

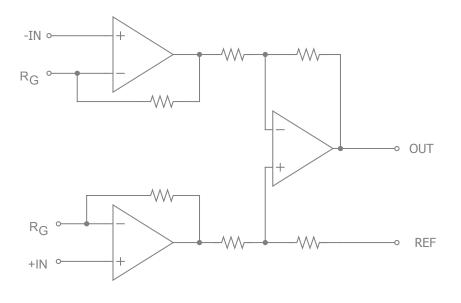
Comlinear[®] CLC1200 Instrumentation Amplifier

FEATURES

- ±2.3V to ±18V supply voltage range
- Gain range of 1 to 1,000
- Gain set with one external resistor
- ±125µV maximum input offset voltage
- 0.1µV/°C input offset drift
- 2.2mA maximum supply current
- $6.6 \text{nV}/\sqrt{\text{Hz}}$ input voltage noise
- $70nV/\sqrt{Hz}$ output voltage noise
- $0.2\mu V_{pp}$ noise (0.1Hz to 10Hz)
- Pb-free SOIC-8 or DIP-8

APPLICATIONS

- Bridge amplifier
- Scales
- Thermocouple amplifier
- ECG and medical instrumentation
- Transducer interface
- Data acquisition
- Strain gauge amplifier

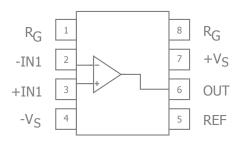

General Description

The CLC1200 is a low power, general purpose instrumentation amplifier with a gain range of 1 to 1,000. The CLC1200 is offered in 8-lead SOIC or DIP packages and requires only one external gain setting resistor making it smaller and easier to implement than discrete, 3-amp designs.

While consuming only 2.2mA of supply current, the CLC1200 offers a low 6.6nV/Hz input voltage noise and $0.2\mu V_{pp}$ noise from 0.1Hz to 10Hz.

The CLC1200 offers a low input offset voltage of $\pm 125\mu$ V that only varies 0.1 μ V/°C over it's operating temperature range of -40°C to +85°C. The CLC1200 also features 50ppm maximum nonlinearity. These features make it well suited for use in data aquisition systems.

Functional Block Diagram


Ordering Information

Part Number	Package	Pb-Free	Operating Temperature Range	Packaging Method
CLC1200ISO8*	SOIC-8	Yes	-40°C to +85°C	Rail
CLC1200ISO8X*	SOIC-8	Yes	-40°C to +85°C	Reel
CLC1200IDP8*	DIP-8	Yes	-40°C to +85°C	Rail

*Preliminary information.

Moisture sensitivity level for all parts is MSL-1.

Pin Configuration

Pin Assignments

Pin No.	Pin Name	Description
1, 8	R _G	R _G sets gain
2	-IN	Negative input
3	+IN	Positive input
4	-V _S	Negative supply
5	REF	Output is referred to the REF pin potential
6	OUT	Output
7	+V _S	Positive supply

Absolute Maximum Ratings

The safety of the device is not guaranteed when it is operated above the "Absolute Maximum Ratings". The device should not be operated at these "absolute" limits. Adhere to the "Recommended Operating Conditions" for proper device function. The information contained in the Electrical Characteristics tables and Typical Performance plots reflect the operating conditions noted on the tables and plots.

Parameter	Min	Max	Unit
Supply Voltage	0	±18	V
Input Voltage Range	-V _S	+V _S	V
Differential Input Voltage, $G = 1$ to 10		25	V
Differential Input Voltage, G > 10		$\leq 0.05 (R_{G} + 800) + 1$	V
Load Resistance	0.001		kΩ
Output Short Circuit Current	TBD	TBD	mA

Reliability Information

Parameter	Min	Тур	Max	Unit
Junction Temperature			150	°C
Storage Temperature Range	-65		150	°C
Lead Temperature (Soldering, 10s)			260	°C
Package Thermal Resistance				
8-Lead SOIC		100		°C/W
8-Lead DIP		TBD		°C/W

Notes:

Package thermal resistance ($\theta_{JA})\text{, JDEC}$ standard, multi-layer test boards, still air.

