                                         | Input Bias Current                       |                                                       |       | 0.5  | 3    | nA     |
| e <sub>N</sub>                             | Input Noise Voltage Density              | f <sub>O</sub> = 1KHz                                 |       | 25   |      | nV/√Hz |
| i <sub>N</sub>                             | Input Noise Current Density              | f <sub>O</sub> = 1KHz                                 |       | 0.1  |      | pA/√Hz |
| R <sub>IN</sub>                            | Input Resistance                         |                                                       |       | 2    |      | MΩ     |
| CMIR                                       | Input Voltage Range                      | Guaranteed by CMRR test                               | 0     |      | 5    | V      |
| CMRR                                       | Common Mode Rejection Ratio              | V <sub>CM</sub> = 0V to 5V                            | 90    | 110  |      | dB     |
| PSRR                                       | Power Supply Rejection Ratio             | $V_{\rm S}$ = 2.4V to 5V                              | 90    | 110  |      | dB     |
| A <sub>VOL</sub>                           | Large Signal Voltage Gain                | $V_{O}$ = 0.03V to 4V, R <sub>L</sub> = 100k $\Omega$ | 200   | 500  |      | V/mV   |
|                                            |                                          | $V_{O}$ = 0.03V to 3.5V, R <sub>L</sub> = 1k $\Omega$ |       | 25   |      | V/mV   |
| V <sub>OUT</sub>                           | Maximum Output Voltage Swing             | Output low, $R_L = 100 k\Omega$                       |       | 3    | 6    | mV     |
|                                            |                                          | Output low, $R_L = 1k\Omega$                          |       | 130  | 200  | mV     |
|                                            |                                          | Output high, $R_L = 100 k\Omega$                      | 4.944 | 4.97 |      | V      |
|                                            |                                          | Output high, $R_L = 1k\Omega$                         | 4.8   | 4.88 |      | V      |
| SR                                         | Slew Rate                                |                                                       | 0.09  | 0.13 | 0.16 | V/µs   |
| GBW                                        | Gain Bandwidth Product                   | A <sub>V</sub> = 1                                    |       | 700  |      | kHz    |
| I <sub>S,ON</sub>                          | Supply Current, Enabled                  | @ voltage < 2.0V                                      | 40    | 55   | 75   | μA     |
| I <sub>S,OFF</sub>                         | Supply Current, Disabled                 |                                                       |       | 3    | 10   | μA     |
| I <sub>O</sub> +                           | Short Circuit Output Current             | R <sub>L</sub> = 10Ω                                  | 18    | 31   |      | mA     |
| I <sub>O</sub> -                           | Short Circuit Output Current             | R <sub>L</sub> = 10Ω                                  | 17    | 26   |      | mA     |
| V <sub>S</sub>                             | Minimum Supply Voltage                   |                                                       |       | 2.2  | 2.4  | V      |
| V <sub>INH</sub>                           | Enable Pin High Level                    |                                                       |       |      | 2    | V      |
| V <sub>INL</sub>                           | Enable Pin Low Level                     |                                                       | 0.8   |      |      | V      |
| I <sub>ENH</sub>                           | Enable Pin Input Current                 | V <sub>EN</sub> = 5V                                  | 0.25  | 0.7  | 2    | μA     |
| I <sub>ENL</sub>                           | Enable Pin Input Current                 | V <sub>EN</sub> = 0V                                  | -0.5  | 0    | +0.5 | μA     |

2

# **Typical Performance Curves**

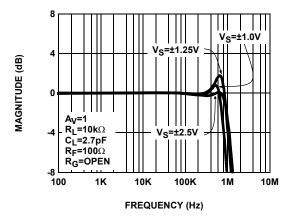



FIGURE 1. FREQUENCY RESPONSE vs SUPPLY VOLTAGE

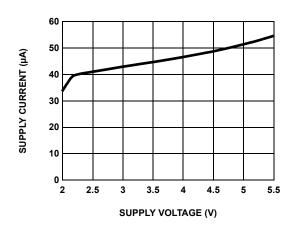



FIGURE 3. SUPPLY CURRENT vs SUPPLY VOLTAGE

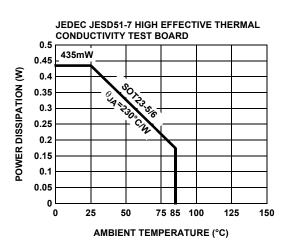



FIGURE 5. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE

3

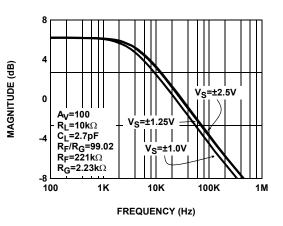



FIGURE 2. FREQUENCY RESPONSE vs SUPPLY VOLTAGE

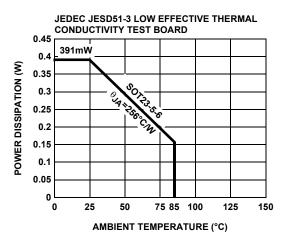



FIGURE 4. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