ESD Protection

Product	SOIC-8	DIP-8
Human Body Model (HBM)	TBD	TBD
Charged Device Model (CDM)	TBD	TBD

Recommended Operating Conditions

Parameter	Min	Тур	Max	Unit
Operating Temperature Range	-40		+85	°C
Supply Voltage Range	±2.3		±18	V

Electrical Characteristics

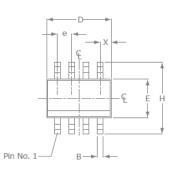
 $T_A = 25^{\circ}C, V_S = \pm 15V, R_L = TBDk\Omega \text{ to GND; unless otherwise noted.}$ G = 1 + (49.9k\Omega / R_G); Total RTI Error = V_{OSI} + (V_{OSO} / G)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Gain						
	Gain Range		1		1,000	
		$G = 1, V_{OUT} = \pm 10V$	-0.1		0.1	%
		$G = 10, V_{OUT} = \pm 10V$	-0.375		0.375	%
	Gain Error	$G = 100, V_{OUT} = \pm 10V$	-0.375		0.375	%
		$G = 1,000, V_{OUT} = \pm 10V$	-0.8		0.8	%
	New Proceeding	G = 1 - 100, V _{OUT} = -10V to 10V, R _L = 10k Ω		10	50	ppm
	Nonlinearity	G = 1 - 100, V _{OUT} = -10V to 10V, R _L = 2k\Omega		10	95	ppm
		G = 1		TBD		ppm/°C
	Gain vs. Temperature	G > 1		TBD		ppm/°C
	Reference Gain Error ⁽²⁾	$V_{\rm S} = \pm 16.5$	-0.03		0.03	%
Voltage Offs	et					
		$V_{\rm S} = \pm 4.5$ to ± 16.5	-125		125	μV
V _{OSI}	Input Offset Voltage	$V_{\rm S} = \pm 4.5$ to ± 16.5 , -45° C to $+85^{\circ}$ C	-225		225	μV
	Average Temperature Coefficient	$V_{\rm S} = \pm 4.5$ to ± 16.5		0.1		μV/°C
		$V_{\rm S} = \pm 4.5$ to ± 16.5 , G = 1	-1500	200	1500	μV
V _{OSO}	Output Offset Voltage	$V_{\rm S} = \pm 4.5$ to ± 16.5 , -45° C to $+85^{\circ}$ C	-2000		2000	μV
	Average Temperature Coefficient	$V_{\rm S} = \pm 4.5$ to ± 16.5		2.5		μV/°C
	Offset Referred to the Input vs. Supply	$G = 1, V_S = \pm 2.3 \text{ to } \pm 18 \text{V}$	80	100		dB
		$G = 10, V_S = \pm 2.3 \text{ to } \pm 18 \text{V}$	95	120		dB
PSR		$G = 100, V_S = \pm 2.3 \text{ to } \pm 18 \text{V}$	110	140		dB
		$G = 1,000, V_S = \pm 2.3 \text{ to } \pm 18 \text{V}$	110	140		dB
Input Currer	nt		1 1		<u> </u>	
		$V_{\rm S} = \pm 16.5$	-2	0.5	2	nA
I _B	Input Bias Current	$V_{\rm S} = \pm 16.5, -45^{\circ}{\rm C} \text{ to } +85^{\circ}{\rm C}$	-5		5	nA
	Average Temperature Coefficient	$V_{\rm S} = \pm 16.5$		3		pA/°C
		$V_{\rm S} = \pm 16.5$	-1		1	nA
I _{OS}	Input Offset Current	$V_{\rm S} = \pm 16.5, -45^{\circ}{\rm C}$ to $+85^{\circ}{\rm C}$	-2		2	nA
Input			1 1		<u> </u>	
		Differential		10, 2		GΩ, pF
	Input Impedabce	Common-Mode		10, 2		GΩ, pF
		$V_{S} = \pm 4.5, G = 1$	-V _S +1.9		+V _S -1.2	V
	Input Voltage Range ⁽³⁾	$V_{\rm S} = \pm 16.5, {\rm G} = 1$	-V _S +1.9		+V _S -1.4	V
		$G = 1, V_S = \pm 16.5V$	70	90		dB
		$G = 10, V_S = \pm 16.5V$	90	110		dB
CMRR	Common Mode Rejection Ratio	$G = 100, V_S = \pm 16.5V$	108	130		dB
		$G = 1,000, V_S = \pm 16.5V$	108	130		dB
Output		· · · ·				
		$V_{\rm S} = \pm 2.3 \text{V} \text{ to } \pm 4.5 \text{V}$	-V _S +1.1		+V _S -1.2	V
		$V_{\rm S} = \pm 4.5, -45^{\circ}{\rm C}$ to +85°C	-V _S +1.6		+V _S -1.3	V
V _{OUT}	Output Swing	$V_{\rm S} = \pm 18, {\rm G} = 1$	-V _S +1.4		+V _S -1.2	V
		$V_{\rm S} = \pm 16.5, G = 1,-45^{\circ}{\rm C}$ to +85°C	-V _S +1.5		+V _S -2.3	V
I _{SC}	Short Circuit Current	-5 -200, 0 2, 10 0 0 10 0	-5.10	±20	5 2.0	mA

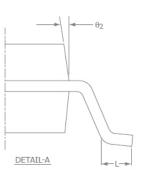
Symbol	Parameter	Conditions	Min	Тур	Max	Units
Dynamic Pe	erformance					
		G = 1		700		kHz
		G = 10		TBD		kHz
BW-3dB	Small Signal Bandwidth	G = 100		TBD		kHz
		G = 1,000		TBD		kHz
SR	Slew Rate	$G = 10, V_S = \pm 15V$	0.6	1.2		V/µs
		G = 1 to 100, 10V step		TBD		μs
t _S	Settling Time to 0.01%	G = 1,000, 10V step		TBD		μs
e _{ni}	Input Voltage Noise	1kHz, G = 1,000, V _S = ±15V		6.6	13	nV/√Hz
e _{no}	Output Voltage Noise	1kHz, G = 1, $V_S = \pm 15V$		70	100	nV/√Hz
		G = 1		TBD		μV _{pp}
RTI	RTI, 0.1Hz to 10Hz	$G = 10, V_S = \pm 15V$			0.8	μV _{pp}
	,	$G = 100, V_S = \pm 15V$		0.2	0.4	μV _{pp}
		f = 1kHz		TBD		fA/√Hz
	Current Noise	0.1Hz to 10Hz		TBD		pA _{pp}
Reference 1	nput					
R _{IN}	Input Impedance			20		kΩ
I _{IN}	Input Current	$V_{\rm S} = \pm 16.5 V$		50	60	μΑ
	Voltage Range	$V_{\rm S} = \pm 15 V$	-V _S +1.6		+V _S -1.6	V
	Gain to Output			1 ± 0.0001		
Power Supp	bly					
Vs	Operating Range		±2.3		±18	V
		$V_{\rm S} = \pm 16.5 V$		1.3	2.2	mA
I _S	Supply Current	$V_{\rm S} = \pm 15$ V, -40°C to +85°C			2.5	mA

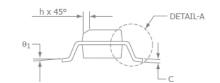
Notes:

1. 100% tested at 25°C


2. Nominal reference voltage gain is 1.0

3. Input voltage range = CMV + (G V_{DIFF})/2


Mechanical Dimensions


SOIC-8 Package

Α1

A2

SOIC-8				
SYMBOL	MIN	MAX		
A1	0.10	0.25		
В	0.36	0.48		
С	0.19	0.25		
D	4.80	4.98		
E	3.81 3.99			
е	1.27	BSC		
Н	5.80	6.20		
h	0.25	0.5		
L	0.41	1.27		
A	1.37	1.73		
θ_1	0° 8°			
Х	0.55 ref			
θ2	7º BSC			

NOTE:

1. All dimensions are in millimeters.

2. Lead coplanarity should be 0 to 0.1mm (0.004") max.

3. Package surface finishing: VDI 24~27

4. All dimension excluding mold flashes.

5. The lead width, B to be determined at 0.1905mm from the lead tip.

For additional information regarding our products, please visit CADEKA at: cadeka.com

CADEKA Headquarters Loveland, Colorado T: 970.663.5452

T: 877.663.5452 (toll free)

CADEKA, the CADEKA logo design, COMLINEAR, and the COMLINEARlogo design, and ARCTIC are trademarks or registered trademarks of CADEKA Microcircuits LLC. All other brand and product names may be trademarks of their respective companies.

CADEKA reserves the right to make changes to any products and services herein at any time without notice. CADEKA does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing by CADEKA; nor does the purchase, lease, or use of a product or service from CADEKA convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual property rights of CADEKA or of third parties.

Copyright ©2008 by CADEKA Microcircuits LLC. All rights reserved.

